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Abstract. Two methods to change a quantum harmonic oscillator frequency without
transitions in a finite time are described and compared. The first method, a
transitionless-tracking algorithm, makes use of a generalized harmonic oscillator and a
non-local potential. The second method, based on engineering an invariant of motion,
only modifies the harmonic frequency in time, keeping the potential local at all times.

PACS numbers: 37.10.De, 42.50.-p, 37.10.Vz

1. Introduction

Changing the external parameters of the Hamiltonian is a fundamental and standard

operation to probe, control, or prepare a quantum system. In many cases it is desirable

to go from an initial parameter configuration to a final one without inducing transitions,

as in the expansions performed in fountain clocks [1], the release of atoms from optical

lattices [2], or compressions to increase the spatial density [2]. In fact most of the current

experiments with cold atoms are based on a cooling stage and then an adiabatic drive

of the system to some desired final trap or regime [3]. These “transitionless” [4], or

“frictionless” [5] adiabatic processes may require exceedingly large times and become

impractical [2], even impossible [3], or quite simply a faster process is desirable, e.g.

to increase the repetition rate of a cycle, or a signal-to-noise ratio. This motivates

the generic objective of achieving the same final state as the slow adiabatic processes,

possibly up to phase factors, but in a much shorter time. One may try to fulfill that

goal in two different ways: (a) designing appropriate “parameter trajectories” of the

Hamiltonian from the initial to the final times, or (b) applying entirely new interactions

that modify the Hamiltonian beyond a simple parameter evolution of the original form,

for example by adding different terms to it. In this paper we shall analyze and discuss,

for the harmonic oscillator, two recently proposed methods, whose relation had not been

investigated, which actually implement these two different routes. While most of the

treatment is applicable to an “abstract” harmonic oscillator, we shall discuss physical
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implementations specific for ultracold atoms or ions. Indeed, harmonic traps and their

manipulation are basic working horses of this field.

For the harmonic oscillator the parameter we consider is the trap frequency,

which should go from ω0 to ωf in a time tf , preserving the populations of the levels,

Pn(tf) = Pn(0). “n” labels the instantaneous n-th eigenstate of the initial and final

harmonic oscillator Hamiltonians,

Ĥ0(0)|n(0)〉 = h̄ω0(n+ 1/2)|n(0)〉,
Ĥ0(tf )|n(tf)〉 = h̄ωf(n+ 1/2)|n(tf)〉. (1)

One of the methods we shall discuss here relies on a general framework set by Kato

in a proof of the adiabatic theorem [6], and has been formulated recently by Berry

[4]. We shall term it “transitionless-tracking” approach, or TT for short; the other one

[7, 8] engineers the Lewis-Riesenfeld invariant [9] by an inverse method [10] to satisfy

the desired boundary conditions; we shall call this method “inverse-invariant”, or II

for short. In the basic version of TT the dynamics is set to follow at all intermediate

times the adiabatic path defined by an auxiliary Hamiltonian Ĥ0(t) (in our case a

regular harmonic oscillator with frequency ω(t) and boundary conditions ω(0) = ω0 and

ωf = ω(t = tf )), and its instantaneous eigenvectors |n(t)〉, up to phase factors. Instead,

in the II approach the auxiliary object is an engineered Lewis-Riesenfeld invariant I(t)

set to commute with Ĥ0(0) at t = 0 and with Ĥ0(tf) at tf . In both cases intermediate

states may be highly non-adiabatic with respect to the instantaneous eigenstates of the

Hamiltonians actually applied, ĤTT (t) and ĤII(t).

We shall provide first the equations characterizing the two approaches and then

comment on possible physical implementations.

2. Transitionless tracking algorithm

2.1. General formalism

For the general formalism we follow [4] closely. Assume a time-dependent Hamiltonian

Ĥ0(t) with initial and final values (1), instantaneous eigenvectors |n(t)〉 and eigenvalues

En(t),

Ĥ0(t)|n(t)〉 = En(t)|n(t)〉. (2)

A slow change would preserve the eigenvalue and eigenvector along the dynamical

evolution times a phase factor, and the adiabatic approximation of the wavefunction

is

|ψn(t)〉 = exp
{
− i

h̄

∫ t

0
dt′En(t′) −

∫ t

0
dt′〈n(t′)|∂t′n(t′)〉

}
|n(t)〉. (3)

We now seek a Hamiltonian Ĥ(t) such that the adiabatic approximation |ψn(t)〉
represents the exact dynamics,

ih̄∂t|ψn(t)〉 = Ĥ(t)|ψn(t)〉. (4)
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Ĥ(t) (which is ĤTT if distinction with the other method is needed) is related to the

corresponding unitary operator by

ih̄∂tÛ(t) = Ĥ(t)Û(t), (5)

Ĥ(t) = ih̄(∂tÛ(t))Û †(t). (6)

Choosing

Û(t) =
∑

n

exp
{
− i

h̄

∫ t

0
dt′En(t′) −

∫ t

0
dt′〈n(t′)|∂t′n(t′)〉

}
|n(t)〉〈n(0)|, (7)

we find from (6),

Ĥ(t) =
∑

n

|n〉En〈n| + ih̄
∑

n

(|∂tn〉〈n| − 〈n|∂tn〉|n〉〈n|) ≡ Ĥ0 + Ĥ1, (8)

where we have simplified the notation, |n〉 = |n(t)〉. It is also possible to choose other

phases in (3) [4]. The simplest case is Û(t) =
∑ |n(t)〉〈n(0)|, without phase factors,

which leads to Ĥ(t) = ih̄
∑ |∂tn〉〈n|. Note that with this choice Ĥ0(t) has been formally

suppressed in Ĥ(t) but still plays a role through its eigenfunctions |n(t)〉.

2.2. Application to the harmonic oscillator

We now apply the above to the harmonic oscillator

Ĥ0(t) = p̂2/2m+ ω(t)2x̂2/2m = h̄ω(t)(â†t ât + 1/2), (9)

where ât and â+
t are the (Schrödinger picture!) annihilation and creation operators at

time t,

x̂ =

√
h̄

2mω(t)
(â†t + ât), (10)

p̂ = i

√
h̄mω(t)

2
(â†t − ât), (11)

ât =

√
mω(t)

2h̄

(
x̂+

i

mω(t)
p̂

)
, (12)

â†t =

√
mω(t)

2h̄

(
x̂− i

mω(t)
p̂

)
. (13)

This time dependence may be misleading and a bit unusual at first so we insist: since

the frequency depends on time the “instantaneous” ladder operators ât, â
†
t create or

annihilate different “instantaneous” states, adapted to the corresponding frequency.

Thus, ladder operators with different time labels do not commute in general, although

some combinations, e.g. those equivalent to powers of x̂ and/or p̂, do commute, as we

shall see later.

The instantaneous eigenstates |n(t)〉 can be written in coordinate representation as

〈x|n(t)〉 =
1√
2nn!

(
mω(t)

πh̄

)1/4

exp

(
−1

2

mω(t)

h̄
x2

)
Hn



√
mω(t)

h̄
x


 , (14)
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and their derivative with respect to t is

〈x|∂tn(t)〉 =

(
1

4
− mω(t)

2h̄
x2

)
ω̇

ω(t)
|n〉 +

√
mω(t)

2h̄
x
ω̇

ω(t)

√
n|n− 1〉. (15)

We find, using the recursion relation of Hermite polynomials and their orthogonality,

〈k|∂tn〉 =





1
4

√
n(n− 1) ω̇

ω(t)
k = n− 2

−1
4

√
(n+ 1)(n+ 2) ω̇

ω(t)
k = n+ 2

0 (otherwise)

, (16)

so that Ĥ1(t) can be written as

Ĥ1(t) = ih̄
∑

n

|∂tn〉〈n| ≡ ih̄
ω̇

ω(t)

∑

n

[(
1

4
− mω(t)

2h̄
x̂2

)
|n〉〈n|

+

√
mω(t)

2h̄
x̂
√
n|n− 1〉〈n|

]
. (17)

Using ât =
∑

n

√
n|n − 1(t)〉〈n(t)|, and the relations between x̂, p̂, ât and â†t written

above,

Ĥ1(t) = ih̄
ω̇

ω(t)

∑

n


1

4
− mω(t)

2h̄
x̂2 +

√
mω(t)

2h̄
x̂ât




=
ih̄

4

ω̇

ω(t)
− 1

2

ω̇

ω(t)
x̂p̂. (18)

With [x̂, p̂] = ih̄, we finally write the Hamiltonian Ĥ1(t) in the following simple forms

Ĥ1(t) = − ω̇

4ω
(x̂p̂+ p̂x̂) = ih̄

ω̇

4ω
[â2 − (â†)2]. (19)

In the last expression the subscript t in â and â† has been dropped because the squeezing

combination â2 − (â†)2 is actually independent of time, so it may be evaluated at any

convenient time, e.g. at t = 0. The connection with squeezing operators is worked out

in the appendix.

Ĥ1 is therefore a non-local operator, and does not have the form of a regular

harmonic oscillator potential with an x̂2 term. Nevertheless the final Hamiltonian

Ĥ = Ĥ0 + Ĥ1 is still quadratic in x̂ and p̂, so it may be considered a generalized

harmonic oscillator [11].

2.3. Physical realization

The nonlocality of Ĥ1, with a constant prefactor, can be realized in a laboratory by

means of 2-photon Raman transitions for trapped ions [12, 13, 14] or, as discussed below,

for neutral atoms in tight dipole traps. Since we have to evaluate as well the possibility

of making the prefactor in Ĥ1 time dependent, we need to provide the derivation with

some detail, first for a time-independent ω.
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2.3.1. Raman two-photon transition in a trapped ion or neutral atom Let us consider

a harmonically trapped two-level system in 1D driven by two different lasers (with

coupling strengths Ωj and frequencies ωj, j = 1, 2), see Fig. 1 and Refs. [13, 14]. The

time dependent “Raman” Hamiltonian in the Schrödinger picture will be given by

ĤR(t) = ĤT + ĤA + Ĥint, (20)

with “trap” (T ), “atomic” (A), and interaction (int) terms

ĤT = h̄ωâ†â, (21)

ĤA = h̄ωe|e〉〈e|, (22)

Ĥint =
2∑

j=1

h̄Ωj cos (ωjt− kjx + φj) (|g〉〈e|+ |e〉〈g|), (23)

where h̄ωe is the energy of the excited state |e〉 and kj = kjx̂ the wavevector of each laser

which are assumed to be pointing along the principal trap direction, the x-direction. A

basic assumption in this Hamiltonian is that the same vibrational frequency, i.e., the

same external potential for atomic motion is applicable to the ground and excited states

|g〉 and |e〉. This is the standard case for ions in Paul traps, whereas for neutral atoms it

may be realized in optical traps too, at least for suitably chosen species and transitions

(for example alkali-earth atoms and spin forbidden transitions), by means of “magic

wavelength” compensating techniques by which the light shifts, and thus the potentials

for atomic motion in the |g〉 and |e〉 states can be controlled and made identical [15, 16].

2.3.2. Interaction picture Let us now write the above Hamiltonian in an interaction

picture defined by the Hamiltonian ĥ0 = ĤT + h̄ω̃L|e〉〈e|, where ω̃L = (ω1 + ω2)/2 has

been introduced. The interaction Hamiltonian ĤI = eiĥ0t/h̄(ĤR − ĥ0)e
−iĥ0t/h̄ reads

ĤI(t) = − h̄∆̃|e〉〈e|

+
2∑

j=1

h̄Ωj

2

(
eiηj[â(t)+â†(t)]e−i(ωj−ω̃L)te−iφj |e〉〈g| +H.c.

)
, (24)

where ∆̃ = ω̃L − ωe, and now â(t) = âe−iωt, â†(t) = â†eiωt are the time dependent

Heisenberg annihilation and creation operators respectively. Note also that fast

oscillating off-resonant e±i(ωj+ω̃L)t terms have been neglected in the rotating wave

approximation (RWA). The parameter ηj = kjx0 is known as the Lamb-Dicke (LD)

parameter, where x0 =
√
h̄/2mω is the extension (square root of the variance) of the

ion’s ground state, i. e., x̂ = x0(â+ â†).

2.3.3. Adiabatic elimination and effective Hamiltonian For a general wavefunction (in

the corresponding interaction picture) such as

|ψI(t)〉 =
∞∑

n=0

[gn(t)|g, n〉 + en(t)|e, n〉] (25)
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Figure 1. Schematic electronic and vibrational level structure for a two-photon
transition in an ion trapped with frequency ω. ω1 and ω2 are the laser frequencies,
and ωe the transition frequency between ground and excited states. See the text for
further details.

the differential equations of motion for the probability amplitudes gn(t) and en(t) are

obtained from the Schrödinger equation ih̄∂t|ψI(t)〉 = ĤI |ψI(t)〉,

iġn(t) =
1

2

2∑

j=1

∞∑

n′=0

Ωje
i(θj t+φj)〈n|e−iηj[â(t)+â†(t)]|n′〉en′(t), (26)

iėn(t) = − ∆̃en(t) +
1

2

2∑

j=1

∞∑

n′=0

Ωje
−i(θj t+φj)〈n|eiηj[â(t)+â†(t)]|n′〉gn′(t), (27)

where θj = ωj − ω̃L. For large detunings, i. e., for |∆̃| � Ωj, ω, see Fig. 1, and for an

ion initially in the ground state one may assume that the excited state |e〉 is scarcely

populated and it may be adiabatically eliminated. Then, setting ė(t) = 0, en(t) may be

written as a function of the gn′(t) from Eq. (27), and substituting this result into (26)

there results a differential equation for the ground state probability amplitude,

iġn(t) = sgn(t) +
Ω̃

2

∞∑

n′=0

Fn,n′(t)gn′(t), (28)

where

s =
Ω2

1 + Ω2
2

4∆̃
, (29)

Fn,n′(t) = 〈n|e−iη̃[â(t)+â†(t)]|n′〉ei(δ̃t+φ̃) + 〈n|eiη̃[â(t)+â†(t)]|n′〉e−i(δ̃t+φ̃), (30)

and where the effective two-photon Raman parameters, denoted by tildes, are given by

δ̃ = ω1 − ω2,

η̃ = η1 − η2,

φ̃ = φ1 − φ2,

Ω̃

2
=

Ω1Ω2

4∆̃
. (31)
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The equation for the ground state probability amplitude corresponds to an effective

Hamiltonian

Ĥeff = h̄s|g〉〈g|+ h̄Ω̃

2

(
eiη̃[â(t)+â†(t)]e−i(δ̃t+φ̃) +H.c

)
|g〉〈g|. (32)

Note that the Stark-Shift produced by off resonant driving is included in s, which is a

constant of motion and produces no effect on the Raman coupling between sidebands.

We have thus adiabatically eliminated the excited state |e〉 ending with a Hamiltonian

of the same form as (24) where the transitions between electronic levels are not present.

2.3.4. Two-photon Jaynes-Cummings Hamiltonian in the Raman Scheme: Vibrational

RWA Using the Baker-Campbell-Hausdorff (BCH) identity, the exponential in the

effective Hamiltonian (32) may be expanded in power series of η̃ [17, 18],

Ĥeff =
h̄Ω̃

2


e−η̃2/2

∑

nn′

(iη̃)n+n′

n!n′!
â†nân′

ei(n−n′)ωte−iδ̃te−iφ̃ +H.c


 . (33)

If the effective detuning is δ̃ = ω1 − ω2 = 2ω, the second blue sideband becomes

resonant, and we may neglect rapidly oscillating terms in a second or vibrational RWA

[18]. The above Hamiltonian is then simplified to a two-photon Jaynes-Cummings-like

Hamiltonian without electronic transitions. To leading order in η̃ it takes the form

Ĥeff ≈ η̃2 h̄Ω̃

4

(
â†2eiφ̃ + â2e−iφ̃

)
= ih̄

η̃2Ω̃

4

(
â2 − â†2

)
, (34)

where, in the last step, a relative phase between the applied fields φ̃ = φ1 − φ2 = −π/2
has been assumed.

2.3.5. Validity for time-dependent ω Unfortunately the above formal manipulations

and approximations cannot be carried out in general for a time dependent ω. The

interaction picture performed in 2.3.2, in particular, assumes a constant ĥ0. A time

dependent one would require a more complex approach with time-ordering operators

[19]. Similarly, the vibrational rotating wave approximation requires the stability of the

frequency for times larger than a period to avoid off-resonant couplings. One may still

obtain (34) for a sufficiently slowly varying ω, the criterion being that the change of the

time-dependent trapping frequency in one time period T has to be much smaller than

the frequency itself. We can write this condition as ω̇(t)T � ω(t) or

ω̇(t)

ω(t)2
� 1, (35)

which turns out to be the adiabaticity condition for the harmonic oscillator. Of course,

if satisfied, the whole enterprise of applying the TT method would be useless. These

arguments are far from constituting a proof that the TT method cannot be implemented

for the harmonic oscillator. They simply leave this as an unresolved issue.
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3. Engineering the Lewis-Riesenfeld invariant

In this section we describe a different method for transitionless dynamics of the harmonic

oscillator [7]. A harmonic oscillator such as Ĥ0(t) in Eq. (9) has the following time

dependent invariant [9]

Î(t) =
1

2

(
x̂2

b2
mω2

0 +
1

m
π̂2

)
, (36)

where π̂ = b(t)p̂ − mḃx̂ plays the role of a momentum conjugate to x̂/b, the dots are

derivatives with respect to time, and ω0 is in principle an arbitrary constant. The

scaling, dimensionless function b = b(t) satisfies the subsidiary condition

b̈+ ω(t)2b = ω2
0/b

3, (37)

an Ermakov equation where real solutions must be chosen to make Î Hermitian. ω0

is frequently rescaled to unity by a scale transformation of b [9]. Other common and

convenient choice, which we shall adopt here, is ω0 = ω(0). The eigenstates of Î(t)

become, with appropriate phase factors, solutions of the time-dependent Schrödinger

equation,

Ψn(t, x) =
(
mω0

πh̄

)1/4 1

(2nn!b)1/2
exp

[
−i(n + 1/2)

∫ t

0
dt′

ω0

b(t′)2

]
(38)

× exp

[
i
m

2h̄

(
ḃ

b(t)
+
iω0

b2

)
x2

]
Hn

[(
mω0

h̄

)1/2 x

b

]
, (39)

and form a complete basis to expand any time-dependent state, ψ(x, t) =
∑

n cnΨn(x, t),

with the amplitudes cn constant. A method to achieve frictionless, population preserving

processes is to leave ω(t) undetermined first, and set b so that Î(0) = Ĥ0(0) and

[Î(tf), Ĥ0(tf )] = 0. This guarantees that the eigenstates of Î and Ĥ0 are common

at initial and finite times and can be done by setting

b(0) = 1, ḃ(0) = 1, b̈ = 0,

b(tf ) = γ = [ω0/ωf ]
1/2, ḃ(tf) = 0, b̈(tf ) = 0, (40)

and interpolating b(t) with some real function that satisfies these boundary condition.

The simplest choice is a polynomial,

b(t) =
5∑

j=0

ajt
j. (41)

Once the aj are determined from (40), ω(t) is calculated from the Ermakov equation

(37), and the transitionless Hamiltonian ĤII(t) = Ĥ0(t) is defined in terms of a local,

ordinary, harmonic potential, but note that ω(t)2 may become negative during some

time interval if the process is very fast, making the potential an expulsive parabola

[7, 20]. This is illustrated in Figs. 2-4 for a transition from ω(0) = 2π × 200 Hz to

ω(tf) = 2π × 2 Hz in tf = 5 ms.

The II method is thus clearly distinct from from TT and implements a different

Hamiltonian. Note also, by comparying the coefficients, that the invariant operator Î
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t�tf

b
Figure 2. b (poynomial ansatz) versus t/tf for an expansion from ω(0) = 2π × 200
Hz to ω(tf ) = 2π × 2 Hz.
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-1.0
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0.5

1.0

t�tf

Ω
2
HtL
�Ω

2
H0
L

Figure 3. Square of the frequency versus time for an expansion from ω(0) = 2π×200
Hz to ω(tf ) = 2π × 2 Hz in tf =5 ms. Solid line: II method, polynomial b; Dashed
line: TT method with a linear-in-time ω(t) in Ĥ0.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

t�tf

XH`
HtL
\ 0
�E

0
H0L

Figure 4. Average energy versus time. The initial state is the ground state of the
initial trap and E0(0) the corresponding energy. Same processes and conditions as in
Figure 3.

corresponding to ĤII is different from ĤTT , although they are both generalized harmonic

oscillators.

3.1. Physical realization

The TT method only requires the time variation of a parabolic potential. Effective

harmonic optical traps for neutral atoms may be formed by magnetic and/or optical

means and their frequencies are routinely varied in time as part of many cold atom

experiments. In magnetic traps, for example the frequency is modulated harmonically to
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look for collective excitation modes of a condensate [21], and ramped down adiabatically

to change its conditions (critical temperature, particle number, spatial extension)

[22, 21], or as a preliminary step to superimpose an optical lattice [23]. Some experiments

involve both time-dependent magnetic and optical traps or antitraps [24]. Purely optical

traps are also manipulated in time, e.g. for adiabatic cooling of single neutral atoms

[25]. In particular laser beams detuned with respect to the atomic transition form

effective potentials for the ground state depending on Rabi frequency Ω and detuning

∆ as Ω2/4∆ by adiabatic elimination of the excited state, thus forming attractive or

repulsive potentials. This effective interaction can be made time dependent by varying

the laser intensity, the frequency, or both [1], since the optical frequencies are many

orders of magnitude larger than Rabi frequencies or detunings, and the changes will

be slowly varying in the scale of optical periods. To vary the sign of ω2(t), two dipole

beams locked respectively on the blue and red side of the line may be superimposed.

The intensity of a dipole trap can be changed by three or four orders of magnitude in

100 ns using acousto-optics or electro-optics modulators. This affects the trap radius,

which can as well be controlled [2].

4. Discussion

We have compared and distinguished two different methods: a “transitionless-tracking”

(TT) algorithm, and an “inverse-invariant” (II) method, to achieve transitionless

dynamics for a fast frequency change of a quantum harmonic oscillator. They imply

different driving Hamiltonians ĤTT and ĤII. The one in the II method can be

implemented for ultracold atoms or ions by varying the trap frequency in time so as to

enforce at initial and final times the commutativity between the Hamiltonian and an

invariant of motion Î with the form of a generalized harmonic oscillator. In this method

the states are at all times eigenstates of the invariant if initially so. Extending this

method to other (anharmonic) potentials or systems may be difficult and remains an

open question: in principle one should find in each case the corresponding state-carrying

invariant and be able to engineer it. A generalization to Bose Einstein condensates has

been worked out [8] without invoking the invariant concept, but it relies on scaling

laws applicable to the harmonic oscillator. The TT method does not explicitly make

use of invariants and provides a Hamiltonian for which the state dynamics follows

exactly the adiabatic approximation of a time-dependent process defined by a reference

Hamiltonian Ĥ0. In this respect it has the advantage of being, at least formally, more

generally applicable than the II approach. The feasibility of the actual realization is

quite another matter and has to be studied in each case. An application example for

two-level systems is discussed in [4]. For the harmonic oscillator studied here ĤTT

becomes, as Î, a generalized harmonic oscillator too, but it is different from Î and plays

a different role. In particular the “carrying states” are not instantaneous eigenstates

of ĤTT but of the reference, harmonic oscillator Hamiltonian Ĥ0. ĤTT includes, in

addition to a harmonic term in Ĥ0 with a time dependent frequency going from the
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initial to the final values, a time-dependent (squeezing) non-local potential with the

symmetrized product of position and momentum operators. We have found a realization

for cold atoms that, unfortunately, requires a time scale larger than the times needed

for an adiabatic process. Therefore the applicability of the method remains an open

question. Trap expansions and compressions play such an important role in cold atom

experiments that investigating further the fundamental properties of both approaches

and their technical realization is definitely worthwhile.
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Appendix A. Relation to the squeezing operator

The evolution operator takes a particularly simple form when using the simplified case

En(t) = 0, so that Ĥ(t) = Ĥ1(t). Taking into account that [Ĥ1(t), Ĥ1(t
′)] = 0 we can

write

Û(t) = e−i
∫ t

0
Ĥ1(t)dt/h̄. (A.1)

This may be evaluated explicitly with (19) fixing the time of the creation and

annihilation operators to 0,

Û(t) = e
1
2

ln

(√
ω(t)
ω(0)

)
[â2

0−(â†
0)2]

= Ŝ[r(t)], (A.2)

which is a sqeezing operator with real argument r(t) = ln
(√

ω(t)
ω(0)

)
. It is unitary with

inverse [Ŝ(r)]−1 = Ŝ(−r). Using the relations

â†t + ât =

√√√√ω(t)

ω(0)
(â†0 + â0),

â†t − ât =

√√√√ω(0)

ω(t)
(â†0 − â0), (A.3)

and the formal properties of Ŝ, see e.g. [26], it is easy to prove that

Ŝ(r)â0Ŝ(−r) = ât,

Ŝ(r)â†0Ŝ(−r) = ât. (A.4)

In fact any combination of powers of â0 and â†0 is mapped to the same combination of

powers of ât and â†t by this unitary transformation. |0t〉 ≡ Ŝ|00〉 is indeed the vacuum

at time t, as

ât|0t〉 = Ŝ(r)Ŝ(−r)aŜ(r)|00〉 = Ŝ(r)â0|00〉 = 0. (A.5)
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In a similar way we note that, consistently,

Ŝ(r)|n(0)〉 = Ŝ(r)
1√
n!

(â†0)
n|00〉 =

1√
n!
Ŝ(r)(â†0)

nŜ(−r)Ŝ(r)|00〉

=
1√
n!

(â†t)
n|0t〉 = |n(t)〉. (A.6)
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