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Abstract: This paper is about the control design of hybrid dynamical systems modelled with 

Petri nets. For this purpose, continuous Petri nets with variable speeds are investigated and 

described as piecewise bilinear state space representations. In this context, the marking 

vector is considered as a state space vector, subsets of places are defined as the model 

outputs, and the transitions are divided into non controllable ones and controllable ones that 

correspond to the model inputs. Gradient-based controllers are proposed and discussed in 

order to adapt the maximal firing frequencies of the controllable transitions according to 

desired trajectories of the output markings.  

1. Introduction 

Petri nets (PN) are useful for the study of discrete event systems (DES) and hybrid dynamical 

systems (HDS) (Cassandras 1993, Zaytoon et al. 1998) because they combine, in a 

comprehensive way, intuitive graphical representations and powerful analytic expressions 

(Brams 1983, Brauer et al. 1986, Murata 1989). As a consequence, a lot of results based on 

PN theory have been established for the control design of DES and HDS. One of the most 

famous approach concern the supervisory control where the system and the controller are 

considered as DES (Ramadge et al. 1987, Giua et al. 1994, Uzam et al. 1999). Hybrid 

approaches were also developed in order to combine discrete and continuous signals (Krogh 
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et al. 1996, Bemporad et al. 1999). At last, continuous approaches were inspired from 

continuous flow models and continuous Petri nets.  

The motivation to use continuous Petri nets is either to model the continuous part of HDS, or 

to work out a continuous approximation of DES in order to avoid the complexity associated to 

the exponential growth of states. Flow control design has been developed with different 

classes of controllers (Silva et al. 2003): constrained state feedback (Amrah et al. 1996, 

Lefebvre 1999), fuzzy control (Ghabri 1995), linear programming (Hanzalek 2003), and 

optimal control (Egilmez et al. 1994, Sharifnia A. 1988, 1994). This paper concerns another 

continuous Petri net approach where the proposed controllers are inspired from the neural 

network adaptation algorithms (Widrow et al. 1990, Thomas 1997) and based on input-output 

sensitivity functions. For this purpose, continuous Petri nets with variable speeds (VCPN) are 

investigated and described as piecewise bilinear state space representations where the places 

marking stands for the state space vector. The system outputs are defined as the marking of 

subsets of places, and the system inputs correspond to the maximal firing frequencies of a 

selection of controllable transitions. The main contributions are to investigate the input-output 

sensitivity of the PN model from structural and also functional points of view. On the one 

hand, a characterization of input – output structural sensitivity is defined and worked out in a 

systematic way. On the other hand, sensitivity functions are defined and processed thanks to 

numerical algorithms that are detailed. As a consequence, gradient-based controllers are 

proposed in order to adapt the controllable maximal firing frequencies according to desired 

trajectories of the output markings. The advantages of the gradient-based controllers are 

pointed out in case of multi-inputs and multi-outputs (MIMO) models for discrete and hybrid 

systems. 

The paper is divided into 5 sections. The section 2 is about PN and VCPN. The section 3 

concerns the structural analysis that provides useful results concerning the input-output 

structural sensitivity. The section 4 is about the design of gradient-based controllers. Various 

examples of VCPN are proposed in section 5 in order to discuss the proposed results and to 

compare the gradient-based controllers with proportional and bang-bang ones. 

2. Petri nets 

A Petri net (PN) with n places and p transitions is defined as < P, T, Pre, Post, M0 > where 

P={Pi} i=1,…,n is a not empty finite set of places, T={T j} j=1,…,p is a not empty finite set of 

transitions, such that P ∩ T = ∅ (Brams 1983, Murata 1989). IN is defined as the set of 

integer numbers. Pre: P × T → IN is the pre-incidence application: Pre (Pi, Tj) is the weight of 



 Submission to International Journal of Systems Science 3 

the arc from place Pi to transition Tj and WPR = ( wPR
ij ) i=1,…,n, j=1,…,p ∈ IN n × p with wPR

ij = Pre 

(Pi, Tj) is the pre-incidence matrix. Post: P × T → IN is the post-incidence application: Post 

(Pi, Tj) is the weight of the arc from transition Tj to place Pi and WPO = ( wPO
ij ) i=1,…,n, j=1,…,p ∈ 

IN n × p with wPO
ij = Post (Pi, Tj) is the post-incidence matrix. The PN incidence matrix W is 

defined as W = WPO – WPR ∈ IN n × p. Let us also define M = (mi)i=1,…,n ∈ IN n as the marking 

vector and M0 ∈ IN n as the initial marking vector. °Tj (resp Tj° ) stands for the pre-set (resp. 

post-set) places of Tj. Firing sequences are defined as an ordered series of transitions that are 

successively fired from marking M to marking M’ . Such a sequence is represented by its 

characteristic vector X = (xj)j=1,…,p ∈ IN p where xj stands for the number of Tj firings. The 

marking M' is related to the marking M and to the firing sequence X according to the relation 

(1): 

M’ = M + W.X.  (1) 

When two transitions Tj and Tj’  have a common place in the pre-set, the PN presents a 

structural conflict. The conflict becomes an effective one if there are not enough tokens in the 

common place to fire both transitions. PN theory does not solve the conflicts. Conflicts are 

solved according to a decision maker that completes the PN models and that is not considered 

in this study. In autonomous PN without conflict, the enabling degree of each transition Tj, 

related to the marking M, is given by equation (2): 
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where fix(.) stands for the integer part of (.). 

2.1. Continuous Petri nets 

Continuous PN are a particular class of timed PN, deduced from T - timed Petri nets (TPN) 

(Ramchandani 1973) to provide a continuous approximation of DES behaviour (Alla et al. 

1999, David et al. 1992). A continuous PN with n places and p transitions is defined as  

< PN, Xmax > where PN is a Petri net and Xmax = (xmax j )j=1,…,p ∈ IR+ p is the vector of maximal 

firing frequencies with IR+ the set of non-negative real numbers The marking mi(t) of each 

place Pi, i = 1,…,n, at time t has a non-negative real value and each transition firing is a 

continuous flow in continuous PN. In fact, the transition Tj is fired with a frequency xj(t) less 
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than the maximal frequency xmax j. Let us define X(t) = (xj(t))j=1,…,p ∈ IR+ p as the firing 

frequencies vector at time t. The marking evolution is given by the differential system (3): 

)t(X.W
dt

dM(t) = . (3) 

Among the existing models of continuous PN, continuous PN with variable speeds (VCPN), 

and continuous PN with constant speeds (CCPN) were proved to give good approximations of 

TPN. In the next sections of this paper, VCPN are preferred because of their interesting 

properties (David et al. 1992): no effective conflict occurs with VCPN; components of the 

marking vector are continuous functions of the time; components of the firing frequencies 

vector X(t) depend continuously on the marking of the places according to equations (4) and 

(5): 

)t(.x=(t)x jjmaxj µ
, (4) 

with: 

( )
( ) min ( )i

j PR
ij

m t
t

P T wi j
µ =

∈°
. (5) 

Let us also notice that other models of continuous PN were investigated as differential Petri 

nets (Demongodin et al. 1998) or hybrid PN (Zaytoon et al. 1998) as illustrated by the 

example in the next section. 

2.2. Continuous PN models of hybrid systems 

Continuous PN are suitable to approximate DES or to model the continuous part of HDS 

(Balduzzi et al. 2000, Zaytoon et al. 1998) as illustrated with the example in figure 1, 

modelled with the hybrid PN in figure 2.  

 

[Insert figure 1 about here] 

 

The places P1 and P2 are continuous and the markings m1 and m2 stand respectively for the 

height of liquid in tank 1 and tank 2 according to (6): 

1 1 1 2 3
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where S1 and S2 stand for the sections of tank 1 and tank 2. The transitions T1 to T4 are 

continuous which firing represents respectively the input flow (T1), the output flow (T4) and 

the flows through the pipes A (T2) and B (T3) according to (7): 

1

2 2 1 2

3 3 1 2

4 4 2
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. sup( , ) sup( , )
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x D

x m m

x m h m h

x m

α

α

α

=

= −

= −

=

 (7) 

where D, α2, α3 and α4 are related to the system specifications and it is assumed that m1 ≥ m2. 

The discrete part of the PN (places P3 and P4 and transitions T5 and T6) stands for the 

controller. A token in P3 means that valve V1 is open and V2 is closed. On the contrary, a 

token in P4 means that valve V2 is open and V1 is closed. The arcs from P1 to T5 and from P2 

to T6 are test arcs (the value of the places P1 and P2 is not changed by firing the transitions T5 

and T6). The goal of the controller is to open V1 and close V2 when m2 < N2 and to open V2 and 

close V1 when m1 > N1. Such a discrete control design results in a cyclic steady state for the 

continuous variables m1 and m2 (figure 17). On the contrary, our approach described in 

sections 3 and 4 results in continuous control design useful to reach desired levels or to track 

reference trajectories (figure 18). 

 

[Insert figure 2 about here] 

 

Another example (figure 5) to motivate the use of continuous PN for the modelling and 

control of HDS will also be considered in the next sections.  

2.3. Piecewise bilinear state space representation for VCPN 

Due to the commutation function « min » and to the products between marking vector and 

maximal firing frequencies vector, VCPN models are not linear but piecewise bilinear 

systems (Amrah et al. 1996, Lefebvre 1998, Lefebvre et al. 2003a, Lefebvre et al. 2004). In 

order to bring VCPN models in the usual state space representation, let us introduce U(t) ∈ 

IR+ d as the VCPN input vector at time t and Y(t) ∈ IR+ q as the VCPN output vector at same 

instant. 

The input vector U(t) is defined as the maximal firing frequencies of the controllable 

transitions. For this purpose, the set of transitions T is divided into 2 disjoint subsets TC, and 
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TNC such that T = TC ∪ TNC. TC is the subset of the controllable transitions, and TNC is the 

uncontrollable transitions subset. An obvious case is given by TC = T and TNC = ∅, but in 

many cases, not all transitions are controllable. For instance, the transitions T2 and T3 in the 

figure 2, correspond to the flows through the pipes A and B that are not controllable in the 

sense that these pipes have no valve. As a consequence, let us define XC(t) = ( xj(t) )Tj∈TC ∈ 

IR+d and XNC(t) = ( xj(t) )Tj ∈ TNC ∈ IR+p-d according to (8): 

1 ( )
. ( )

( )
C

NC

X t
D X t

X t
−  

=  
 

,  (8) 

with D ∈ IR p x p  a suitable permutation matrix (i.e. D is the matrix of a bijective mapping 

from T to T that clusters the set of transitions into controllable and uncontrollable ones). The 

controllable inputs vector U(t) = Xmax C (t) ∈ IR+d corresponds to the maximal firing 

frequencies of the transitions to be controlled. The input vector is constrained 0 ≤ U(t) ≤ Umax 

in order to limit the firing frequencies in a non negative bounded interval. The uncontrollable 

maximal firing frequencies Xmax NC are supposed to be constant according to the VCPN 

models. 

The output vector Y(t) = Q.M(t) ∈ IR+e is composed of a selection of subnets markings that 

are observable. For this purpose, let us define Q = (qki)k=1,…,e ,i=1,…,n ∈ IR e × n as a positive 

observation matrix (i.e. Q is the matrix of a constant projector, each row corresponds to a 

positive weighted sum of the PN places marking). As a consequence, observation may 

concern not only the marking of some individual places but also the global marking of subsets 

with several places. The goal of the controller is to drive Y(t) according to some reference 

trajectories in the output space. Equation (3) can be rewritten as: 

( )
. ( ) . ( )

( ) . ( )

C C NC NC

dM t
W X t W X t

dt
Y t Q M t

= +

=  (9) 

with WC = (wC ij) i=1,…,n, j=1,…,d ∈ IR n × d and WNC = (wNC ij) i=1,…,n, j=1,…,p-d ∈ IR n × (p-d) such that 

(WC | WNC) = W.D. 

Several phases occur in the VCPN behaviour (Zehrouni et al. 1995). Each phase ϕ is active 

between two successive commutations of the “min” operators in (5) and corresponds to a 

particular configuration of these operators characterised by the p clustering functions fj: 

∀ Tj ∈ T, fj :  IR
+n → {1,…,n}  
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  M(t) → fj(M(t)) = k such that mk(t) = µj(t). (10) 

Each function fj specifies the place in the preset of Tj which has the minimal marking. During 

each phase ϕ, a constant relationship between the components of vectors XC(t) and M(t) and 

also between XNC(t) and M(t) occurs. This relation can be expressed under scalar form by 

using the functions fj or under vectorial form by using the set of vectors Aj(ϕ )∈ {0,1} 1 × n
  and 

Bj(ϕ )∈ {0,1} 1 × n which are constant during each phase but which may varied from one phase 

to another: 

 

 max
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( ). ( ). ( ), 1,...
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j j
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 (11) 

Equation (8) can be rewritten under scalar form: 

max
1 1

1
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p dd
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or under vectorial form: 

max
1 1

( )
( ). . ( ) . . ( ) . ( )

( ) . ( ),

p dd

j Cj j NC j NCj j
j j

dM t
u t W A x W B M t

dt

Y t Q M t

ϕ ϕ
−

= =
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= + 
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=

∑ ∑
 (13) 

where WCj denotes the j th column of matrix WC and WNCj denotes the j th column of matrix WNC. 

Equations (12) and (13) are piecewise bilinear representations of the VCPN (3) (Mohler 

1973). Each phase is characterised by a set of matrices WCj.Aj(ϕ )∈ IN n × n
 associated to the 

controllable transitions and WNCj.Bj(ϕ)∈ IN n × n
 associated to the uncontrollable ones. 

 

The design of gradient-based controllers for VCPN includes structural and functional aspects:  

• The structural analysis is necessary to determine which inputs act on a given output. It is 

also useful to know which outputs are sensitive with respect to the variations of a given 

input. In section 3, structural sensitivity is defined and structural analysis is discussed. 
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• The functional analysis consists to adapt the usual gradient algorithm in order to drive the 

VCPN outputs near the desired marking. In section 4, sensitivity functions are defined and 

worked out to design gradient - based controllers. 

3. Structural analysis 

The structural analysis provides qualitative results useful to study the controllability of PN 

models (Brams 1983, Brauer et al. 1986, David et al. 1992, Murata 1989, 1977). 

3.1. W-sensitivity 

This section concerns the structural sensitivity, referred as W-sensitivity in the next sections, 

of the outputs with respect to the variations of the PN inputs. The W-sensitivity depends only 

on the structure of the PN models. As a consequence, the W-sensitivity analysis provides 

controllability properties that are required for the control design of PN and that will be used in 

section 4. This study is based on the W-sensitivity of the places and transitions with respect to 

the PN firing conditions (Lefebvre 2002, Lefebvre et al. 2003b).  

 

Definition 3.1 : The node N (i.e. transition Tj ∈ T or place Pi ∈ P) is W-sensitive with respect 

to the transition Tk ∈ T if the firings of Tk could influence the variable attached to N (i.e. the 

marking mi of place Pi or the firing xj of transition Tj). In this case there exists a causality 

relationship from transition Tk to node N. 

 

The W-sensitivity of the outputs with respect to the variations of the PN inputs is defined as a 

consequence. 

 

Definition 3.2 : The output yi is W-sensitive with respect to the input uk if a variation of uk 

(i.e. the firings of transition Tk ∈ TC) could influence yi. In this case there exists a causality 

relationship from input uk to output yi. 

 

The causality relationships can be worked out with the pre and post incidence matrices, 

according to the theorem 3.1.  

 

Theorem 3.1 : The output yi is W-sensitive with respect to the input uk if and only if there 

exists an integer r ∈ [0, min(n, p)] such that equation (14) holds: 
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. .(( ).( ) ) .( ). . . 0
0

dT T r
i PR PO PR PR PO k

p d

I
C Q W W W W W D B

−

 
+ + ≠ 

   (14) 

with Id ∈ IR d x d the identity matrix, 0p-d ∈ IR (p-d ) x d the zeros matrix, Bk = (bk
j )∈ {0, 1}d  such 

that bk
j =0 if  k ≠ j and bk

k = 1, and Ci = (ci
j )∈ {0, 1}q such that ci

j =0 if  i ≠ j and ci
i = 1. 

 

Proof : A perturbation of the firing conditions of transition Tk yields a deviation of the places 

marking next to Tk (°Tk ∪ Tk°) from its true value. This deviation is likely to change the firing 

of the downstream transitions ((°Tk ∪ Tk°)°). In fact, the initial perturbation could propagate 

in the PN according to the following rules.  

1) A perturbation of the firing conditions of transition Tk yields a deviation of the Tk - input 

and Tk - output places marking (°Tk ∪ Tk°) from its true value. But the perturbation could 

influence the firing conditions of Tj only if the Tj - input places (°Tj) marking is modified. 

 

[Insert figure 3 about here] 

 

2) A deviation of the marking of the place Pi influences the firing conditions of the Pi – 

downstream transitions (Pi°). But the marking of the place Pi has a structural sensitivity with 

respect to the Pi - upstream and Pi - downstream transitions (°Pi ∪ Pi°). 

 

[Insert figure 4 about here] 

 

The characterisation of the neighbourhood in PN results from the algebraic properties of the 

post and pre incidence matrices: 

• The position of the non-zero entries of the j th column in WPR (resp. in WPO) corresponds to 

the Tj - input places (resp. Tj - output places). 

• The position of the non-zero entries of the i th row in WPR (resp. in WPO) corresponds to the 

Pi - downstream transitions (resp. Pi - upstream transitions). 

• The position of the non-zero entries of the j th column in WPR + WPO (resp. the i th row in 

WPR + WPO) corresponds to the places (resp. transitions) next to Tj (resp. Pi). 

The set of places that are structurally sensitive with respect to the firing conditions of Tk ∈ TC 

is worked out with a recursive algorithm. The position of the non-zero entries of the kth 

column in WPR + WPO corresponds to the places next to Tk. The position of the non-zero 

entries of the kth column in (WPR)
T.(WPR + WPO) corresponds to the downstream transitions 
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next to the places next to Tk. The position of the non-zero entries of the kth column in (WPR + 

WPO).(WPR)
T.(WPR + WPO)  corresponds to the places next to the downstream transitions next 

to the places next to Tk, and so on. When the PN has n places and p transitions, the structural 

sensitivity analysis of the places and transitions is completed in a finite number of steps no 

larger than min(n, p). The output yi is W - sensitive with respect to Tk ∈ TC if at least one place 

of the subnet yi is sensitive with respect to Tk. The permutation matrix D and projector Q are 

used to limit the neighbourhood characterization to the controllable transitions and output 

subnets. 

 

Definition 3.3 : The matrix SW = (sW (yi, uk))i = 1,…,q, k = 1,…,d ∈ {[0, min(n,p)] ∪ ∞ } q x d is 

defined as the input-output W-sensitivity matrix where sW (yi, uk) is given by equation (15):  

[0, min( , )] 
( , ) min . .(( ).( ) ) .( ). . . 0

0
dT T r

i k i PR PO PR PR PO k
r n p

p d

I
sw y u C Q W W W W W D B

∈ ∪∞ −

   = + + ≠  
   

 (15) 

 

sW (yi, uk) equals either infinity if yi is not W-sensitive with respect to the input uk, and no 

causality relationship exists from uk to yi, or the number of intermediate places in the shortest 

causality relationship (Lefebvre et al. 2003b) from uk to yi if yi is W-sensitive with respect to 

the input uk. In this last case, sW (yi, uk) is named the W-sensitivity rank of yi with respect to uk. 

The W-sensitivity matrix provides immediate results about the causality relationships in PN, 

as explained in theorem 3.2: 

 

Theorem 3.2: 

The set of outputs (resp. rank - r outputs) that are W - sensitive with respect to the input uk is 

given by the position of the finite entries (resp. entries with value r) of the kth column in 

matrix SW .  

The set of inputs (resp. rank – r inputs) whose firing conditions are likely to influence the 

output yi is given by the position of the finite entries (resp. entries with value r) of the i th row 

in matrix SW.  

Proof : the proof of theorem 3.2 is obvious and results from definition 3.2 and theorem 3.1. 

 

As a conclusion, let us notice that the causality relationships do not coincide with directed 

paths (see, for example, system B and equation (19): sW (P1, T2) = 1, but the shortest directed 
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path from T2 to P1 is of length 2). Let us also emphasis the fact that the W-sensitivity is not 

restricted to a specific class of PN. In fact the W-sensitivity concerns all classes of PN that 

result from the basic relationship (1). 

3.2. Examples 

In order to illustrate the W – sensitivity analysis, the following examples are proposed.  

The VCPN B with the marking vector M(t) = (m’’0(t), m’’1(t), m’’2(t), m1(t), m2(t), m’1(t), 

m’2(t))
T shown in figure 5 is the model of a manufacturing process with 2 machines M1 and 

M2 corresponding to the 2 transitions T1 and T2. Machines are fed by buffers with limited 

capacities corresponding to the subsets of places {P1, P’1} and {P2, P’2} (Amrah et al. 1996).  

 

[Insert figure 5 about here] 

 

The maximal capacities C1 and C2 of the buffers correspond to the initial marking m1(0) + 

m’1(0) = C1 and m2(0) + m’2(0) = C2. Pieces enter in the system by firing T0. The number of 

pieces that are simultaneously processed by each machine is bounded by the marking of the 

places P’’ 0, P’’ 1, and P’’ 2. (i.e. an initial marking m” i(0) = 1, i = 1,…,3 stands for single 

servers and m” i(0) > 1 stands for multi servers). The continuous behaviour of this system is 

given by equation (16): 

1 max 0 0 1 max 1 1 1 2

2 max 1 1 1 2 max 2 2 2

( ) .min( '' ( ), ' ( )) .min( '' ( ), ( ), ' ( ))

( ) .min( '' ( ), ( ), ' ( )) .min( '' ( ), ( ))

m t x m t m t x m t m t m t

m t x m t m t m t x m t m t

= −

= −

&

&
 

' ( ) ( ) 1,2

'' ( ) '' (0) 1,2,3
i i i

j j

m t C m t i

m t m j

= − =
= =  (16) 

The set of controllable transitions and the set of outputs subnets depend on system 

specifications. Let us first consider the system (16) as a single input – multi outputs one and 

assume that TC = {T0} and TNC = {T1, T2}, then u(t) = xmax 0(t). Let us also assume that y1(t) = 

m1(t), and y2(t) = m2(t). Other specifications are discussed in the following. The VCPN (16) 

can be written as a scalar form (17) by using the functions fj defined as in (10): 

1 0 max 1 1

2 max 1 1 max 2 2

1 1 2 2

( ) ( ). ( ) . ( )

( ) . ( ) . ( )

( ) ( ), ( ) ( )

f f

f f

m t u t m t x m t

m t x m t x m t

y t m t y t m t

= −

= −

= =

&

&

 (17) 
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or as a vectorial form (18): 

1 1 max 1 1 1 max 2 2 2( ) ( ( ). . ( ) . . ( ) . . ( )). ( )

( ) . ( )

C NC NCM t u t W A x W B x W B M t

Y t Q M t

ϕ ϕ ϕ= + +

=

&

 (18) 

with WC1 = (0, 0, 0, 1, 0, -1, 0)T, WNC1 = (0, 0, 0, -1, 1, 1, -1)T, WNC2 = (0, 0, 0, 0, -1, 0, 1)T,  

Q = ((0 0 0 1 0 0 0)T; (0 0 0 0 1 0 0)T)T. The row vectors A1(ϕ) , B1(ϕ), and B2(ϕ) depend of 

the current phase (table 1). For example, if M = M0, these row vectors are A1(ϕ) = (1, 0, 0, 0, 

0, 0, 0), B1(ϕ) = (0, 0, 0, 1, 0, 0, 0), and B2(ϕ) = (0, 0, 0, 0, 1, 0, 0). 

 

[Insert table 1 about here] 

 

The W-sensitivity matrix of the PN places with respect to the transitions is given by SW(P,T) 

and the W-sensitivity matrix of the PN outputs with respect to the single input is given by 

SW(Y,U) according to equation (19): 
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 (19) 

The W-sensitivity matrix SW(P, T) shows that the marking of each place depends on the firing 

of all transitions: the content of each intermediate buffer depends of the production rate of 

upstream but also downstream machines. These causality relationships concern the immediate 

neighbourhood when SW(Pi,Tj) = 0 or non immediate neighbourhood when SW(Pi,Tj) > 0. The 

same conclusions can be driven concerning the input – output W-sensitivity matrix SW(Y, U). 

The table 2 provides the W-sensitivity matrices of the output(s) with respect to the input(s) for 

several set of controllable transitions and several output subnets. 

 

[Insert table 2 about here] 
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The investigation of the input – output causality relationships is useful in order to design 

efficient control. For instance, if the controller goal is that the content of the first intermediate 

buffer reaches a desired level or tracks a desired trajectory, it is more convenient to control 

the input transition T0 (SW(y = m1, u = xmax 0) = 0), than the transition T2 (SW(y = m1, 

u =  xmax 2) = 1). Such a conclusion will be confirmed in section 4.  

The results obtained with the structural analysis can be more definitive as shown with a 

simple modification of the previous example. The system is changed in the sense that the 

intermediate buffers have an infinite capacity according to figure 6 and equation (20): 

 

[Insert figure 6 about here] 

 

1 max 0 0 max 1 1 1

2 max 1 1 1 max 2 2 2

( ) . '' ( ) .min( '' ( ), ( ))
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m t x m t m t x m t m t

= −

= −

&

&
 

'' ( ) '' (0) 1,2,3j jm t m j= =  (20) 

With the same specification as previously, the transitions - places W-sensitivity matrix 

S’W(P,T) and the input – output W-sensitivity matrix S’W(Y,U) are given by (21): 
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 (21) 

The table 3 that provides the W-sensitivity matrices of the output(s) with respect to the 

input(s) for several sets of controllable transitions and several output subnets must be 

compared with table 2. 

 

[Insert table 3 about here] 

 

From table 3, it is obvious that transition T2 can no more be used to control the output y(t) = 

m1(t): there exist no causality relationship from T2 to P1 because of the infinite capacity buffer 

represented by P2. 
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Another example of generalised VCPN is given by system C in figure 7 with the marking 

vector M(t) = (m’1(t), m’2(t), m’3(t), m’4(t), m’5(t), m1(t), m2(t), m3(t), m4(t))
T. Weighted arcs T2 

-> P1 and P1 -> T1 means that the flow of tokens that fire T2 to P1 is multiplied by 3 and the 

flow of tokens that fire T1 from P1 is divided by 2. As previously, places P’1 to P’5 limit the 

number of simultaneous firings of the transitions T1 to T5. The set of controllable transitions is 

assumed to be given as TC = {T4, T5} and the set of non controllable transitions is given by 

TNC  = {T1, T2, T3}. In this case, the controllable transitions correspond to source transitions 

that represent the interface between the system and the “outside word” and the set of non 

controllable transitions corresponds to internal transitions that are assumed to behave 

according to their own dynamic. The maximal firing frequencies of the internal transitions is 

given by Xmax NC = {2, 1, 3}. The output subnets are defined according to {P1, P3} and {P2, 

P4} (i.e. y1(t) = m1(t) + m3(t) and y2(t) = m2(t) + m4(t)).  

 

[Insert figure 7 about here] 

 

This VCPN can be written as a scalar form (22) or as a vectorial form (23): 

1 1 4 max 2 2 max 1 1
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 (22) 

Let us mention that the functions f4 and f5 are constant and mf4(t) = mf5(t) = 1, because the 

controllable transitions are source transitions. 

1 1 1 2 2 2

max 1 1 1 max 2 2 2 max 3 3 3
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 (23) 

with WC1 = (0, 0, 0, 0, 0, 1, 0, 0, 0)T, WC2 = (0, 0, 0, 0, 0, 0, 1, 0, 0)T, WNC1 = (0, 0, 0, 0, 0, -1,  

-1, 1, 1)T, WNC2 = (0, 0, 0, 0, 0, 1, 0, -1, 0)T, WNC3 = (0, 0, 0, 0, 0, 0, 1, 0, -1)T, A1(ϕ), A2(ϕ), 

B1(ϕ), B2(ϕ), and B3(ϕ) that depend of the current phase, and Q = ((0 0 0 0 0 1 0 1 0)T; (0 0 0 
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0 0 0 1 0 1)T)T. The input-output W-sensitivity matrix (24) shows that both outputs are 

correlated according to the transition T1. 
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 (24) 

4. Control design for VCPN 

Flow control for VCPN was investigated by several authors (Amrah et al. 1996, Egilmez et 

al. 1994, Ghabri 1995, Hanzalek 2003, Lefebvre 1999, Silva et al. 2003). Such methods have 

provided interesting results but require strong conditions concerning the transitions to control 

and the places to observe. Moreover, the proposed results are often local ones, and are 

attached to a specific phase in the VCPN behaviour. This paper focus on another approach 

based on gradient method and inspired from neural networks. Gradient-based methods have 

been intensively investigated for the learning of neural networks (Widrow et al. 1990) and the 

identification of continuous systems (Ljung 1987, Thomas 1997) but only a few studies have 

concerned the hybrid and discrete event systems (Balduzzi et al. 2000). This approach takes 

advantages on the propagation of the gradient through the PN nodes in order to minimise the 

square of instantaneous error between desired and measured outputs by modifying the 

maximal firing frequencies of controllable transitions. Gradient algorithms perform the 

minimisation of a scalar cost function that evaluates the distance between the desired output 

Yd(t) and the system output Y(t). Let us assume that measurements of the desired output are 

obtained with a sampling period ∆t during the time horizon H. As a consequence, the 

proposed controllers will be worked out in discrete time.  

4.1 Sensitivity functions 

Gradient algorithms are based on the evaluation of sensitivity functions. Such functions are 

defined in continuous time for VCPN (definition 4.1) and will be worked out in discrete time 

(theorem 4.1) according to the sampling period ∆t in order to be implemented in numerical 

controllers.  

 

Definition 4.1: The scalar sensitivity function sαγ (t) for the output yα with respect to the input 

uγ and the sensitivity function vector Sα(t) for the output yα with respect to the input vector U 

are defined as: 
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Theorem 4.1: The numerical process given by equation (26) tends to the value of the scalar 

sensitivity function sαγ (t) worked out at time t = k.∆t: 

max
1 1

( ) . . ( ) . . ( ) .
pn

i i ij j fj
i j

j

s k q w k w x s k tαγ α γ γ γ

γ

δ µ
= =

≠

 
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  
 

∑ ∑  (26) 

with δsαγ(k) = sαγ(k) - sαγ(k-1) and sαγ(0) = 0. 

 

Proof : Let us first notice that the sensitivity functions can be formulated in terms of the 

VCPN marking and of the transitions maximal firing frequency at time t = k.∆t: 
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According to the equations (3), (4) and (5): 
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Using the clustering functions defined as in (10), equation (28) results in (29): 

max
1max
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p
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i ij j fj
j
j
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w t w x s t

x dt γ γ γ
γ

γ

µ
=
≠
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∑  (29) 

The derivation with respect to time of the sensitivity functions (25) and the use of a first order 

numerical method leads to equation (26). 
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4.2 Gradient-based controllers 

For the seek of simplicity, let us first consider the single output case. The instantaneous error 

is defined as ε(k,i) = yd(k) - y(k,i), where yd(k) stands for the desired output at time t = k.∆t, 

and y(k,i) stands for the marking of the VCPN output y at time t = k.∆t obtained from the 

marking M(k-1) and the input vector U(k-1,i) according to a first order numerical method: 

max
1 1

( , ) ( 1) .( ( 1, ). . . ( ) . . . ( )). ( 1)
p dd

j Cj j NC j NCj j
j j

y k i y k t u k i QW A x QW B M kϕ ϕ
−

= =

= − + ∆ − + −∑ ∑  (30) 

U(k,i) is the updating of the input vector obtained after the i th iteration of the gradient 

algorithm at time t = k.∆t. A maximal number of N iterations is considered, for each instant t 

= k.∆t, in order to work out the input U(k) in finite time. According to this truncation, we 

have U(k) = U(k, N), and y(k) = y(k, N). Let us consider the scalar cost function v(k, i): 

)i,k()i,k(v 2

2

1 ε= ∈ IR. (31) 

Gradient-based methods result from the Taylor series expansion of the cost function v(k, i) in 

order to work out the optimal value of the input vector U(k, i): 

))i,k(U.)i,k(U(o)i,k(U
U.U

v
))i,k(U.(

)i,k(U
U

v
)i,k(v)i,k(v

T

)i,k(UU
T

T

T

)i,k(UU

δδδδ

δ

+














∂∂

∂+










∂
∂+=+

=

=

2

2

1

1

 (32) 

with δU(k,i) = U(k,i+1) - U(k,i). The stationary condition results in: 

12
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with: 
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S(k) is the output sensitivity function vector of output y with respect to the input vector U 

defined as in (25) and worked out at time t = k.∆t according to equation (26). Let us notice 

that the sensitivity functions do not depend on the iteration i. S(k) is computed a single time 

for each new measurement. Moreover, second order terms are usually neglected in equation 

(33), but an adaptive term α.I is added in order to approximate the inverse of the Hessien 

matrix when it is not regular or badly conditioned (Hagan et al. 1995). Thus, equation (33) 

results in the updating rule of the controller (35): 
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δ α ε−= + = −
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 (35) 

Let us point out two limit cases. When α >> 1, equation (35) corresponds to the gradient 

method ( Van der Smagt et al. 1994): 

1
( , ) . ( ). ( , )U k i S k k iδ ε

α
= . (36) 

When α << 1, equation (35) corresponds to the Gauss-Newton method (Thomas 1997): 

1( , ) ( ( ). ( ) ) . ( ). ( , )TU k i S k S k S k k iδ ε−= . (37) 

The previous controller can be generalised in the multi-outputs case, by considering the scalar 

cost function (38): 
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that results in the following updating rule for the controller: 
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where Sj (k) stands for sensitivity function vector of the output yj with respect to the input 

vector U at time t = k.∆t. 

5. Examples 

In order to illustrate the proposed controllers, let us first consider the system B modelled as a 

VCPN where the incidence matrices and parameters are defined as in section 3. The piecewise 

bilinear state space representation of system B is given by equation (18) with constrained 

input limited to 5 tokens /UT. The initial marking vector is M0 = (1 1 1 0 0 3 3) and the 

parameter α equals 0,1 in order to avoid the singularities in the Hessien approximation (34). 

The figure 8 illustrates the equilibriums for system B in the plan (m1, m2) obtained for the 

same sets of controllable transitions : TC = {T0}, TC = {T2}, or TC = {T0, T2} that were 

investigated in section 3 (in black: without control, in light grey: with constant control, in 

dark grey: reachable equilibriums from the origin with constant control). Let us mention that 

the region of reachable equilibriums from the origin with constant control is always strictly 

included in the region of the system equilibriums obtained for all admissible initial markings 

0 ≤ m1(0) ≤ 3 and 0 ≤ m2(0) ≤ 3. 

 

[Insert figure 8 about here] 

 

Let us first consider the case TC = {T0}. The figure 9 points out the influence of the output 

matrix on the controller response: 3 scalar outputs are investigated y = m1, y = m2 and y = m1 

+ m2 that correspond respectively to Q1 = (0 0 0 1 0 0 0), Q2 = (0 0 0 0 1 0 0), Q3 = (0 0 0 1 1 

0 0). In all cases, the objective of the controller is to drive the output of the system to the 

desired value yd = 2 tokens. The maximal number of iterations is N = 100. Concerning the 

output matrices Q2 and Q3 the desired value is rapidly reached with a good accuracy, but in 

case of output matrix Q1 some oscillations are observed. Such an input – output specification 

is not suitable with our approach because the marking of the unobservable place P1 is not 

considered in the calculation of the input firing frequency. As a consequence, the desired level 

is exceeded and oscillations arise due to the delay between the firing of T0 and the observation 

of P2 marking. In order to avoid the undesirable cumulative effects of the marking, the inputs 

and outputs of the systems must be preferred such that the sensitivity rank equals 0 

(immediate neighbourhood) as shown in table 2.  

 

[Insert figure 9 about here] 
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The speed of the algorithm increases as the maximal number of iterations in the gradient – 

based algorithm. The figure 10 illustrates the influence of the number of iterations N when the 

output matrix is given by Q = (0 0 0 1 0 0 0). A small number (N = 2 or N = 10) results in a 

poor controller, that is not quick enough to correct the input when the desired level is reached. 

In this case the level is exceeded and there is nothing to do. A large number (N = 100) 

compensates the slowness of the gradient algorithm. 

 

[Insert figure 10 about here] 

 

In figures 11 and 12, gradient-based controllers (full line) with TC = {T0}, N = 100 and Q =  

(0 0 0 1 1 0 0) are compared with usual proportional (dashed line) and bang-bang controllers 

(dotted line) when the desired output is the piecewise linear function of time given by 

equation (31) (figure 11): 
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or a C0 non linear function of time given by equation (32) (figure 12): 

sin( )
6d

t
y t= +   (32) 

All proposed controllers track the desired trajectories with an instantaneous error that does not 

exceed 0.5 token (ε < 0.2 tokens for the proportional controller, ε < 0.4 tokens for the bang-

bang controller, ε < 0.05 tokens for the gradient-based controller). Let us notice that the error 

of the gradient-based controller is smaller than the one of the proportional or the bang-bang 

controller. Furthermore, the input signal is very different according to the controller choice. 

The proportional controller uses the error signal as the input frequency (gain = 1). As a 

consequence, this controller is not suitable when the error signal presents a lot of variations. 

The bang-bang controller is defined as a series of commutations. The input flow of tokens is 

tuned according to the commutations frequency. For this reason, the interest of this controller 

depends strongly of the field of application. The most outstanding difference between the 

different classes of controllers is that only the gradient-based controller is able to learn the 
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growing rate of the output in the case of a linear trajectory and the cyclic behaviour of the 

output in the case of a non linear sinusoidal trajectory. 

 

[Insert figures 11 and 12 about here] 

 

Let us now consider the VCPN model of system C (figure 7) given as a MIMO piecewise 

bilinear state space representation (23) with inputs that correspond to TC = {T4, T5} and 

outputs that correspond to the subsets {P1, P3} and {P2, P4}. The firing of controllable 

transitions is limited to 5 tokens /UT, the initial marking vector is M0 = (1 1 1 1 1 0 0 0 0)T, 

the parameter α equals 0.1, and the number of iterations is limited to N = 100. The desired 

trajectories correspond to 2 piecewise linear trajectories given by equation (33): 
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Only the outputs of the gradient-based controller are presented in figure 13. In fact the 

proportional and bang-bang controllers provide only poor results because the inputs and 

outputs of the system C are coupled thanks to the transition T1. These controllers focus on one 

desired trajectory but cannot track simultaneously both ones. On the contrary, the gradient-

based controller tracks simultaneously both trajectories with an instantaneous error that does 

not exceed 0,2 tokens. The input-output decomposition is obtained thanks to the sensitivity 

functions that evaluate for each output the relative influence of both inputs.  

 

[Insert figure 13 about here] 

 

The figure 15 illustrates the case of a non admissible output trajectory. The desired output 

signals are defined as previously but the incidence relationships of the VCPN have been 

modified according to figure 14 (system C’): 

 

[Insert figure 14 about here] 

 

System C is tokens consumer but system C’ is tokens producer: the free response  

(U(t) = 0) of system C’ corresponds to increasing marking functions whereas the free 
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response of system C corresponds to a decreasing marking functions. After t = 4 TU, we have 

u1(t) = 0, but the number of tokens in subnet y2 increases more quickly than the desired output 

yd2 and the controller fails.  

 

[Insert figure 15 about here] 

 

At last, let us consider the hybrid PN model of the two tanks system A (figure 1) given as a 

MIMO non linear state space representation which inputs correspond to the maximal firing 

frequencies of the controllable transitions TC = {T1, T4} and outputs correspond to the 

marking m1 and m2. The controller is obtained according to an adaptation of the gradient 

based algorithm to non linear behaviours. As a consequence, the discrete part of the hybrid 

model become useless (figure 2). The firing of controllable transitions is limited according to 

the system specifications : 0 ≤ u1 ≤ D, and 0 ≤ u2 ≤ α4, with α2 = α3 = α4 = 1.6.10-4 m3/2.s-1, D 

= 1.10-4 m3.s-1, h = 0.5 m, S1 = S2 = 0.0154 m2. The initial marking vector of the continuous 

part of the model is M0 = (0, 0); the coefficient α equals 0,1; the number of iterations is 

limited to N = 1 (single step controller). The desired trajectories correspond to a periodical 

level for tank 1 and a constant level for tank 2. Simulation results for the gradient based 

controller are given in figure 16 (system outputs are in full line, and desired trajectories are in 

dotted line) and can be compared with the results obtained with the discrete control design 

(figure 17). 

 

[Insert figures 16 and 17 about here] 

 

Both controllers are different in terms of objective. Nevertheless, one can notice that the 

discrete controller is not suitable to track some reference trajectories or to reach some desired 

levels. On the contrary, with gradient – based controller, the desired level in tank 2 is reached 

and the reference trajectory in tank 1 is almost everywhere tracked after some transitory 

behaviours. But one can also notice that, due to system specifications, level 0.6 m cannot be 

reached in tank 1 when level in tank 2 is 0.4 m. In fact, the desired levels m1d = 0.6 m and m2d 

= 0.4 m do not belong to the set of equilibriums. At last, because of immediate causality 

relationships from T1 to P1 and from T4 to P2, the gradient – based algorithm behaves like a 

proportional controller (i.e. the input – output sensitivity matrix tends to a diagonal one). 
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6. Conclusions 

The continuous Petri net controllers that have been proposed in this paper are based on the 

evaluation of the input-output sensitivity functions. For this purpose, the structural sensitivity 

of PN models has been first investigated. Places to be observed and transitions to be 

controlled are obtained as a consequence. An explicit characterisation of the input-output 

sensitivity functions has also been proposed for VCPN models. At last, VCPN controllers 

have been designed that calculate the gradient of the outputs with respect to the input 

variations in order to adapt the maximal firing frequencies of the controllable transitions 

according to desired trajectories of the output markings. An adaptation of this algorithm for 

HDS and continuous non linear PN was also developed. 

In our opinion, the method is not only suitable for trajectory tracking but also for complex 

behaviours learning. We will further investigate the combination of Petri nets and neural 

networks in order to design learning Petri nets (Hirasawa et al. 1998). These perspectives 

include not only the continuous Petri nets but also the autonomous and timed Petri nets. At 

last, the sensitivity analysis will also be adapted for the monitoring of hybrid systems 

modelled with Petri nets.  
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Figure 1: Two tanks system (system A) 

 

 

 

 

 

 

 

Figure 2: Hybrid PN of the two tanks system 

 

 

 

 

 

 

 

Figure 3: Propagation of the perturbation next to the transition Tj 

 

 

 

 

 

 

 

Figure 4: Propagation of the perturbation next to the place Pi 
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Figure 5: VCPN model of a manufacturing process (system B) 

 

 A1(ϕ)   B1(ϕ) 

C1 – m1(t) ≥ m”0(0) (1, 0, 0, 0, 0, 0, 0)  m1(t) ≥ C2 – m2(t) ≥ m”1(0) 

m” 0(0) ≥ C1 – m1(t) (0, 0, 0, 0, 0, 1, 0)  C2 – m2(t) ≥ m1(t) ≥ m”1(0) 
(0, 1, 0, 0, 0, 0, 0) 

   m” 1(0) ≥ m1(t) ≥ C2 – m2(t) 

 B2(ϕ)  m1(t) ≥ m”1(0) ≥ C2 – m2(t) 
(0, 0, 0, 0, 0, 0, 1) 

m2(t) ≥ m”2(0) (0, 0, 1, 0, 0, 0, 0)  C2 – m2(t) ≥ m”1(0) ≥ m1(t) 

m” 2(0) ≥ m2(t) (0, 0, 0, 0, 1, 0, 0)  m” 1(0) ≥ C2 – m2(t) ≥ m1(t) 
(0, 0, 0, 1, 0, 0, 0) 

 

Table 1: Phases specification for system B 

 

Y(t) = m2(t) Y(t) = m1(t) Y(t) = m1(t) + m2(t) Y(t) = (m1(t), m2(t))
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 

 

 

Table 2: Input – output W – sensitivity matrices for system B 
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Figure 6: VCPN model of system B’ 
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Table 3: Input – output W – sensitivity matrices for system B’ 

 
 
 

 

 

 

 

 

 

 

 

Figure 7: Closed loop process (system C)  
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Figure 8: Sets of equilibriums a) U = xmax0 b) U = xmax2 c) U =( xmax0, xmax2) 
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Figure 9: Influence of the output matrix  

(full line : Q = (0 0 0 0 1 0 0), dashed line: Q = (0 0 0 1 0 0 0), dotted line Q = (0 0 0 1 1 0 0)) 
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Figure 10: Influence of the iterations number  

(full line: N = 100, dashed line: N = 10, dotted line: N = 2) 
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Figure 11: Piecewise linear trajectory  

(full line: gradient-based controller, dashed line: proportional controller,  

dotted line: bang-bang controller) 
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Figure 12: Non linear trajectory 

(full line: gradient-based controller, dashed line: proportional controller,  

dotted line: bang-bang controller) 
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Figure 13: Control design of system C 

(full line: first input, first output, dashed line: second input second output) 
 

 

 

 

 

 

 

 

 

 

Figure 14: System C’ 
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Figure 15: Control design of system C’ 

(full line: first input, first output, dashed line: second input second output) 
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Figure 16: Gradient – based controller for 2 tanks system 

(full line: first input, first output, dashed line: second input second output) 
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Figure 17: Discrete controller for 2 tanks system 

(full line: first input, first output, dashed line: second input second output) 
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