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Abstract: This paper is about the control design of hyldighamical systems modelled with
Petri nets. For this purpose, continuous Petri ngith variable speeds are investigated and
described as piecewise bilinear state space reptasens. In this context, the marking
vector is considered as a state space vector, ssilifeplaces are defined as the model
outputs, and the transitions are divided into nontcollable ones and controllable ones that
correspond to the model inputs. Gradient-based rotiets are proposed and discussed in
order to adapt the maximal firinfrequencies of the controllable transitions accoglito
desired trajectories of the output markings.

1. Introduction

Petri nets (PN) are useful for the study of discmtent systems (DES) and hybrid dynamical
systems (HDS) (Cassandras 1993, Zayt@inal. 1998) because they combine, in a
comprehensive way, intuitive graphical represeotetiand powerful analytic expressions
(Brams 1983, Brauest al. 1986, Murata 1989). As a consequence, a lot afitebased on

PN theory have been established for the contragdesf DES and HDS. One of the most
famous approach concern the supervisory controlrevittee system and the controller are
considered as DES (Ramadgt al. 1987, Giuaet al. 1994, Uzamet al. 1999). Hybrid

approaches were also developed in order to conthgaeete and continuous signals (Krogh
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et al. 1996, Bemporackt al. 1999). At last, continuous approaches were indpfrem
continuous flow models and continuous Petri nets.

The motivation to use continuous Petri nets iseeitb model the continuous part of HDS, or
to work out a continuous approximation of DES iderto avoid the complexity associated to
the exponential growth of states. Flow control geshas been developed with different
classes of controllers (Silvat al 2003): constrained state feedback (Amethal. 1996,
Lefebvre 1999), fuzzy control (Ghabri 1995), lingamogramming (Hanzalek 2003), and
optimal control (Egilmezt al. 1994, Sharifnia A. 1988, 1994). This paper consemother
continuous Petri net approach where the proposeattdlers are inspired from the neural
network adaptation algorithms (Widraet al. 1990, Thomas 1997) and based on input-output
sensitivity functions. For this purpose, continu®etri nets with variable speeds (VCPN) are
investigated and described as piecewise bilinede Space representations where the places
marking stands for the state space vector. Themsysutputs are defined as the marking of
subsets of places, and the system inputs corresfaotite maximal firing frequencies of a
selection of controllable transitions. The maintcdtions are to investigate the input-output
sensitivity of the PN model from structural andoafanctional points of view. On the one
hand, a characterization of input — output strudtaensitivity is defined and worked out in a
systematic way. On the other hand, sensitivity fimms are defined and processed thanks to
numerical algorithms that are detailed. As a counsrge, gradient-based controllers are
proposed in order to adapt the controllable maxifinelg frequencies according to desired
trajectories of the output markings. The advantagieshe gradient-based controllers are
pointed out in case of multi-inputs and multi-ougo(MIMO) models for discrete and hybrid
systems.

The paper is divided into 5 sections. The sectias @bout PN and VCPN. The section 3
concerns the structural analysis that provides ulisefsults concerning the input-output
structural sensitivity. The section 4 is about design of gradient-based controllers. Various
examples of VCPN are proposed in section 5 in otoleliscuss the proposed results and to

compare the gradient-based controllers with propoat and bang-bang ones.

2. Petri nets

A Petri net (PN) withn places ang transitions is defined asR, T, Pre, PostMy > where
P={Pi}i=1
transitions, such tha® n T = [0 (Brams 1983, Murata 1989\ is defined as the set of

p IS a not empty finite set of

integer numbers. Pr& xT - IN is the pre-incidence application: PR, (T;) is the weight of
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...........

IN " *P with w’%; = Post P;, T,) is the post-incidence matrix. The PN incidencerinan is

defined asV = Weo — Weg Z7IN " *P. Let us also defin® = (m))i=1....» /7IN "as the marking

vector andVlp Z7IN " as the initial marking vectorT; (respT; °) stands for the pre-set (resp.
post-set) placesf T;. Firing sequences are defined as an ordered sdrteansitions that are
successively fired from markinyl to markingM’. Such a sequence is represented by its

characteristic vectoX = (X)i=1,...p 7 IN P wherex; stands for the number @f firings. The

markingM' is related to the markingl and to the firing sequenééaccording to the relation

(1):
M’ =M + W.X. 1)

When two transitionsl; and T; have a common place in the pre-set, the PN present

structural conflict. The conflict becomes an effeetone if there are not enough tokens in the
common place to fire both transitions. PN theorgglaot solve the conflicts. Conflicts are

solved according to a decision maker that complite$ N models and that is not considered
in this study. In autonomous PN without confli¢te tenabling degree of each transitign

related to the markiniyl, is given by equation (2):

xj = min | fix —o ||, @)
AL, Wi

where fix(.) stands for the integer part of (.).

2.1. Continuous Petri nets

Continuous PN are a particular class of timed Pddluded from T - timed Petri nets (TPN)
(Ramchandani 1973) to provide a continuous appration of DES behaviour (Allt al.
1999, Davidet al. 1992). A continuous PN with places and transitions is defined as
firing frequencieswith IR" the set of non-negative real numbers The markift) of each
placeP;, i = 1,...,n,at timet has a non-negative real value and each tranditiog is a

continuous flow in continuous PN. In fact, the 8iion T; is fired with a frequency(t) less
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frequencies vector at timieThe marking evolution is given by the differensgktem (3):

dM(@®) _
=W X(). (3)

Among the existing models of continuous PN, cordisiPN with variable speeds (VCPN),
and continuous PN with constant speeds (CCPN) preneed to give good approximations of
TPN. In the next sections of this paper, VCPN amefgured because of their interesting
properties (Davickt al. 1992): no effective conflict occurs with VCPN; cpaments of the
marking vector are continuous functions of the tim@mponents of the firing frequencies
vector X(t) depend continuously on the marking of the placesming to equations (4) and
(5):

Xj ()= Xmaxij -H] (t), 4)
with:

(5)

Let us also notice that other models of continuBMswere investigated as differential Petri
nets (Demongodiret al. 1998) or hybrid PN (Zaytooet al. 1998) as illustrated by the

example in the next section.

2.2. Continuous PN models of hybrid systems

Continuous PN are suitable to approximate DES aomtalel the continuous part of HDS
(Balduzzi et al. 2000, Zaytoonet al. 1998) as illustrated with the example in figure 1,
modelled with the hybrid PN in figure 2.

[Insert figure 1 about here]

The placed?; andP; are continuous and the markinggs andm, stand respectively for the
height of liquid in tank 1 and tank 2 according &

S.M=x- %~ %
S,-m = %+ %= % ©)
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where S and S, stand for the sections of tank 1 and tank 2. ThasitionsT; to T, are
continuous which firing represents respectively itiput flow (T;), the output flow T4) and

the flows through the pipes A4) and B {3) according to (7):

X =D
X, = Oy M= M,
X; = O5/SUPMM W)= sup(m h (7)

X, =,

whereD, a», as anda, are related to the system specifications andassimed thaty > m.

The discrete part of the PN (placBs and P, and transitionsls and Tg) stands for the
controller. A token inP3 means that valv®/; is open and/; is closed. On the contrary, a
token inP, means that valv¥, is open and/; is closed. The arcs frofy to Ts and fromP»

to Te are test arcs (the value of the plaBesindP; is not changed by firing the transitions
andTg). The goal of the controller is to op¥hand closé/, whennm, <N, and to opev, and
closeV; whenmy, > N;. Such a discrete control design results in a cystieady state for the
continuous variablesy, and my (figure 17). On the contrary, our approach degdtiln
sections 3 and 4 results in continuous controlgteaseful to reach desired levels or to track

reference trajectories (figure 18).
[Insert figure 2 about here]

Another example (figure 5) to motivate the use oftmuous PN for the modelling and

control of HDS will also be considered in the ng&ttions.

2.3. Piecewise bilinear state space representation for VCPN

Due to the commutation function « min » and to pineducts between marking vector and
maximal firing frequencies vector, VCPN models arat linear but piecewise bilinear
systems (Amralet al. 1996, Lefebvre 1998, Lefebvet al. 2003a, Lefebvret al. 2004). In
order to bring VCPN models in the usual state spapeesentation, let us introdutkt) /7
IR* 9 asthe VCPN inputvector at timet andY(t) Z7IR" 9 asthe VCPN output vector at same
instant.

The input vectorU(t) is defined as the maximal firing frequencies oé tbtontrollable
transitions. For this purpose, the set of trans#ib is divided into 2 disjoint subselg, and
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Tne such thatT = Tc O Tye. Tc is the subset of the controllable transitions, and is the
uncontrollable transitions subset. An obvious casgiven byTc =T and Tyc = /7, but in
many cases, not all transitions are controllabte. ikstance, the transitioris andT; in the
figure 2, correspond to the flows through the pipeand B that are not controllable in the
sense that these pipes have no valve. As a consagjuet us defin&c(t) = ( X(t) Jrjorc U
IR" andXnc(t) = ( %(t) )rjo tne D IR according to (8):

(8)

DX (1) :( Xe () ]

XNC (t)

with D O IRP*P a suitable permutation matrix (i.B. is the matrix of a bijective mapping
from T to T that clusters the set of transitions into conatalk and uncontrollable ones). The
controllable inputs vectotJ(t) = Xmaxc (t) O IR™ corresponds to the maximal firing
frequencies of the transitions to be controllede Triput vector is constrainéds U(t) < Unax
in order to limit the firing frequencies in a noagative bounded interval. The uncontrollable
maximal firing frequencieXmax nc are supposed to be constant according to the VCPN
models.
The output vectol (t) = Q.M(t) O IR™® is composed of a selection of subnets markings tha
,,,,,,,,,, 0 IR®*" as a positive
observation matrix (i.eQ is the matrix of a constant projector, each rowesponds to a
positive weighted sum of the PN places marking). 8A€onsequence, observation may
concern not only the marking of some individualcels but also the global marking of subsets
with several places. The goal of the controlletagrive Y(t) according to some reference

trajectories in the output space. Equation (3)lm@anewritten as:

dM (1)
dt
Y(t) = QM(Y) (9)

=W,. X (1) + W Xy D

....................

(Wc | \M\jc) =W.D.
Several phases occur in the VCPN behaviour (Zelreual. 1995). Each phasg is active
between two successive commutations of the “miréragors in (5) and corresponds to a

particular configuration of these operators chanastd by the clustering function§:

OT,0T, £ IR™ S {1,...n}
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M(t) - f(M(t)) = k such thamy(t) = 4(t). (10)

Each functiorf; specifies the place in the preseflpivhich has the minimal marking. During
each phas#, a constant relationship between the componentecbrsXc(t) andM(t) and
also betweerKyc(t) and M(t) occurs. This relation can be expressed under rstaia by
using the function§ or under vectorial form by using the set of ves#y(¢ )//{0,1} X" and
Bi(¢ )L/{0,1} 1X" which are constant during each phase but whichvaggd from one phase

to another:

Xe; () =u;(h.m (9
=u;(1).A (9)-M(1), j=1,..d

Xy 1 (1) = Xpenci- My, (9
= Xpaxnc-Bj (#)-M (1) j=1,..p—-d 1)

Equation (8) can be rewritten under scalar form:

d R4
=S 0m, 0+ 5 e e m, (3
=1 =

n (12)
Y (1) = Z gq-m (1
or under vectorial form:
o - (Zu (OW, . A @)+ 2 Xounc ) Wi E;(¢)J M) .
Y(t) = Q M(1),

whereW; denotes th@" column of matriXWe andWic; denotes th@" column of matrixc.
Equations (12) and (13) are piecewise bilinear aggmtations of the VCPN (3) (Mohler
1973). Each phase is characterised by a set ofoesithc;.A(¢ )7 IN " * "associated to the

controllable transitions andiyc;.Bj(#)Z7IN "*"associated to the uncontrollable ones.

The design of gradient-based controllers for VCR&udes structural and functional aspects:
e The structural analysis is necessary to determimehninputs act on a given output. It is
also useful to know which outputs are sensitivehwéspect to the variations of a given

input. In section 3, structural sensitivity is ¢hefl and structural analysis is discussed.
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* The functional analysis consists to adapt the ugradient algorithm in order to drive the
VCPN outputs near the desired marking. In sectiosedsitivity functions are defined and

worked out to design gradient - based controllers.

3. Structural analysis

The structural analysis provides qualitative resuleful to study the controllability of PN
models (Brams 1983, Brauet al. 1986, Davicdet al. 1992, Murata 1989, 1977).

3.1. W-sensitivity

This section concerns the structural sensitivigfenred adN-sensitivity in the next sections,
of the outputs with respect to the variations @& BN inputs. Th&\-sensitivity depends only
on the structure of the PN models. As a consequeaheaN-sensitivity analysis provides
controllability properties that are required foe ttontrol design of PN and that will be used in
section 4. This study is based on Wesensitivity of the places and transitions withpes to
the PN firing conditions (Lefebvre 2002, Lefebeteal. 2003b).

Definition 3.1 : The nodeN (i.e. transitionl; /T or placeP; /P) is W-sensitive with respect
to the transitionly /7T if the firings of Tx could influence the variable attached\idi.e. the
markingm of placeP; or the firingx; of transitionT;). In this case there exists a causality

relationship from transitiofy to nodeN.

The W-sensitivity of the outputs with respect to theiaons of the PN inputs is defined as a

consequence.

Definition 3.2 : The outputy; is W-sensitivewith respect to the inpuk if a variation ofuy
(i.e. the firings of transitioMy /7 Tc) could influencey;. In this case there exists a causality

relationship from inputi to outputy;.

The causality relationships can be worked out with pre and post incidence matrices,

according to the theorem 3.1.

Theorem 3.1 : The outputy; is W-sensitivewith respect to the inpuk if and only if there

exists an integar J [0, min(n, p)] such that equation (14) holds:
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Id
CQ((Wir + Woo)- (W) )" ( Wit W) Ego

p-d

j. B# 0
(14)

with I4 71R @*%the identity matrix0, 4 7IR ®*)*%the zeros matrixg, = (b% )7{0, 1}* such

thatb¥ =0 if k #j andb% = 1, andC; = (¢} )/7{0, 1} such that; =0 if i #j andc; = 1.

Proof : A perturbation of the firing conditions of traneit Ty yields a deviation of the places
marking next tol (°Tx O Ty°) from its true value. This deviation is likely tthange the firing
of the downstream transitions T’ Tx°)°). In fact, the initial perturbation could prayste

in the PN according to the following rules.

1) A perturbation of the firing conditions of tratisn Ty yields a deviation of th& - input
and Ty - output places marking Tg [J T¢°) from its true value. But the perturbation could

influence the firing conditions df; only if theT, - input places (F;) marking is modified.
[Insert figure 3 about here]

2) A deviation of the marking of the pla&® influences the firing conditions of the —
downstream transition$>(). But the marking of the plad® has a structural sensitivity with

respect to th®; - upstream an@,; - downstream transitionsKl P;°).
[Insert figure 4 about here]

The characterisation of the neighbourhood in PNiltedrom the algebraic properties of the

post and pre incidence matrices:

 The position of the non-zero entries of {Recolumn iNWeg (resp. inWeo) corresponds to
theT, - input places (resf; - output places).

« The position of the non-zero entries of theow in Weg (resp. inWeko) corresponds to the
Pi - downstream transitions (red$p.- upstream transitions).

« The position of the non-zero entries of fflecolumn iNWekg + Weo (resp. thé™ row in
Wer + Weo) corresponds to the places (resp. transitions)) toel (resp.P;).

The set of places that are structurally sensitiith vespect to the firing conditions ®f /7 Tc

is worked out with a recursive algorithm. The piositof the non-zero entries of th&’

column inWpr + Weo corresponds to the places nextTio The position of the non-zero

entries of thek" column in WeR)".(Wer + Weo) corresponds to the downstream transitions
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next to the places next #. The position of the non-zero entries of Kfecolumn in Wer +
Wpo).(WPR)T.(WPR + Wkp) corresponds to the places next to the downstteamsitions next
to the places next @, and so on. When the PN haplaces ang transitions, the structural
sensitivity analysis of the places and transitimnsompleted in a finite number of steps no
larger than ming, p). The output; is W - sensitive with respect i // T if at least one place
of the subney; is sensitive with respect fx. The permutation matrik and projectoQ are
used to limit the neighbourhood characterizatiorth® controllable transitions and output
subnets.

...........

defined as the input-outpW-sensitivity matrix wheray (yi, W) is given by equation (15):

Id
SW(y. )= min {d-Q((WRJf W)WY ) (Wt . @O J ch} (15)

r00, minp,p)] Do p—-d

sw (Y, W) equals either infinity ify; is not W-sensitivewith respect to the inputy, and no
causality relationship exists from to y;, or the number of intermediate places in the skbrte
causality relationship (Lefebvm al. 2003b) fromuy to y; if y; is W-sensitivewith respect to
the inputu. In this last casesy (i, W) is named th&V-sensitivity rank ofy; with respect tauy.
The W-sensitivity matrix provides immediate results abthe causality relationships in PN,

as explained in theorem 3.2:

Theorem 3.2:

The set of outputs (resp. rank eutputs) that are W - sensitive with respect ®itiputuy is

given by the position of the finite entries (regmtries with value) of the K" column in
matrix Sy .

The set of inputs (resp. rankr-inputs) whose firing conditions are likely to infloce the
outputy; is given by the position of the finite entries freentries with value) of thei™ row

in matrix Sy.

Proof : the proof of theorem 3.2 is obvious and resutimifdefinition 3.2 and theorem 3.1.

As a conclusion, let us notice that the causakfgtionships do not coincide with directed

paths (see, for example, system B and equation $19)1, T2) = 1, but the shortest directed
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path fromT, to Py is of length 2). Let us also emphasis the fact thaW-sensitivity is not
restricted to a specific class of PN. In fact Wesensitivity concerns all classes of PN that

result from the basic relationship (1).

3.2. Examples

In order to illustrate th&V — sensitivity analysis, the following examples preposed.

The VCPN B with the marking vecta(t) = (m”o(t), m”1(t), m”,(t), mu(t), mp(t), m’1(t),
m’»(t))" shown in figure 5 is the model of a manufactunimgcess with 2 machined; and
M, corresponding to the 2 transitioiig and T,. Machines are fed by buffers with limited

capacities corresponding to the subsets of plaégdX1} and {P,, P’,} (Amrah et al. 1996).
[Insert figure 5 about here]

The maximal capacitie€; andC, of the buffers correspond to the initial markimg(0) +
m’1(0) = C; andnmp(0) + m’,(0) = C,. Pieces enter in the system by firilg The number of
pieces that are simultaneously processed by eachingais bounded by the marking of the
placesP” o, P”1, andP”,. (i.e. an initial markingm”;(0) = 1,i = 1,...,3 stands for single
servers anan”;(0) > 1 stands for multi servers). The continuous behavoduhis system is
given by equation (16):

M (0 = Xpao MINM 6 (9, M (9)= Ko M, (Y, MY, My( X)
M, (1) = X MIN(M" (9, MY, Mo(3)= Koo MinCt (3, M(Y)

m' (=G - m(} i=1,2
m", (t) = m", (0) j=1,2,2 (16)

The set of controllable transitions and the set aofpots subnets depend on system
specifications. Let us first consider the syste®) @s a single input — multi outputs one and
assume thalc = {To} and Tyc = {Ta, T2}, thenu(t) = Xmax dt). Let us also assume thatt) =
my(t), andy,(t) = my(t). Other specifications are discussed in the follmwiThe VCPN (16)

can be written as a scalar form (17) by using timetionsf; defined as in (10):

m.t(t) = u(t)-mo(b_ Xnax 1 ml( )
mz(t): Xnaxl'ml(b_ anz m&)
y: (1) = m(9), Y()=mQ} (17)
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or as a vectorial form (18):

M (t) = (UM A@) + Haer Wicr BO)+ Xiaiz We 2 BE))- M)

Y()=QM(Y)

with We1 = (0, 0, 0, 1, 0, -1, ®)Whe1= (0, 0, 0, -1, 1, 1, -I) Wac2= (0, 0, 0, O, -1, 0, 1)
Q=(0001000)(0000100J)". The row vectordy(¢) , Bi(#), andBy(¢) depend of
the current phase (table 1). For exampl®/] i£ My, these row vectors af (@) = (1, 0, 0, O,
0,0, 0) By(¢) = (0, 0,0, 1,0,0, 0pndBx(g) = (0, 0, 0, 0, 1, 0, 0).

(18)

[Insert table 1 about here]

The W-sensitivity matrix of the PN places with respexthe transitions is given I&§n(P,T)
and theW-sensitivity matrix of the PN outputs with respéatthe single input is given by
SM(Y,U) according to equation (19):

PHO
I:)"l
P", u
0
R S, (Y, U)=( j Y1 (29)
F’2 1 Y,
Pll
PIZ

Sy(RT)=

R OFrRr ON P O
O OO0 O Fr O R &

\C')HOHOHMN_'

The W-sensitivity matrixSy(P, T) shows that the marking of each place dependsefirthg

of all transitions: the content of each intermeglibtiffer depends of the production rate of
upstream but also downstream machines. These dgus#ditionships concern the immediate
neighbourhood whe8,(P;,T;) = 0 or non immediate neighbourhood wh&iP;,T;) > 0. The
same conclusions can be driven concerning the rputputW-sensitivity matrixSy(Y, U)

The table 2 provides the W-sensitivity matriceshef dutput(s) with respect to the input(s) for

several set of controllable transitions and sevaeugput subnets.

[Insert table 2 about here]
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The investigation of the input — output causalitiatienships is useful in order to design
efficient control. For instance, if the controligwal is that the content of the first intermediate
buffer reaches a desired level or tracks a desregdctory, it is more convenient to control
the input transitionTy (SMy = M, U = Xnax 9 = 0), than the transitio, (Suy = my,

U= Xmax2) = 1). Such a conclusion will be confirmed in sectbn

The results obtained with the structural analysis lba more definitive as shown with a
simple modification of the previous example. Thategn is changed in the sense that the

intermediate buffers have an infinite capacity adow to figure 6 and equation (20):

[Insert figure 6 about here]

M (D) = Xiax o M'o( )= Ky MIN(NT,(Y, M())
M, (9 = Xoar MIN(M", (9, MY~ Koz MInC ¥, M(Y)
m*; () = m", (0) j=12,3 (20)

With the same specification as previously, the diteans - placesW-sensitivity matrix
S'w(P,T)and the input — outpW-sensitivity matrixS'w(Y,U) are given by (21):

TO T:L T2
0 o o) P"
1 0 | P ’
Sw(RH=l 2 1 P, #§ T S'W(Y,U):(Oj Eosg(vy @)
0 0w| R s
1 0 0 PR

The table 3 that provides th&-sensitivity matrices of the output(s) with respéatthe
input(s) for several sets of controllable transioand several output subnets must be
compared with table 2.

[Insert table 3 about here]
From table 3, it is obvious that transitidp can no more be used to control the ouggtit =

my(t): there exist no causality relationship frdmto P; because of the infinite capacity buffer

represented biy,.
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Another example of generalised VCPN is given bytesysC in figure 7 with the marking
vectorM(t) = (m'y(t), m'a(t), m's(t), ma(t), m's(t), my(t), my(t), me(t), mu(t))". Weighted arc3>

-> P; andP; -> T; means that the flow of tokens that fifgto P; is multiplied by 3 and the
flow of tokens that firel; from P; is divided by 2. As previously, plac®s; to P’s limit the
number of simultaneous firings of the transitidago Ts. The set of controllable transitions is
assumed to be given ds = {T4, Ts} and the set of non controllable transitions igegi by
Tne = {T1, T2, T3}. In this case, the controllable transitions cepend to source transitions
that represent the interface between the systemtrendoutside word” and the set of non
controllable transitions corresponds to internansitions that are assumed to behave
according to their own dynamic. The maximal firimgduencies of the internal transitions is

given byXmax nc= {2, 1, 3}. The output subnets are defined aceaydp {P;, Ps} and {P,,
Pa} (i.e. ya(t) = mu(t) + mg(t) andy,(t) = my(t) + mau(t)).

[Insert figure 7 about here]

This VCPN can be written as a scalar form (22) ca &sctorial form (23):

M (1) = W(Y. M () + 3. X2 M 2( )= 2 X Mo( )
mz(t) = uz(t)mS(D-'- Xnax3' m3( )_ )gnaxl m:( ):
ms(t) = XNaxl'ml(D_ Xnax 2 M 2()
m4(t) = Xnaxlm 1(D_ XnaXS m :-( )
(22)
Yi(t) =m(9+ m()
Y,(t) =m(9)+ m()
Let us mention that the functiofisandfs are constant and(t) = m(t) = 1, because the

controllable transitions are source transitions.

M (1) = (W (DM, A@) + L(D.W,. A@)

+Xmaxl'WNC1' Bl(¢)+ Xmaxz\MC 2 Bz(¢)+ Xmax3WC 3 B@)) M) (23)
Y(t)=QM(Y
with We1 = (0, 0,0, 0,0, 1,0, 0, W2 = (0,0, 0, 0,0, 0, 1, 0, QWc1 = (0, 0, 0, 0, O, -1,
-1, 1, 1§, Whe2= (0,0, 0,0, 0, 1, 0, -1, WAz = (0, 0, 0, 0, 0, 0, 1, 0, “1)A(g), A(9),
B1(¢), Bx(#), andBs(¢) that depend of the current phase, hd (00000101 0)(0 00
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000 10 1)". The input-outputW-sensitivity matrix (24) shows that both outpute ar
correlated according to the transitidn

u U

(0 LY y (24)
SN(Y’U){l OJ Y,

4. Control design for VCPN

Flow control for VCPN was investigated by sevenathars (Amrahet al. 1996, Egilmezet

al. 1994, Ghabri 1995, Hanzalek 2003, Lefebvre 1999a®t al 2003). Such methods have
provided interesting results but require strongdittons concerning the transitions to control
and the places to observe. Moreover, the propossdits are often local ones, and are
attached to a specific phase in the VCPN behavibhis paper focus on another approach
based on gradient method and inspired from new@larks. Gradient-based methods have
been intensively investigated for the learning @firal networks (Widrovet al. 1990) and the
identification of continuous systems (Ljung 1987 pfiifas 1997) but only a few studies have
concerned the hybrid and discrete event systemisiyBa et al. 2000). This approach takes
advantages on the propagation of the gradient ¢frdkie PN nodes in order to minimise the
square of instantaneous error between desired asmbured outputs by modifying the
maximal firing frequencies of controllable transits. Gradient algorithms perform the
minimisation of a scalar cost function that evadsathe distance between the desired output
Y4(t) and the system outpii(t). Let us assume that measurements of the desitpdtcare
obtained with a sampling periodt during the time horizorH. As a consequence, the

proposed controllers will be worked out in discritee.

4.1 Senditivity functions

Gradient algorithms are based on the evaluatiogeasitivity functions. Such functions are
defined in continuous time for VCPN (definition #dnd will be worked out in discrete time
(theorem 4.1) according to the sampling peuthdn order to be implemented in numerical

controllers.

Definition 4.1: The scalar sensitivity functiosy, (t) for the output/, with respect to the input
u, and the sensitivity function vect8(t) for the outputy, with respect to the input vectbr

are defined as:
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S, (1) = gﬁ” 0IR, S(D=03,(9))= 4 =(gﬁ”] 0 IR (25)
y=1...d

14 14

Theorem 4.1: The numerical process given by equation (26) teadbd value of the scalar

sensitivity functiors,,(t) worked out at time = k.At:
n p
Jsay(k)=;q,i- V.vy-uy(k)+; W K -5 (K| A (26)
izy

with BayK) = SayK) - Siy(k-1) andsa,(0) = 0.

Proof : Let us first notice that the sensitivity funct® can be formulated in terms of the

VCPN marking and of the transitions maximal firingquency at timeé = k.At:

dy 3
. (k):( ] ( j 27)
4 du, Yoz (ko) Z:1: 0%y t=k.At

=u, (kA

According to the equations (3), (4) and (5):

p 0 ou.
L(Mj =D w. X _ =y, ,uy(t)+2vy . a’i;(t) (28)

I¢V

Using the clustering functions defined as in (B@jyation (28) results in (29):

9 [dm(t)

|t j .yﬂy(t)+Zw X -5 (D (29)

J¢V

The derivation with respect to time of the sendiifiinctions (25) and the use of a first order

numerical method leads to equation (26).
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4.2 Gradient-based controllers

For the seek of simplicity, let us first considee tsingle output case. The instantaneous error
is defined asg(k,i) = yq(k) - y(k,i),whereyy(k) stands for the desired output at titrre k.A4t,
andy(k,i) stands for the marking of the VCPN outpuéat timet = k.4t obtained from the

markingM(k-1) and the input vectdd(k-1,i) according to a first order numerical method:

y(ki) = y(k—1)+At.(Z u (k=1,0).QVY . A @ )+pz anic | - QW - PO ). Mk 1 (30)

U(k,i) is the updating of the input vector obtained aftes i iteration of the gradient
algorithm at time = k.4t. A maximal number oN iterations is considered, for each instant
= k.4, in order to work out the inpuii(k) in finite time. According to this truncation, we

haveU(k) = U(k, N),andy(k) =y(k, N).Let us consider the scalar cost functigk, i).

v(k,i):%gz(k,i)UIR. (31)

Gradient-based methods result from the Taylor semgansion of the cost functiofk, i) in

order to work out the optimal value of the inputtee U(K, i):

. , av\T .
v(k,|+1):v(k,|)+[—j AJ(k,i)
U=U(k,i)
(32)
1 CWT 0°v : T .
+=. (ki)' | ——— A (k,1)+o(|dU(k,i) AJ(k,i))
2 0UUT )y iy
with dJ(k,i) = U(k,i+1) - U(k,i). The stationary condition results in:
(v ) ov
5U(k,l)_ {au'aUTjU:U(k,i).(aU jU=U(k,i) (33)

with:
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ov _
(mjmu(k,i) - S(hek)

(34)

Y J ( 9% j .
= =S(K.g R +a |
(OU U’ V=0 () oUoU’ U=U ()

S(k) is the output sensitivity function vector of outpuwith respect to the input vectar
defined as in (25) and worked out at tiine k.4t according to equation (26). Let us notice
that the sensitivity functions do not depend onitbeationi. S(k)is computed a single time
for each new measurement. Moreover, second ordastare usually neglected in equation
(33), but an adaptive term.l is added in order to approximate the inverse ef lessien
matrix when it is not regular or badly condition@diaganet al. 1995). Thus, equation (33)
results in the updating rule of the controller ¢35)

AU (k,i)=(S(K. SR +a. V. § ke( k), #0,..., N :

(35)
U(k,0)=U (k-1)

Let us point out two limit cases. When>> 1, equation (35) corresponds to the gradient
method ( Van der Smagt al. 1994):

ouU (k,i) :%.S(k)f(k, 0. (36)
Whena << 1, equation (35) corresponds to the Gauss-NewtohaddfThomas 1997):

AU (k,i)=(S(K-IB")™". € ke( k). (37)

The previous controller can be generalised in théirautputs case, bgonsidering the scalar

cost function (38):
.19 o
V(k,l)—E.Z (ki) JIR (38)
j=1

that results in the following updating rule for thentroller:

(k)= (X (S (RSB +a "X S b (k) 39

U(k,0)=U (k-1)
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where § (k) stands for sensitivity function vector of the outpuwith respect to the input

vectorU at timet = k.At.

5. Examples

In order to illustrate the proposed controllers,ue first consider the system B modelled as a
VCPN where the incidence matrices and parameterdefmed as in section 3. The piecewise
bilinear state space representation of system @visn by equation (18) with constrained
input limited to 5 tokens /UT. The initial markingector isMy= (111 0 0 3 3) and the
parameten equals 0,1 in order to avoid the singularitieth Hessien approximation (34).
The figure 8 illustrates the equilibriums for syst® in the plan rify, my) obtained for the
same sets of controllable transitiondg = {To}, Tc = {T2}, or Tc = {To, T2} that were
investigated in section 3 (in black: without comtria light grey: with constant control, in
dark grey: reachable equilibriums from the origithwconstant control). Let us mention that
the region of reachable equilibriums from the arigiith constant control is always strictly
included in the region of the system equilibriunained for all admissible initial markings
O0<m(0)< 3 and &k my(0) < 3.

[Insert figure 8 about here]

Let us first consider the ca3e = {To}. The figure 9 points out the influence of the it
matrix on the controller response: 3 scalar outpumsinvestigategt = my, y = mpandy = m

+ mp that correspond respectively@ =(0001000)Q.=(0000100QR;=(00011

0 0). In all cases, the objective of the controlieto drive the output of the system to the
desired valug/y = 2 tokens. The maximal number of iterationdNiss 100. Concerning the
output matrice€), and Qs the desired value is rapidly reached with a goaolgacy, but in
case of output matrif, some oscillations are observed. Such an inputtpubgpecification

Is not suitable with our approach because the mgrkif the unobservable plaé®g is not
considered in the calculation of the input firimgduency. As a consequence, the desired level
is exceeded and oscillations arise due to the dedaween the firing ofy and the observation
of P, marking. In order to avoid the undesirable cumwaeffects of the marking, the inputs
and outputs of the systems must be preferred shah the sensitivity rank equals O
(immediate neighbourhood) as shown in table 2.

[Insert figure 9 about here]
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The speed of the algorithm increases as the maxiomaber of iterations in the gradient —
based algorithm. The figure 10 illustrates theuefice of the number of iteratioNswhen the
output matrix is given b = (000 1 0 0 0). A small numbed & 2 orN = 10) results in a
poor controller, that is not quick enough to cortbe input when the desired level is reached.
In this case the level is exceeded and there iBimgptto do. A large numbemMN(= 100)

compensates the slowness of the gradient algorithm.

[Insert figure 10 about here]

In figures 11 and 12, gradient-based controllendl (ine) with Tc = {Tg}, N = 100 andQ =
(000110 0) are compared with usual proportigdashed line) and bang-bang controllers
(dotted line) when the desired output is the piesewinear function of time given by
equation (31) (figure 11):

Yy :%, O<t<6
(31)
Y. :E t+ﬂ t>6
‘9" 3T
or a € non linear function of time given by equation (82jure 12):
. t
Yy =|sint) +E (32)

All proposed controllers track the desired trajee®with an instantaneous error that does not
exceed 0.5 tokere(< 0.2 tokens for the proportional controllerg 0.4 tokens for the bang-
bang controllerg < 0.05 tokens for the gradient-based controlleg}.us notice that the error
of the gradient-based controller is smaller than dhe of the proportional or the bang-bang
controller. Furthermore, the input signal is veiffedent according to the controller choice.
The proportional controller uses the error signaltlze input frequency (gain = 1). As a
consequence, this controller is not suitable winenetrror signal presents a lot of variations.
The bang-bang controller is defined as a serienfmutations. The input flow of tokens is
tuned according to the commutations frequency.tlisrreason, the interest of this controller
depends strongly of the field of application. Thestnoutstanding difference between the

different classes of controllers is that only thadient-based controller is able to learn the
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growing rate of the output in the case of a lingajectory and the cyclic behaviour of the
output in the case of a non linear sinusoidal ttajeg.

[Insert figures 11 and 12 about here]

Let us now consider the VCPN model of system Cu(gg7) given as a MIMO piecewise
bilinear state space representation (23) with mghat correspond tdc = {T4, Ts} and
outputs that correspond to the subsd®s, {Ps} and {P,, Ps;}. The firing of controllable
transitions is limited to 5 tokens /UT, the initialarking vector islp = (11111 0 0 0 0)
the parametetr equals 0.1, and the number of iterations is lichti@N = 100. The desired

trajectories correspond to 2 piecewise linear ttayges given by equation (33):

yd1=§.t, Ost<1—2 Ygo =t, 0<t<6
. 7 512 _1 (33)
ydlz%,t+5' t>=% de—g-t+4, t=>6

N

Only the outputs of the gradient-based controller presented in figure 13. In fact the
proportional and bang-bang controllers provide opbor results because the inputs and
outputs of the system C are coupled thanks torémesitionT;. These controllers focus on one
desired trajectory but cannot track simultaneolsth ones. On the contrary, the gradient-
based controller tracks simultaneously both trajes with an instantaneous error that does
not exceed 0,2 tokens. The input-output decompposis obtained thanks to the sensitivity

functions that evaluate for each output the retaiinfluence of both inputs.

[Insert figure 13 about here]
The figure 15 illustrates the case of a non adtlissbutput trajectory. The desired output
signals are defined as previously but the inciderstationships of the VCPN have been
modified according to figure 14 (system C’):

[Insert figure 14 about here]

System C is tokens consumer but system C’ is tokgmslucer: the free response
(U(t) = 0) of system C’ corresponds to increasing makinnctions whereas the free
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response of system C corresponds to a decreasirkingnéunctions. Aftert = 4 TU, we have
uy(t) = 0, but the number of tokens in subpeincreases more quickly than the desired output

Va2 and the controller fails.
[Insert figure 15 about here]

At last, let us consider the hybrid PN model of thve tanks system A (figure 1) given as a
MIMO non linear state space representation whighuis correspond to the maximal firing
frequencies of the controllable transitiomgs = {Ti, T4} and outputs correspond to the
marking my and mp. The controller is obtained according to an adaptaof the gradient
based algorithm to non linear behaviours. As a egnence, the discrete part of the hybrid
model become useless (figure 2). The firing of oaf#ble transitions is limited according to
the system specifications <0u; < D, and 0< U, < as, with o = a5 = as = 1.6.10° m¥2s™, D
=1.10° m®s*, h=0.5m,S = S = 0.0154 M. The initial marking vector of the continuous
part of the model iMy = (0, 0); the coefficientr equals 0,1; the number of iterations is
limited to N = 1 (single step controller). The desired trajae® correspond to a periodical
level for tank 1 and a constant level for tank #En@ation results for the gradient based
controller are given in figure 16 (system outputsia full line, and desired trajectories are in
dotted line) and can be compared with the resuitaioed with the discrete control design
(figure 17).

[Insert figures 16 and 17 about here]

Both controllers are different in terms of objeetilNevertheless, one can notice that the
discrete controller is not suitable to track somfenmence trajectories or to reach some desired
levels. On the contrary, with gradient — based ratlet, the desired level in tank 2 is reached

and the reference trajectory in tank 1 is almostrgwvhere tracked after some transitory

behaviours. But one can also notice that, due $tesy specifications, level 0.6 m cannot be

reached in tank 1 when level in tank 2 is 0.4 nfabt, the desired levels; g = 0.6 m andmygy

= 0.4 m do not belong to the set of equilibriums.l@st, because of immediate causality

relationships fronT; to P; and fromT, to P,, the gradient — based algorithm behaves like a

proportional controller (i.e. the input — outpuhsiivity matrix tends to a diagonal one).
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6. Conclusions

The continuous Petri net controllers that have h@eposed in this paper are based on the
evaluation of the input-output sensitivity functsror this purpose, the structural sensitivity
of PN models has been first investigated. Placedbdoobserved and transitions to be
controlled are obtained as a consequence. An éxpharacterisation of the input-output
sensitivity functions has also been proposed foPMQOmnodels. At last, VCPN controllers
have been designed that calculate the gradienhefoutputs with respect to the input
variations in order to adapt the maximal firingguencies of the controllable transitions
according to desired trajectories of the outputkimgis. An adaptation of this algorithm for
HDS and continuous non linear PN was also developed

In our opinion, the method is not only suitable f@jectory tracking but also for complex
behaviours learning. We will further investigatee tbombination of Petri nets and neural
networks in order to design learning Petri netsrdshwaet al. 1998). These perspectives
include not only the continuous Petri nets but d@hso autonomous and timed Petri nets. At
last, the sensitivity analysis will also be adapfed the monitoring of hybrid systems

modelled with Petri nets.
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Figure 1: Two tanks system (system A)
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Figure 5: VCPN model of a manufacturing processtésy B)

Ai(9)

Bi(¢)

Cy — my(t) 2m”o(0)

(1,0,0,0,0,0,0

my(t) = Cz — my(t) >m”1(0)

m”o(0) = Cy — my(t)

(0,0,0,0,0,1,0

Cz — mp(t) =my(t) >m”1(0)

0,1,0,0,0,0,0

m”1(0) = my(t) = C, — my(t)

B2A(9)

my(t) =2m”1(0) = C, — my(t)

(0,0,0,0,0,0, 1

my(t) =m”2(0)

(0,0,1,0,0,0,0

Ca — mp(t) >m”1(0) = my(t)

m”5(0) = my(t)

(0,0,0,0,1,0,0

m”1(0) = C; — my(t) = my(t)

(0,0,0,1,0,0,0

Table 1: Phases specification for system B

Y(t) = my(t) Y(t) = m(t) Y(t) = my(t) + my(t) Y(t) = (my(t), my(t)"
oY —(0000100) Q=(0001000] 0=(©001100)]| @=[0 ¢ ¢ 1 9O
o=t Q= Q= 190000109
0
Te={Td | S(MU=() | SMV=(0) | S,(Y.U=(0) SN(Y,U){J
1
Tc={T3} S (Y, V) =(0) Sv(Y,U=(1 S« (Y, U =(0) S, (Y, U) :(OJ
01
Te={To T} | S (M VU=(1 0 | S, (\V=(0 )| S (Y V=(0 0 Su(Y, U):£1 0}

Table 2: Input — outpulV — sensitivity matrices for system B
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Figure 6: VCPN model of system B’

Y(©) = my(t) Y(©) = m(t) YO = my(t) + myt) [ Y(0) = (mu(t), mo(t)"

u\yvy 0 0010
Q=(00001) Q=(00010) Q=(0001100) Q:(O 00 0 1]

Te ={Tq} Sy (Y, U)=(1) Sy (Y, U)=(0) Sy(Y, U)=(0) Se(Y. U= U
Te={T2} Sy (Y, U)=(0) Sy (Y, U) = () Sy (Y, U)=(0) SHEQAN) ( ]
Te={To T} | SW(Y.U=(1 0 | S,(,U=(0 «) [ S(Y,U=(0 0 | S (Y, U= [ oj

Table 3: Input — outpldV — sensitivity matrices for system B’

Py

I

-@
Ps

Figure 7: Closed loop process (system C)
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Figure 9: Influence of the output matrix
(full line:Q=(0000100), dashed limM@:=(0001000), dotted lir@=(0001100))
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Figure 10: Influence of the iterations number
(full line: N = 100, dashed liné\l = 10, dotted lineN = 2)
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Figure 11: Piecewise linear trajectory

(full line: gradient-based controller, dashed lippoportional controller,

dotted line: bang-bang controller)
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Figure 12: Non linear trajectory
(full line: gradient-based controller, dashed lippoportional controller,

dotted line: bang-bang controller)
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Figure 13: Control design of system C
(full line: first input, first output, dashed lineecond input second output)
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Figure 14: System C’
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Figure 15: Control design of system C’
(full line: first input, first output, dashed lineecond input second output)
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Figure 16: Gradient — based controller for 2 tasystem
(full line: first input, first output, dashed lineecond input second output)



Gradient-based controllers for continuous Petts ne 36
Final version october 2004

M(m)
[ Tank 1
0.6 A 7 S A A
WA\ 7N /7N Ak /A AR 4
o I{I \\/, \\‘/ \\V’l \\ /l \\\, \\\/l \‘/; \‘L,, \‘V(l
" 4
02 /,K
' 2 - Tank 2
7’
0 4
0 100 200 300 400 500 600 700 800 900 t(s)
x 107
]
VT S ST R TP B AT il T

R |
[
- —-a

[

- -t

pPAN
13

u |[—

0 100 200 300 400 500 600 700 800 900 t(s)

Figure 17: Discrete controller for 2 tanks system
(full line: first input, first output, dashed lineecond input second output)
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