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Abstract.
We investigate multi-photon ionization of Helium using the Time Dependent R-

Matrix method in order to assess the best choice of gauge for the description of the
laser field when the system under investigation is a multi-electron system. Ionization
probabilities are obtained using the length gauge and the velocity gauge and various He
basis sets, when a minimum of three or four photons need to be absorbed to achieve
ionization. The probabilities are found to converge for both gauges as the number
of orbitals used in the basis set increases, but they are more consistent in the length
gauge. Ionization probabilities can be compared to those derived from other theoretical
calculations. Agreement is within 10% when ionization requires absorption of at least
three photons, but the differences increase to 20-50% when absorption of four photons
is required. Analysis of the multi-photon matrix elements provides further evidence
for better consistency in the length gauge than the velocity gauge when high-lying
states are excluded from the calculations, which is, at present, unavoidable for a multi-
electron system.
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1. Introduction

One of the main challenges in computational atomic physics is the description of multi-

electron dynamics in intense laser fields. This area is of increasing relevance due to

developments in laser physics allowing high intensity pulses to be generated for ever

shorter wavelengths [1, 2]. The accurate description of a multi-electron field-free atomic

system requires substantial computational resources that increase exponentially with

the number of electrons. The problem is even more demanding when the system is in

a laser field which breaks the isotropy of space so that the total angular momentum is

no longer conserved. Computational limits thus restrict the size of the system being

considered or the accuracy of the description.

Over the last two decades, great progress has been made in the description of two-

electron systems in intense laser fields. One of the most advanced approaches in this

area is the so called HELIUM approach of Parker, Taylor and co-workers which solves

the laser-driven two electron problem through direct numerical integration of the full

dimensional time dependent Schrödinger equation [3]. This method has proved to be

highly successful in accurately describing He irradiated by an intense 390 nm laser field

[4]. For a general multi-electron atom or ion, however, very few theoretical methods

exist that are capable of describing the response of a target atom or ion irradiated by

an intense laser pulse, and those that do typically employ a single active electron (SAE)

approximation. The SAE approximation assumes that only one electron is active in the

system which limits the ability to describe multi-electron effects that require more than

one active electron, such as electron correlation, and exchange interactions in particular.

Recently, first attempts have been made in the ab-initio time dependent

investigation of atomic systems in intense laser fields for a general multi-electron system.

One such method is the recently developed time dependent R-matrix (TDRM) theory

which is a non-perturbative ab-initio method capable of describing a general multi-

electron atom or ion in an intense time-dependent light field [5, 6, 7, 8]. Two different

versions of TDRM theory have been developed; one type of approach in which dynamics

is restricted to an enlarged internal region [5, 7, 8] and one in which space is separated

into an internal region and an external region [6]. The latter method is of current

interest. The method has been described in detail elsewhere [9], and its success in

describing atomic interactions has been demonstrated in recent studies of ultra-fast

laser-driven excitation dynamics in Ne [6] and ultra-fast multi-electron dynamics in a

C+ ion [10, 11].

One of the key questions which has to be considered in applications of time-

dependent R-Matrix theory is the choice of gauge in which to describe the laser fields.

If exact atomic wavefunctions are used for all states, the choice of gauge is irrelevant as

the same result will be obtained regardless. Unfortunately, for a general multi-electron

atom or ion, it becomes impractical to use exact (or nearly exact) wavefunctions for all

states due to the scale of the calculations required. With an approximate wavefunction,

the choice of gauge, and specifically how quickly convergence is achieved with respect
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to the basis used, becomes an important factor in the overall calculation.

The choice of gauge is not trivial, since different areas of theoretical atomic physics

have different preferences for the choice of gauge. The dipole operator appearing in

the description of the interaction between the laser field and the electrons is frequently

described in the length gauge for atomic structure calculations, whereas it is primarily

described in the velocity gauge for strong field studies. On the other hand, atomic

structure calculations routinely include multi-electron excitations, whereas strong-field

studies are currently limited to at most two active electrons. Previous studies of gauge

choice for strong field calculations have demonstrated conclusively that the velocity

gauge is the preferred choice for single-active electron studies [12, 13]. However, this

analysis cannot be trivially extended to a general multi-electron system. Indeed, a

previous investigation into ultra-fast multi-electron dynamics in Argon using the time

dependent R-matrix method [5] has already successfully employed the length gauge. In

this case the length gauge was preferred due to intermediate states in which three or

four electrons are excited. The influence of these intermediate states, which can not be

described accurately, is significantly larger in velocity gauge calculations than in length

gauge ones. It is therefore of importance to demonstrate and evaluate how the choice

of gauge affects the numerical outcomes.

The non-trivial nature of the choice of gauge can be appreciated further by

considering other approaches. One of the most successful methods for the description

of general atoms in intense laser fields is the R-Matrix Floquet method [14], which uses

both the length and velocity gauges depending on distance from the nucleus. The R-

Matrix Floquet approach further employs the acceleration frame to define the proper

asymptotic solutions at very large distances. Another approach proposed by Robicheaux

et al. [15] uses a more complex smoothly varying mixed gauge. This mixed gauge is

chosen to approach the most relevant gauge for the distance from the nucleus, with the

change between each occurring smoothly over a range of distances.

To assess the choice of gauge, we investigate in the present report the suitability

of the length and velocity forms of the dipole operator in the time-dependent R-matrix

approach for the description of multi-photon ionization of He irradiated by an intense

laser field. Helium was chosen as it provides one of the simplest multi-electron systems.

This simplicity allows the comparison of the length and velocity gauges for basis sets

which can be varied in a systematic manner. In addition, accurate theoretical ionization

rates and cross-sections have been presented for three- and four-photon ionization

[16, 17], which can provide an independent measure of the accuracy of the calculations.

The outline of the paper is as follows; we start by giving a brief overview of the time-

dependent R-matrix approach in section 2. We then present in section 3 an overview

of ionization probabilities for three- and four-photon ionization of He, followed by a

discussion and interpretation of these results.
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2. Methodology

In this section we give an overview of the Time Dependent R-Matrix method, which

is employed throughout this paper. Thorough overviews of this method for 1D single

electron studies [18] and for atomic studies [9] have been published previously and may

be consulted for further detail. The recent applications of the method to atomic systems

[9] describe the dipole operator in the length gauge. However, when the method was

originally proposed for a 1D single electron problem [18], a velocity gauge description of

the dipole operator was used instead. Since we are interested in the comparison between

the length and velocity gauge descriptions of the dipole operator, the overview given

in this section will be general enough to be applicable in each case, with occasional

comments on differences that arise in the theoretical formulation of each.

The TDRM method attempts to find a solution to the time dependent Schrödinger

equation (TDSE) for a general (N+1) electron atom or ion interacting with a light

field. Throughout this paper the light field is assumed to be spatially homogeneous and

linearly polarized. Through the use of the unitary Cayley form of the time evolution

operator exp(−itH(t)), the TDSE may be expressed in a form that allows the use of a

Crank-Nicolson scheme as follows:

(H(tq+ 1
2
) − E)Ψ(XN+1, tq+1) = Θ(XN+1, tq) (1)

where

Θ(XN+1, tq) = −(H(tq+ 1
2
) + E)Ψ(XN+1, tq) (2)

In equations (1) and (2), XN+1 ≡ x1,x2, . . . ,xN+1, where xi ≡ riσi are the space and

spin coordinates of the i th electron and H(tq+ 1
2
) is the time-dependent Hamiltonian

at the midpoint of times tq and tq+1. The imaginary energy is defined by the time step

∆t = tq+1− tq and is given by E ≡ 2i∆t−1. The Hamiltonian can be written in the form

H(t) = HN+1 +Hint(t) (3)

where HN+1 is the standard (N + 1) electron Hamiltonian in the absence of an external

field and Hint(t) represents the laser interaction term. In the length gauge Hint(t) is

given as

Hint(t) =
N+1∑

i=1

E(t) · ri (4)

and in the velocity gauge as

Hint(t) =
1

c

N+1∑

i=1

A(t) · pi (5)

Following the standard R-Matrix method [19], configuration space is partitioned

into an internal region and an external region, as shown in figure 1. The internal region

contains all (N + 1) electrons, and exchange and correlation effects are fully taken into

account. In the external region, in which there is one ejected electron, exchange with the

inner electrons is considered negligible. The internal and external regions are linked at a
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boundary r = a0. The outer limit of the external region, r = as, is chosen large enough

so that the outgoing wavepacket does not reach it before the end of the propagation.

A suitable choice of as is crucial to ensure this condition is physically correct when

imposed as a boundary condition.
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Figure 1. Partition scheme for the configuration space

When considering the matrix equation (1) in the internal region, we note that

the Hamiltonian used is not Hermitian due to the kinetic energy operator. Similar to

standard R-Matrix theory [19], this is complemented through the addition of a Bloch

operator L1 such that (HN+1 + L1) is Hermitian. The velocity gauge theory differs

slightly in that, while L1 is still needed, there is now also a second non-Hermitian term

present in the Hamiltonian used in (1) due to the laser interaction term 1
c

∑N+1
i=1 A · pi.

A second Bloch operator L2 is added in the same way to the Hamiltonian to ensure

Hermicity in the internal region as detailed by Dörr et al. [20]. Equation (1) is then

rewritten in the following form:

Ψ =
(

1

H + L− E

)
(LΨ + Θ) (6)

where for notational simplicity we have omitted the arguments in H,Ψ and Θ. The

Bloch operator term L represents the sum of all relevant Bloch operators.

In the internal region the wavefunction Ψ(XN+1, tq+1) is expanded in terms of a

completely antisymmetric R-matrix basis ψk(XN+1) and we use the same methods of

analysis as a recently developed R-Matrix inner region approach [5], which produces

dipole matrix elements for both the length gauge and the velocity gauge, to set up the

linear equations given by (1). Using a linear solver at each time step we determine the

R-Matrix, R, at the boundary r = a0 with elements defined as [9]:

Rpp′(E) =
1

2a0

∑

kk′
ωpk

(
1

H + L − E

)

kk′
ωp′k′ (7)
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where p, p′ = 1, . . . , n and where the surface amplitudes ωpk are defined by

ωpk = 〈Φ̄pγr
−1
N+1 | ψk〉′rN+1=a0

(8)

where p = 1, . . . , n and k = 1, . . . , nt. We also determine an inhomogeneous T-vector,

T, at the same boundary, defined as

Tp(a0) =
∑

kk′
ωpk

(
1

H + L − E

)

kk′
Sk (9)

where p = 1, . . . , n and Sk is the projection defined as:

Sk = 〈ψk | Θ〉 (10)

where k = 1, . . . , nt. In each case n represents the number of retained channel functions

Φ̄pγ, which are formed by coupling the residual atom or ion states Φi with angular

and spin functions of the ejected electron [9], and nt represents the total number of

linearly independent basis functions ψk retained in the close coupling expansion of the

R-matrix basis functions presented in [9]. For both the R-matrix and T-vector we note

that gauge dependence is contained in the Bloch operators. At this point, we cannot

find the wavefunction Ψ(XN+1, tq+1) without either restricting the configuration space

to the internal region only, as in [5], or extending our analysis to the external region.

Crucial to the solution of (1) in the internal region is linking the internal and

external regions at the boundary r = a0, thus ensuring that the solution is physically

meaningful. This is achieved by projecting (6) onto the channel functions Φ̄pγ

and evaluating the resulting expression at this boundary giving the following matrix

equation:

F(a0) = Ra0F̄(a0) + T(a0) (11)

where the reduced radial wavefunctions are defined as

Fp(a0) = 〈Φ̄pγr
−1
N+1 | Ψ〉′rN+1=a0

(12)

The prime on the matrix elements indicates integration over the space and spin

coordinates of all N + 1 electrons except the radial coordinate rN+1 of the ejected

electron. Analytic continuations of these reduced radial functions exist in the external

region and as such (11) can be used to link the internal and external regions. Finally

we note that the modified derivative functions F̄p(a0) arise entirely due to the Bloch

operators used in (6) and their definition will vary between the length gauge and the

velocity gauge.

While the R-Matrix and T -vector in (11) are obtained from analysis of the internal

region alone, the modified derivative functions F̄p(a0) remain unknown. Thus the

modified derivative functions must be determined from solution of the external region

before we can determine the internal region wavefunction Ψ(XN+1, tq+1) [9].

In order to solve (1) in the external region, we expand the wave function Ψ in terms

of the reduced radial functions Fp(r) which represent the motion of an electron in the p

th channel as follows:

Ψ(XN+1, tq+1) =
n∑

p=1

Φ̄pγ(XN ; r̂N+1σN+1)r
−1
N+1Fp(rN+1) (13)
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where Φ̄pγ are the channel functions from before. The subscript p represents the channel

quantum numbers L, i and γ = αSMLMSπ.

To obtain a solution for the wavefunction of the ejected electron in the external

region we substitute (13) into (1) and project onto the channel functions Φ̄pγ, obtaining

coupled second order differential equations which can be expressed in matrix form as:

(Hext − EI)F(r) = θ(r) (14)

where the Hamiltonian Hext is defined as:

Hext = −1

2

(
I
d2

dr2
+ V(r) − 2W(r) + k2

)
(15)

Here V(r) represents the combined nuclear and centrifugal potential matrix, W(r)

represents the long range potential matrix coupling the channels and k2 can be expressed

in terms of the diagonal energy eigenvalue matrix En of the residual N -electron ion by

the equation k2 = −2En. We note that (15) applies to both gauge descriptions, however

the long range potential matrix W(r) is not the same in each case. Explicit forms of

W(r) may be found in [9] for the length gauge and [14] may be used to derive an explicit

form for the velocity gauge. Finally, the inhomogeneous term θ(r) in (14) is defined for

a single channel as:

θp(r) = 〈Φ̄pγ(XN ; r̂N+1σN+1)r
−1
N+1 | Θout〉 (16)

where

Θout = −(Hext + E)F (17)

We now note that the external region is further partitioned into s sub-regions, as

shown in figure 1. Similar to the internal region, Hermicity of the Hamiltonian in each

subregion is ensured through the addition of the Bloch operators Ls. Thus (14) in the

s-th subregion may be expressed as

(Hext + Ls − EI)F(r) = LsF(r) + θ(r) (18)

The formal solution to (18) in the s-th subregion may then be written as

F(r) = 2
∫ as

as−1

Gs(r, r
′)LsF(r′)dr′ + J(r) (19)

where

J(r) = 2
∫ as

as−1

Gs(r, r
′)θ(r′)dr′ (20)

where the Green’s function Gs(r, r
′) is the solution of

(Hext + Ls − EI)Gs(r, r
′) =

1

2
Iδ(r − r′) (21)

We use a spectral representation of the Green’s function in equations (19) and (20)

[9], where we use a basis of B-splines and solve a system of linear equations in each

sub-region.
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Evaluation of (21) at r = as−1 and r = as results in the following equations that

allow the outward propagation of the R-Matrix and T -vectors from the boundary at

r = as−1 to r = as [9]:

asRs = Gs(as, as) − Gs(as, as−1)[Gs(as−1, as−1) + as−1Rs−1]
−1Gs(as−1, as) (22)

and

T(as) = J(as) + Gs(as, as−1)[Gs(as−1, as−1) + as−1Rs−1]
−1(T(as−1) − J(as−1)) (23)

Finally we obtain the following equation for the inward propagation of the F-vector from

a boundary r = as to r = as−1 using the R-Matrix, T - and F - vectors at r = as [9]:

F(as−1) = as−1Rs−1[Gs(as−1, as−1) + as−1Rs−1]
−1

× [Gs(as−1, as)a
−1
s R−1

s (F(as) − T(as))

+ Gs(as−1, as−1)a
−1
s−1R

−1
s−1T(as−1) + J(as−1)] (24)

The outwards propagators (22) and (23) are used first to propagate the R-Matrix

and T -vectors calculated at the boundary r = a0 from the analysis of the internal region

to the outer limit of the external region. We then use the inward propagator (24) in

conjunction with the condition that the ejected electron wavepacket does not reach the

outer boundary and (19) to determine the F -vector at every point of the external region.

From the F -vector, we then calculate the wavefunction Ψ(XN+1, tq+1) using (19) for the

external region and (11) to determine the internal region wavefunction.

In this paper we are primarily interested in the ionization process. For this

purpose, we consider the target to be ionized when an electron is no longer under

the direct influence of the individual electrons and nucleus of the target. In the present

calculations, this is considered to occur at the moment an electron enters the external

region, where the frequencies of the laser field have been chosen such that there is no

major influence from high-lying Rydberg states. Thus, we consider the probability of

ionization to be equivalent to the probability of an electron being present in the external

region.

3. Application to Helium

3.1. Description of He and fields used in the calculations

Our investigation considers a He atom ionized by a single ultra-short light pulse, with

primary interest on the choice of gauge for the dipole operator and how it affects the

obtained ionization rates with respect to the size and complexity of the description of

He. The TDRM method described in the previous section is applied for both the length

and velocity gauge descriptions of the dipole operator. A comparison between each

gauge is carried out for two different frequencies, corresponding to ionization requiring

absorption of a minimum of three, or four, photons and for different basis set descriptions

of He. Before presenting the ionization probabilities, we first discuss the description of

He.
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Since our interest is focused on how the choice of gauge is connected to the detail

used to describe He, several basis sets are employed. However, they have several common

properties. For all calculations, we use an internal region radius of 30 a.u. with the

R-Matrix and T -vector in the external region being propagated outwards to a distance

of 453 a.u. The internal region is considered large enough to contain the residual ion

for each basis set considered, with the radius kept constant to ensure that changes in

results are due entirely to changes in the basis set used. Each external region sector

is 3.0 a.u. in width and contains 40 B-splines of order k = 9 for each channel. In all

cases the set of continuum orbitals contains at least 50 continuum functions for each

available angular momentum of the continuum electron, with a maximum total angular

momentum Lmax = 7. Some calculations were also performed using Lmax = 9, however

these were found to produce nearly identical results to the calculations with Lmax = 7.

The various descriptions of He differ in the states included in the basis sets for

He and He+. The He basis in the internal region consists of a set of pseudo-continuum

orbitals, built from a complete set of B-splines, attached to a set of He+ final states. The

He basis set is then varied by varying the set of He+ final states. The most basic model

used includes only the He+ 1s state, with more extensive models including the He+ 2s

and 2p states and the most extensive model using real He+ states up to and including 3s,

3p and 3d. However, we can choose the kind of orbital we want for these excited states

of He+. We are interested in ionization leaving the He+ ion in the 1s state therefore, we

can also use pseudo-orbitals 2s, 2p, 3s, 3p and 3d rather than the real orbitals. These

pseudo-orbitals could provide a better description of the changes to the He+ 1s ground

state during the laser pulse, and hence a better description of the ionization process.

The choice of basis sets and pseudo-orbitals can be made in several ways. We have

chosen to include He+ bases consisting of 1s only, a 1s,2s,2p basis and a 1s,2s,2p basis.

Inclusion of the n = 3 orbitals gives more combinations: a 1s,2s,2p,3s,3p,3d basis, and

a 1s 2s 2p 3s1 3p1 3d1 basis. Finally we include two basis sets incorporating real n = 2

orbitals and n = 3 pseudo-orbitals, 1s,2s,2p,3s1,3p1,3d1 and 1s,2s,2p,3s2,3p2,3d2. The

functional form of the radial component of our pseudo-orbitals is given by Slater type

orbitals of the form

nln′ =
n∑

i=l+1

cir
ie−2r/n′

(25)

where the subscript n′ is used to denote the exponential behaviour of the pseudo-orbital.

The value of the coefficients ci is determined uniquely (apart from overall sign) by ci = 0

for i < l + 1, orthogonality and normalization conditions.

We consider a laser frequency ω = 0.33 a.u., corresponding to an energy for which a

minimum of three photons are required to ionize He, and a laser frequency ω = 0.24 a.u.,

corresponding to an energy for which a minimum of four photons are required to ionize

He. While we acknowledge that higher-order processes, involving the absorption of more

than the minimum required number of photons, are possible at these frequencies, for

clarity in further discussion these ionization processes will be referred to as a three- and

four-photon process respectively. In each case the laser has peak intensity 2 × 1013 W
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cm−2 and consists of a 3-cycle sin2 ramp-on of the electric field, followed by six cycles

at peak intensity, finishing with a 3-cycle sin2 ramp-off. To ensure consistency between

each gauge, the vector potential is calculated by integration of the previously stated

electric field. The resulting laser pulses have durations of 5.53 fs and 7.60 fs in the

ω = 0.33 a.u. and ω = 0.24 a.u. cases respectively. In each case the system was allowed

to freely evolve for approximately 5 fs beyond the end of the laser pulse. The total

ionization probability is determined by integration of the ejected electron probability

density over the entire external region. We will first show the outcomes for each of the

four sets of calculations, and compare the results in detail afterwards.

3.2. Results

0 100 200 300 400
time (a.u.)

0
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1s 2s 2p 3s1 3p1 3d1

Figure 2. Population of the external region (r > 30 a.u.) for various basis sets using
the length gauge and a pulse frequency of ω = 0.33 a.u. with 6 cycles at a peak
intensity of 2 × 1013 W cm−2. The basis sets used are defined in terms of the states
of He+ included. Shown are basis sets including the real (solid lines) He+ orbitals 1s
(black), 1s 2s 2p (red,circles) and 1s 2s 2p 3s 3p 3d (blue,crosses) along with those
involving pseudo-states of He+ (dashed lines) 1s 2s 2p (dark green), 1s 2s 2p 3s1 3p1

3d1 (orange, solid triangles), 1s 2s 2p 3s2 3p2 3d2 (purple, diamonds), 1s 2s 2p 3s1 3p1

3d1 (dark red, solid squares). Here a subscript on an orbital indicates the exponential
behaviour of the orbital.

Figure 2 shows the evolution of the external region population in time for a laser

frequency ω = 0.33 a.u. using the length gauge description of the dipole operator. The
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Table 1. Final outer-region populations obtained for various basis sets using a laser
pulse with a frequency ω = 0.33 a.u. for 6 cycles at a peak intensity of 2 × 1013 W
cm−2 with both a length and velocity gauge description of the dipole operator.

Basis set Length gauge Velocity gauge Ratio

10−6 10−6

1s 4.775 2.666 0.5583

1s 2s 2p 4.523 3.553 0.7855

1s 2s 2p 4.436 4.386 0.9886

1s 2s 2p 3s 3p 3d 4.581 4.130 0.9016

1s 2s 2p 3s2 3p2 3d2 4.559 4.550 0.9978

1s 2s 2p 3s1 3p1 3d1 4.393 4.318 0.9830

1s 2s 2p 3s1 3p1 3d1 4.403 4.405 1.000

final ionization probability obtained is consistent across the range of basis sets used,

with a ratio between the highest and lowest probabilities of 1.09. The most significant

deviation occurs when we include only the He+ 1s orbital in our basis set, which produces

the highest result in figure 2. Finally, basis sets which include pseudo-orbitals with an

exponential decay similar to the 1s orbital tend to produce the lowest ones in figure 2.

Numerical values for the final ionization probabilities are given in table 1.

The ionization probabilities obtained using the velocity-gauge description of the

dipole operator for a laser frequency of ω = 0.33 a.u. are shown in figure 3. Although

these probabilities converge onto the same result as the length gauge, they appear

significantly more sensitive with respect to the He+ orbitals included in the basis set.

Consequently the final results are much more inconsistent, with a ratio between the

highest and lowest probabilities of 1.7. Again the population obtained in the calculation

in which only the 1s state of He+ is included lies furthest from any other result obtained

using the same frequency and gauge. However, in the velocity gauge description, it

provides a much lower ionization probability than calculations with additional He+

basis orbitals, as opposed to the length gauge where it is slightly higher than the other

results. Numerical values for the final ionization probabilities are also given in table 1.

In the case of three-photon ionization of He by a laser pulse with frequency ω = 0.33

a.u. and intensity 2 × 1013 W cm−2, we can compare the present calculations in

detail with earlier time independent R-Matrix Floquet calculations by van der Hart and

Bingham [16]. These R-Matrix Floquet calculations provided three-photon ionization

rates for He in the frequency region between 0.31 and 0.44 a.u. These ionization rates

were found to be in good agreement with perturbation theory calculations [17]. For

the present purpose, we compare the estimated ionization probability derived from the

ionization rates calculated using the R-matrix Floquet method for a basis set that

includes only the 1s, 2s and 2p states of He+ with the corresponding result obtained in

table 1 using the TDRM method. The ionization probability determined from the time
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Figure 3. Population of the external region for various basis sets using the velocity
gauge with a laser frequency of ω = 0.33 a.u. for 6 cycles at a peak intensity of 2×1013

W cm−2. Details on the basis sets used are given in the caption to figure 2.

independent method was found to be 4.08×10−6, which is approximately 10% lower

than the result obtained using the length gauge, and approximately 15% higher than

the velocity gauge calculation. Ultimately both gauges converge to a final ionization

probability in the region of 10% higher than is given from the time independent

calculation. This is quite good overall agreement between the two methods, since a

relatively short pulse is used in the present calculations.

Figure 4 shows the evolution of the external region population in time for a laser

frequency ω = 0.24 a.u. where the dipole operator is described using the length gauge.

Similar to the laser frequency shown in figure 2, the length gauge description produces

a highly consistent set of external region populations, with a ratio between the highest

and lowest ionization probabilities of only 1.03. This range is smaller than obtained

at a frequency of ω = 0.33 a.u. which may indicate that higher-lying atomic structure

decreases in importance with decreasing frequency. Similarly, the highest probability is

again produced when only the He+ 1s orbital is included in the basis set. Numerical

values for the final ionization probabilities are given in table 2.

Populations in the external region for the same laser frequency using the velocity-

gauge description of the laser field are shown in figure 5. It is immediately apparent that

including only the 1s state of He+ in the basis set produces an ionization probability
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Figure 4. Population of the external region for the length gauge using a pulse
frequency of ω = 0.24 a.u. for 6 cycles at a peak intensity of 2 × 1013 W cm−2.
Details on the basis sets used are given in the caption to figure 2.

Table 2. Final outer-region populations obtained for various basis sets using a laser
pulse with a frequency ω = 0.24 a.u. for 6 cycles at a peak intensity of 2 × 1013 W
cm−2 with both a length and velocity gauge description of the dipole operator.

Basis set Length gauge Velocity gauge Ratio

10−7 10−7

1s 2.801 10.45 3.731

1s 2s 2p 2.733 2.574 0.9418

1s 2s 2p 2.733 2.758 1.009

1s 2s 2p 3s 3p 3d 2.719 2.147 0.7898

1s 2s 2p 3s2 3p2 3d2 2.769 2.457 0.8873

1s 2s 2p 3s1 3p1 3d1 2.724 2.760 1.013

1s 2s 2p 3s1 3p1 3d1 2.729 2.706 0.9914
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Figure 5. Population of the external region for the velocity gauge using a pulse
frequency of ω = 0.24 a.u. for 6 cycles at a peak intensity of 2×1013 W cm−2. Details
on the basis sets used are given in the caption to figure 2.

that is significantly higher than all others. This leads to a much larger ratio between the

highest and lowest results, compared to a frequency of ω = 0.33 a.u., of 4.87. Excluding

the 1s only calculation, this ratio between the highest and lowest probabilities still

amounts to 1.29. When more He+ orbitals are included these results once again converge

towards those obtained using the length gauge. However, convergence is not uniform.

The ionization probability in the 1s 2s 2p 3s 3p 3d calculation lies well below the other

results, including the 1s 2s 2p calculation. Numerical values for the final ionization

probabilities are also given in table 2.

The ionization probabilities obtained here can be compared with those of other

approaches. We have performed RMF calculations for a four-photon process using the

1s,2s,2p basis at 0.24 a.u. and I = 2×1013 W cm−2, similar to earlier work for three-

photon ionization [16]. The parameters are Lmax = 7, with 7 absorption blocks and

3 emission blocks. From the obtained ionization rate of 5.05 × 107 s−1, we estimate

an ionization probability of 2.30 × 10−7, about 17% less than obtained in the present

calculations. Perturbative four-photon ionization cross sections have also been obtained

[17]. These give an ionization probability which is about 50% larger than observed here.

The differences between the three calculations are the same order of magnitude. The

magnitude of the differences again reflects the difficulty in obtaining precise multiphoton
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ionization rates.

In each of figures 2 to 5 there is a visible oscillatory behaviour in the ionization

probability during the propagation into the external region, most predominantly at a

frequency of ω = 0.24 a.u. This behaviour is due to the 1s 2s 1S resonance for three-

photon ionization, and the 1s 2p 1P resonance for four-photon ionization, reached after

absorption of two and three photons respectively. The detuning in the former process

is about 0.1 a.u., leading to an oscillatory behaviour with a period of approximately 60

a.u. The detuning in the latter is about 0.06 a.u., resulting in oscillations with a period

of approximately 105 a.u.

3.3. Discussion

Comparison of the length and velocity gauge results shows that for both laser

frequencies, use of the length gauge provides a more consistent approximation for the

ionization probabilities than the velocity gauge. This is reflected in the much lower

relative range of results for the length gauge, 1.09 and 1.03, when compared with the

equivalent ranges using the velocity gauge, 1.7 and 4.87. These ratios, corresponding to

laser frequencies of ω = 0.33 a.u. and ω = 0.24 a.u. respectively for each gauge, also

demonstrate that the consistency of the length gauge improves as the minimum number

of photons involved increases from three to four whereas the consistency of the velocity

gauge significantly deteriorates. However, as calculations were only performed at two

frequencies further investigation is necessary before any firm conclusions may be drawn

from these results.

The deterioration in consistency observed in the velocity gauge is largely due to

calculations that include only the He+ 1s orbital in the basis set. Ignoring these results,

the equivalent ratio between the highest and lowest final ionization probability in the

velocity gauge still increases from 1.280 for a frequency of ω = 0.33 a.u. to 1.285 for a

frequency of ω = 0.24 a.u. This is in part due to non-uniform convergence leading to

fortuitous agreement between the length gauge and the velocity-gauge calculation for

the 1s 2s 2p basis, as reflected by tables 1 and 2. However, extension with the 3s, 3p and

3d states of He+ worsens the agreement, mainly by reducing the ionization probability

in the velocity-gauge calculation. Indeed, in every set of calculations it was noted that

the He+ 1s basis set produced results which agreed least with those of other larger basis

sets, particularly in the velocity gauge.

As the number of He+ states included in the basis sets was increased, the

final ionization probabilities tend to converge, in particular when pseudo-orbitals are

employed, for both gauges despite the higher sensitivity to the basis set in the velocity

gauge. However, we also consider the effect increasing the number of basis orbitals

used has on the ratio of the final ionization probability in the velocity gauge to the

equivalent probability in the length gauge for a laser frequency ω = 0.33 a.u. in table 1,

and ω = 0.24 a.u. in table 2. It is immediately apparent that the best agreement

between the velocity and length gauge occurs when we use pseudo-orbitals, particularly
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those with the same decay as the He+ 1s orbital. In the latter case, differences between

length- and velocity-gauge calculations amount to less than 2%.

In addition to the convergent trend within each gauge noted earlier, tables 1 and

2 also display a general convergence between the length gauge and velocity gauge

ionization probabilities with the addition of orbitals and psuedo-orbitals to the basis

set. In most multi-electron calculations, especially those for complex atoms, one is

restricted to use a limited basis set for the atomic structure. In such a case, the length

gauge description of the dipole operator is the better choice of the two, as it will achieve

a higher degree of convergence using a smaller number of final ionic states.

The observation that the use of the length gauge is preferable over the velocity

gauge at first glance appears to contradict the findings of Cormier and Lambropoulos

[12]. However, it is important to realize that there are critical differences in the

type of problem investigated. Cormier and Lambropoulos investigated the number of

angular momenta needed to obtain converged ionization probabilities in time-dependent

calculations for strong field ionization of H. They found that the number of angular

momenta needed for convergence is much larger in the length gauge than in the velocity

gauge. However these calculations concerned a longer pulse with a quiver amplitude

approximately a factor of 10 larger than in the present calculations. Thus high intensity

effects were much more prominent than in the present study. On the other hand, H

is a single-electron system, for which it is feasible to use an effectively complete basis

set, whereas the present study investigates an explicit multi-electron problem, and, in

particular, the use of a restricted basis set. For an effectively complete basis set, the

length and velocity gauge matrix elements will be in good agreement with each other.

In the case of a two-electron problem, it is possible to employ effectively complete basis

sets using large-scale facilities, however, for problems involving more than two electrons,

this is no longer feasible and one cannot avoid the use of restricted basis sets. In the

present TDRM approach, the outer (ejected) electron is described using an effectively

complete basis set, but the residual electron(s) are described using a highly restricted

basis set. It is this restriction on the residual electrons that leads to the preference of

the length gauge over the velocity gauge in explicit multi-electron problems. Of course,

with larger quiver amplitudes the number of angular momenta that needs to be retained

in the calculations is still expected to increase substantially.

In order to explain that restrictions on the movement of the inner electron may affect

the choice of gauge, we can consider the general problem of the preferred gauge when

a restricted basis is used. This problem was considered by Starace [21]. He considered

a general configuration interaction approach, where we consider the interaction of a

model Hamiltonian with a restricted set ofN -electron Slater-determinant wavefunctions.

As the internal region in an R-Matrix approach uses such an approach [19], the

analysis is considered relevant. Starace demonstrated that, given a restricted set, the

configuration interaction method involves an implied non-local potential representing

the interaction between the configurations being mixed. The subsequent analysis

argued that, for a non-local potential, the length formula for the electric dipole matrix
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elements provides the correct elements. Starace further clarifies [22] that disagreement

with experimental results in the length formula is due to inadequacy in the chosen

approximate Hamiltonian, with the disagreement between the length and velocity

formula providing a measure of the non-locality of a potential. It is noted however,

that the work by Starace concerns primarily the accuracy of the dipole matrix elements,

and as such may not fully apply to direct solution of the time dependent Schrödinger

equation.

Another reason for the preference of the length-gauge description can be identified

by examining multiphoton matrix elements. A two-photon matrix element is given by

Mfi =
∑

m

〈Ψf | D̂ | Ψm〉〈Ψm | D̂ | Ψi〉
Em − (Ei + ω)

, (26)

where the sum over intermediate states m denotes a sum over bound states and an

integral over continuum states. D̂ is the dipole operator, and Ψi and Ψf are the initial

and final states, respectively. The dipole operator can be written as

D̂ = E(t) · r (27)

in the length form or as

D̂ =
1

c
A(t) · p (28)

in the velocity gauge. The matrix elements involving a single occurrence of the dipole

operator in the length form or in the velocity gauge can be linked to each other:

i(Ef − Em)〈Ψf | r̂ | Ψm〉 = 〈Ψf | p̂ | Ψm〉. (29)

In addition, the electric field and the vector potential are related to each other by

E(t) = −1

c

d

dt
A(t) (30)

which, for a long laser pulse at constant intensity, leads to the following relationship

between the field amplitudes E0 = −ωA0/c. Using these relationships, the two-photon

matrix element using the length form of the dipole operator becomes

Mfi = (E0)
2
∑

m

〈Ψf | ẑ | Ψm〉〈Ψm | ẑ | Ψi〉
Em − (Ei + ω)

(31)

whereas using the velocity gauge it becomes

Mfi = −
(
E0

ω

)2∑

m

(Ef − Em)(Em − Ei)〈Ψf | ẑ | Ψm〉〈Ψm | ẑ | Ψi〉
Em − (Ei + ω)

(32)

The radius of the electron cloud during the two-photon transition will not change

significantly, since it takes time for the electron cloud to evolve. Hence the value of

the radial matrix element will have a maximum magnitude given by the extent of the

electron cloud. A comparison of the two matrix elements shows that the velocity gauge

matrix element emphasizes transitions involving a large change of energy, whereas the

length gauge matrix element emphasizes transitions near the intermediate energies. This

may be seen easily through considering how an individual term of the summation for a
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two-photon matrix element scales with (Em−Ei) for Em−Ei � ω. Clearly the relevant

term in the summation for a length gauge matrix element in (31) scales approximately

as 1/(Em − Ei) whereas the same term in the summation for a velocity gauge matrix

element in (32) scales approximately as (Ef − Em)/ω2. Consequently, the significance

of this term in the overall summation decreases in the length gauge, and hence is less

significant with respect to overall convergence of the summation, whereas in the velocity

gauge the significance of the relevant term increases. Thus, the velocity gauge requires a

better description of the high-energy part of the atomic spectrum to ensure convergence

in the overall summation than the length gauge.

The accurate description of the high-energy part of the spectrum is a significant

problem for a general atom. In single-electron or two-electron systems, the description

of the high-energy part of the atomic spectrum can be carried out reliably. However,

in a general multi-electron system such a description may be unfeasible. Excitations

may occur from many shells, including inner shells. Inner-shell excitations will be

characterized by high energy, and their accurate description is thus crucial for the

accurate determination of multi-photon matrix elements in the velocity gauge. On

the other hand, the accurate description of inner-shell excitations will require enormous

basis sets. For the investigations in the present study, it is thus not surprising that the

ionization probabilities in the length gauge are more consistent with each other.

The difficulties in obtaining accurate matrix elements in the velocity gauge become

greater when the number of photons to be absorbed increases. This can be demonstrated

by examining the four-photon matrix element, which is given by

Mfi =
∑

pqr

〈Ψf | D̂ | Ψr〉〈Ψr | D̂ | Ψq〉〈Ψq | D̂ | Ψp〉〈Ψp | D̂ | Ψi〉
(Er − (Ei + 3ω))(Eq − (Ei + 2ω))(Ep − (Ei + ω))

(33)

We now envisage a transition in which absorption of the second photon leads to a state

with an energy close to Ei + 2ω. Transformation of the matrix element in the velocity

gauge gives

Mfi =
(
E0

ω

)4∑

pqr

(Ef − Er)(Er − Eq)(Eq − Ep)(Ep − Ei)

(Er − (Ei + 3ω))(Eq − (Ei + 2ω))(Ep − (Ei + ω))

×〈Ψf | ẑ | Ψr〉〈Ψr | ẑ | Ψq〉〈Ψq | ẑ | Ψp〉〈Ψp | ẑ | Ψi〉 (34)

in which we now have 4 factors of ∆E in the numerator and only 2 large differences

in the denominator, since Eq ≈ Ei + 2ω. Thus in the four-photon case, the high-energy

part of the spectrum is even more strongly emphasized than in the two-photon case,

leading to a slower rate of convergence relative to the number of intermediate states

included for the total summation compared to the two photon case of (32). This is of

particular importance in a general multi-electron target where high energy processes

such as inner shell excitation are possible and must be described properly.
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4. Conclusions

In this paper we have compared three- and four-photon ionization probabilities for He

obtained using both the length and velocity gauge descriptions of the dipole operator

within the TDRM method at a peak intensity of 2 × 1013 W cm−2. In each case

various basis sets are used to describe He in order to investigate the effect of atomic

structure detail in the basis set for each gauge. An increase in the number of final

state wavefunctions included in the calculations, and in particular using pseudo-orbitals,

leads to a convergent set of ionization probabilities for both gauges. The ionization

probabilities are in agreement with those deduced from ionization rates and cross

sections obtained by time-independent approaches.

For both three- and four-photon ionization processes, the length gauge provides a

more consistent ionization probability with respect to the atomic structure detail used

in the basis set. The consistency of the length gauge calculations increases slightly

with decreasing frequency, while the velocity gauge calculations become much more

inconsistent. Hence the length gauge appears to be less sensitive to the number of

orbitals used to describe He than the velocity gauge. When additional orbitals are

included in the basis set, the resulting ionization probabilities are found to converge in

both gauges. Furthermore, this also causes the length and velocity gauge probabilities

to converge towards each other, with the highest degree of agreement between gauges

observed when pseudo-orbitals are included. Overall, the length gauge is the better

choice for describing the dipole operator for multi-photon ionization of He due to a

lower requirement for atomic structure detail in the basis used.

When the complexity of the atom increases, it becomes even more important to use

the length gauge. Whereas it is feasible, using massively parallel computer facilities, to

describe two-electron systems in full dimensionality, for more complex atoms such as

Ne, a full-dimensional treatment is not feasible. Consequently, the ab-initio description

of a general atom in an intense laser field requires the use of restricted basis sets. These

restrictions will have a greater impact on the velocity-gauge calculations than on the

length-gauge calculations. For example, the velocity gauge emphasizes large energy

transfer, and thus will be more sensitive to inner-shell transitions.
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