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Abstract. We study the exact entanglement and entropy dynamics of two qubits
interacting with a common zero-temperature non-Markovian reservoir. It is a
commonly held view that entanglement loss due to environmental decoherence is
accompanied by loss of purity of the state of the system. We demonstrate that such
intuitive picture does not always apply: the deterioration of entanglement and purity
do not necessarily come together; i.e., revivals of entanglement can be accompanied
by deterioration of purity. To complete our investigation on entanglement-mixedness
interplay we consider the case of initial mixed states and study how the entanglement
dynamics and its revivals are related to both the initial purity and the initial
entanglement.
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1. Introduction

Entanglement and purity are fundamental properties determining the usefulness of a

quantum state in quantum information protocols. Entangled states play a central role in

quantum key distribution, superdense coding, quantum teleportation and quantum error

correction [1]. Purity of quantum states crucially determines the efficiency of certain

applications based on quantum theory, e.g., it characterizes the security of quantum

key distribution protocols [2]. The determinant role of these quantities has motivated

research in the field of quantum estimation theory with the aim of envisaging protocols

for optimal estimation of purity and entanglement [3].

However, realistic quantum systems are never completely isolated from their

surroundings. The inevitable interaction between a system and its environment leads

to decoherence phenomena and loss of quantumness [4]. So in realistic situation the

state of a quantum system is mixed. That is why special status is accorded to the so-

called maximally entangled mixed states (MEMS), i.e., states exhibiting the maximum

amount of entanglement for a given degree of mixedness. The classification of bipartite

MEMS and the study of their applications has received a lot of interest [5], representing

an important step in the comprehension of the trade-off between entanglement and

mixedness. On the other hand, the dynamical relation between entanglement and

mixedness for specific exemplary cases has been far-less investigated [6, 7, 8, 9] especially

in non-Markovian system [10].

It is a commonly held view that, whenever a small system interacts with the

environment, the entanglement deteriorates with decreasing purity and the state goes

toward a statistical mixture. However, this quite intuitive picture does not always

apply. We demonstrate for two qubits interacting with a common zero temperature non-

Markovian reservoir that the dynamical interplay between entanglement and mixedness

depends dramatically on the initial state of the two qubits. The study of the

dynamics of such a physical system, being exactly solvable, gives us the chance to

investigate analytically the connection between entanglement and mixedness when

sudden death/birth and revivals of entanglement occur.

The phenomenon of entanglement sudden death (ESD), consisting in the complete

disappearance of bipartite entanglement in a finite time, is believed to set a limit

on the life-time and usability of entanglement for practical purposes. Hence, lots

of efforts have been done in order to understand the conditions under which ESD

occurs [11, 12, 13, 14, 15, 16, 17, 18, 19]. In [19] we have studied the entanglement time

evolution when two qubits are prepared in a Bell-like state with two excitations. Here,

we extend our investigation to include the entanglement dynamics for initially mixed

states. In particular we study a class of states having an “X”-structure density matrix,

namely the extended Werner-like states (EWL). This class of states plays a crucial role

in many applications of quantum information theory, such as teleportation [20] and

quantum key distribution [21]. The extension of our analytical results to the case of

initial mixed states also allows us to study how the entanglement dynamics and its
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revivals are related to the purity and the amount of entanglement of the initial state.

The paper is organized as follows. In Sec. II we review the exactly solvable

model of two qubits interacting with a common Lorentzian structured reservoir. In

Sec. III we focus on the entanglement-mixedness interplay comparing concurrence and

von Neumann entropy dynamics for initial Bell-like states; we also prove that sudden

death of entanglement can never occur if the qubits are initially in a mixed state having

at most one excitation. In Sec. IV we present the entanglement time evolution of EWL

states, and compare our results with those obtained in [22] for independent structured

reservoirs. Finally, we summarize our results in Sec. V.

2. The model

In this section we describe the model used to study the dynamics of two two-level systems

(qubits) interacting with a common zero-temperature bosonic reservoir. Our approach

is non-Markovian and non-perturbative, i.e., it does not rely on either the Born or the

Markov approximations [19].

The Hamiltonian of the system, in the rotating wave approximation, is given by

H = H0 + Hint,

H0 = ω0(σ
A
+σA

− + σB
+σB

−) +
∑

k

ωka
†
kak, (1)

Hint = (σA
+ + σB

+)
∑

k

gkak + h.c., (2)

where σA
± and σB

± are the Pauli raising and lowering operators for qubit A and B

respectively, ω0 is the Bohr frequency of the two identical qubits, ak and a†
k, ωk and

gk are the annihilation and creation operators, the frequency and the coupling constant

of the field mode k, respectively.

In Ref. [19] we observed that the dynamics of two qubits which are identical and

equally coupled with the same reservoir can be conveniently described in the basis

{|00〉, |+〉, |−〉, |11〉} with |+〉 = (|10〉+ |01〉)/
√

2 and |−〉 = (|10〉+ |01〉)/
√

2 the super-

radiant and sub-radiant states, respectively. The advantage of this basis is that sub-

radiant state turns out to be decoupled from the other states and the reservoir, as a

consequence it does not decay. Therefore the two qubits can be effectively described by

a three-state system {|00〉, |+〉, |11〉} coupled to the reservoir in ladder configuration,

and the decoupled sub-radiant state.

In order to solve the dynamics of the two qubits one needs to specify the properties

of the environment. In Ref. [19] we assumed that the two qubits interact resonantly

with a non-Markovian Lorentzian structured reservoir, such as the electromagnetic field

inside a lossy cavity [23], having spectral distribution

J(ω) =
Ω2

2π

Γ

(ω − ω0)2 + (Γ/2)2
, (3)
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where Γ is the width of the Lorentzian function and Ω the coupling strength. There we

showed that the dynamics can be exactly solved by means of the pseudomode approach.

The pseudomodes are auxiliary variables defined from the properties of the spectral

distribution, allowing us to derive an exact Markovian master equation for the extended

system comprised of the system of interest and the pseudomode degrees of freedom.

Only one pseudomode is associated to a Lorentzian spectral distribution and the master

equation describing the extended system two-qubits-plus-pseudomode is

∂ρ̃

∂t
= −i[V, ρ̃] − Γ

2
(a†aρ̃ + ρ̃a†a − 2aρ̃a†), (4)

with

V =
√

2Ω(a|+〉〈0| + a†|0〉〈+| + a|2〉〈+| + a†|+〉〈2|), (5)

where ρ̃ is the density matrix of the extended system in the interaction picture and

V the effective coupling between qubits and pseudomode. The parameters Γ and Ω

defining the spectral distribution in the pseudomode approach describe, respectively,

the pseudomode decay rate and the coupling constant between the pseudomode and the

ladder system. We solve the master equation in Eqs. (??) and (5) using the Laplace

transform technique [19], (in Appendix we present the analytic solution for the qubits

density matrix elements for a widely used class of initial states.)

In principle this approach can be suitably used to study the non-resonant case in

which the spectral distribution of the environment is peaked at a different frequency

than the transition frequency of the qubits. However, the price to pay is that the

unitary part of the master equation, describing the coupling between the pseudomode

and the qubits, becomes explicitly time-dependent. This of course greatly complicates

the derivation of the analytic solution of the dynamics. The off-resonant case, indeed,

does not present new qualitative features with respect to those we highlight in this

paper, i.e. the relationship between loss of entanglement and purity.

In this work we are mainly interested in the time-evolution of entanglement and

mixedness in the effects that the non-Markovian reservoir induces on the correlation

between the two qubits. To quantify entanglement we use the Wootters concurrence [24],

defined as C(t) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, where {λi} are the eigenvalues of

the matrix R = ρ(σA
y ⊗ σB

y )ρ∗(σA
y ⊗ σB

y ), with ρ∗ the complex conjugate of ρ and σ
A/B
y

are the Pauli matrices for atoms A and B. This quantity attains its maximum value of

1 for maximally entangled states and vanishes for separable states.

We focus now on the dynamics of initial “X” states. We use the method presented

in Ref. [19] (we just briefly recalled) to calculate the time evolution of the elements of

the pseudomode-plus-qubits density matrix. By tracing out the pseudomode degree of

freedom we obtain the time evolution of the density matrix of the two qubits

ρ(t) =




a(t) 0 0 w(t)

0 b(t) z(t) 0

0 z∗(t) c(t) 0

w∗(t) 0 0 d(t)


 , (6)
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which is written in the basis {|00〉, |10〉, |01〉, |11〉}. Due to the structure of the

differential equations derived from the master equation in (4) and (5), the “X” form of

the state is preserved during the evolution. In the Appendix we present the analytical

solution in the Laplace transform space for a particular type of “X” state.

For this class of states the concurrence assumes a simple analytic expression

C(t) = max{0, C1(t), C2(t)}, (7)

where

C1(t) = 2|w(t)| − 2
√

b(t)c(t), (8)

C2(t) = 2|z(t)| − 2
√

a(t)d(t). (9)

We notice that coherences give a positive contribution to C1(t) and C2(t) and so to

concurrence, while the negative parts involve populations only.

In the next section we will also consider the evolution of the mixedness of the two

qubit state, quantified by the von Neumann entropy

S(ρ) = −Tr{ρ(t) logN(ρ(t))}. (10)

The von Neumann entropy is equal to zero for pure states, and attains its maximum

value 1 (equal to logN N with N the dimension of the Hilbert space) for a maximally

mixed state. Alternatively, to quantify the amount of mixedness in a quantum state one

can use purity, defined us

P (ρ) = Tr{ρ2} (11)

The purity can range between unity, corresponding to a completely pure state, and 1/d

(with d the dimension of the density matrix) for a maximally mixed state.

All the physical quantities we consider in this work (and the associated plots) have

been calculated directly from the knowledge of the density matrix elements of Eq. (6) in

the Laplace transform space. The initial conditions on the state are directly inserted in

those analytic solutions, which are then anti-transformed and manipulated to calculate

the quantity under investigation.

3. Entanglement-mixedness dynamical interplay

Here, we study and compare the dynamics of concurrence and von Neumann entropy of

two qubits prepared in the Bell-like states

|Φ〉 = α|10〉 + eiθ(1 − α2)1/2|01〉, (12)

and

|Ψ〉 = α|00〉 + eiθ(1 − α2)1/2|11〉. (13)

Our aim is to understand the interplay between these two different quantum

properties, in particular when peculiar phenomena such as ESD or “entanglement

sudden birth”(ESB) [18, 19, 25, 26], and revivals of entanglement occur.
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The entanglement dynamics of two qubits in a Lorentzian structured reservoir,

prepared in a Bell-like state with two excitations as in (13), has been presented in [19].

The evolution of entanglement for a Bell-like state as in (12) has been studied also

in [27]. For both the Bell-like states in (12) and (13) the entanglement dynamics is

the result of two combined effects: the backaction of the non-Markovian reservoir and

the reservoir-mediated interaction between the qubits. The memory effects due to the

non-Markovianity of the reservoir causes oscillations in entanglement dynamics which

in fact are not present in the Markovian case [15]. The sharing of the reservoir plays

also a special role. Indeed, the common reservoir provides an effective coupling between

the qubits, and consequently creates quantum correlations between them. As a result,

qubits prepared in a factorized state can become entangled due to the interaction with

the common reservoir, in contrast with the independent non-Markovian reservoirs case

[16, 17].

The results in [27] show that ESD does not occur for a Bell-like state with one

excitation as in (12) for any value of α2, even when the dipolar interaction between the

qubits is included [28]. Actually, a straightforward calculation shows that for every pure

or mixed state of the qubits containing at most one excitation, ESD and ESB cannot

take place. In fact, the density matrix describing a generic mixed state with maximum

one excitation, written in the same basis of (6), has the form

ρ(t) =




a(t) j(t) k(t) 0

j∗(t) b(t) z(t) 0

k∗(t) z∗(t) c(t) 0

0 0 0 0


 . (14)

The expression of the concurrence, for any value of the parameters, is

C(t) = max{0, 2|z(t)|}. (15)

Here concurrence is directly given by the coherence between the |10〉 and |01〉 states.

Since the coherence vanishes in asymptotic way, there cannot be ESD for any generic

state with maximum one excitation. Analogously, entanglement can be smoothly

generated but it cannot suddenly appear. This result does not depend on the degree

of purity of the state. This is true as long as the form of the density matrix in (14) is

maintained. On the other hand, if some population is transferred to the two excitations

state then ESD can appear. This is the case of two qubits in a Bell state interacting

with a non-RWA common reservoir [29].

3.1. Entanglement and von Neumann entropy time evolution

We will now try to understand how environmental decoherence affects the entanglement

and the purity of the state. One could intuitively expect that the interaction with the

environment not only deteriorates the entanglement content but also destroys purity.

Stated another way, one could think that the loss of entanglement is related to the

transition from an entangled quantum superposition such as those given by equations
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Figure 1. (Color online) Dynamics in a common Lorentzian structured reservoir as a
function of scaled time for two atoms prepared in the Bell-like state Ψ with α2 = 1/20
and θ = 0. Solid red line is concurrence; dotted-dashed blue line is von Neumann
entropy; dotted green line is the population of the super-radiant state ρ++(t). In the
inset: dotted green line is the super-radiant state population; dotted-dashed black line
is the ground state population; solid light blue line is the excited state |11〉 population.

(12) and (13), to the corresponding statistical mixture. In fact, as we will show in the

following, this intuitive picture holds for two-photon Bell-like states and for those states

containing the maximally excited state |11〉. In such cases the concurrence and the von

Neumann entropy dynamics are clearly connected. However, we have discovered that

the dynamical relation between entanglement and entropy is far less trivial for Bell-like

states with one excitation.

We mentioned in the previous section that the state of the two qubits is effectively

equivalent to a four-state system, in which three states {|00〉, |+〉, |11〉} interact in

ladder configuration with the electromagnetic field, and the fourth state, the sub-radiant

state |−〉, is completely decoupled from both the other states and the electromagnetic

field.

We first look at the evolution of the von Neumann entropy of the qubit pair when

the state is initially prepared in a Bell-like state of the form (12) and (13). We begin

by considering the Ψ state dynamics as a function of the dimension-less time γ0t where

the parameter γ0 = 4Ω2/Γ is the Markovian decay rate of the atoms, i.e., the inverse of

the atomic relaxation time in the Markovian limit. It is particularly interesting to see

how the degree of mixedness of the state evolves when the qubits undergo ESD. Since

ESD occurs when α2 ≤ 1/4 [19], we choose α2 = 1/20 and we set θ = 0 for the sake

of convenience. In figure 1 we notice that ESD appears for high value of mixedness of

the system, i.e., concurrence and von Neumann entropy oscillate out of phase. Stated
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Figure 2. (Color online) Dynamics in a common Lorentzian structured reservoir as a
function of scaled time for two atoms prepared in the mixed state (16) with α2 = 0.75.
Solid red line is concurrence; dotted-dashed blue line is von Neumann entropy; dotted
green line is super-radiant state population.
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Figure 3. (Color online) Dynamics in a common Lorentzian structured reservoir as a
function of scaled time for two atoms prepared in the Bell-like state Φ with α2 = 1/2
and θ = 0. Solid red line is concurrence and dotted-dashed blue line is von Neumann
entropy. The super-radiant state population overlaps with concurrence.
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Figure 4. (Color online) Dynamics in a common Lorentzian structured reservoir
as a function of scaled time for two atoms prepared in the Bell-like state Φ with
α2 = 1/5 and θ = 0. Solid red line is concurrence; dotted-dashed blue line is von
Neumann entropy; dotted green line is super-radiant state population. In the inset:
dotted green line is super-radiant state population; dotted-dashed black line is ground
state population; dashed pink line is sub-radiant state population; solid yellow line is
absolute value of the coherence between super-radiant and sub-radiant states.

another way, the revivals of entanglement appear roughly in correspondence of the

minima of the von Neumann entropy, when the state becomes purer. Since the initial

state does not contain any sub-radiant state component, the only states involved are

|00〉, |+〉, |11〉. For this particular initial conditions the super-radiant state population

explains the link between entropy and concurrence. In fact, for the chosen initial state

ρ++(t) = 2
√

b(t)c(t) and the time-dependent part of the concurrence is 2|w(t)|−ρ++(t).

The von Neumann entropy has a more complicated analytical expression, however it

follows closely the time evolution of ρ++(t). We can grasp the main features of the

dynamics of mixedness by considering the analytical expression of the linear entropy,

SL(ρ) = 1 − Tr[ρ2] = 2(ρ++(t) − ρ2
++(t) + a(t)d(t) − |w(t)|). When the initial state

ρ(0) is such that 〈11|ρ|11〉 6= 0 the flow of probability from the |11〉 component to the

super-radiant component destroys entanglement, even if the super-radiant state is a

maximally entangled state. Indeed, whenever the population ρ++(t) reaches its relative

maxima, the state attains a maximum value of mixedness, the time-dependent part of

the concurrence (2|w(t)| − ρ++(t)) becomes negative and entanglement disappears. On

the other hand, whenever the population of the super-radiant state reaches a minimum,

the population of the |11〉 excited state and the |00〉 ground state have their maxima

(see inset in figure 1), and the system goes toward the initial Bell-like state |Ψ〉. As a
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consequence the system becomes purer and entanglement is partially recovered.

The same kind of dynamical relation between entanglement and entropy exists if

the qubits are prepared in a state of the form

ρ(0) = (α2|0A〉〈0A| + (1 − α2)|1A〉〈1A|) (16)

⊗ (α2|0B〉〈0B| + (1 − α2)|1B〉〈1B|). (17)

The dynamics of this state in a common non-Markovian reservoir is characterized by

ESB and revivals of disentanglement, as we have shown in [19]. In figure 2 we see

how these interesting features are related to the degree of purity of the state. As we

have seen before, the positions of maxima and minima of the entropy and of the super-

radiant state population match. The sudden creation of entanglement happens roughly

when the entropy hits its first minimum. Entanglement is again lost when the amount of

mixedness increases, and it reappears again when the entropy reaches another minimum.

A completely different dynamics characterizes the system when the qubits are

prepared in a Bell-like state as the one of (12). In fact in this case there is no ESD,

and revivals of entanglement are not necessarily related to a reduction in mixedness.

To start with consider as initial state the super-radiant Bell |+〉 state. As shown in

figure 3 revivals of entanglement are always accompanied by increase of entropy, so the

intuitive picture fails. Moreover the zeroes of entanglement and entropy coincide. For

those times, in fact, the system goes into the ground state which is pure and factorized.

When some population returns in the super-radiant state entanglement is recovered,

and the state is again mixed. This examples certainly shows that loss of entanglement

is not simply due to a transition from quantum superposition to statistical mixture.

A more complex situation appears for a generic one-photon Bell-like state. When

α2 6= 1/2 and/or θ 6= 0 the initial state is a superposition of super-radiant and

sub-radiant states. Although the sub-radiant component does not evolve in time,

being decoupled from the super-radiant and ground states, its presence affects the

entanglement and entropy dynamics. For the sake of convenience we choose α2 = 1/5

and θ = 0. In figure 4 we see that entropy still follows closely the time evolution of

the super-radiant state population, having its relative minima in the same positions of

the zeroes of ρ++(t). On the contrary, entanglement has new relative maxima when

the population of the super-radiant state is zero. This is due to the presence of the

sub-radiant state. In fact, in this case both the super-radiant and the sub-radiant states

contribute to the total entanglement. Thus there are two different sets of entanglement

maxima, those associated with the maxima of the super-radiant state population, and

those associated to the sub-radiant state. Entanglement is zero whenever the population

of the super-radiant state ρ++(t), the population of the sub-radiant state ρ−−(t), and the

absolute value of the coherence between super-radiant and sub-radiant states ρ+−(t),

are equal. This can be explained having in mind equations (22) in the Appendix,

where b(t), c(t) and z(t) are written as a function of those quantities. Indeed when

ρ++(t), ρ−−(t) and |ρ+−(t)| have equal value, then z(t) is equal to zero, irrespective

of the sign of ρ+−(t). Specifically, this happens in correspondence to the 1st, 4th and
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5th zeroes of entanglement, where b(t) = 0 and c(t) = 2ρ−− = k. In this case the

state of the system becomes (1 − k)|00〉〈00|+ k|01〉〈01|, which is clearly not entangled.

Similarly, for the 2nd and 3rd zeroes, b(t) = k, c(t) = 0 and the non-entangled state is

(1 − k)|00〉〈00| + k|10〉〈10|.

3.2. Dynamics in the concurrence-vs-purity phase space

To summarize and better understand the entanglement-mixedness dynamical interplay

we look at our results from a different perspective. Figure 5 shows the time-evolution

in the entanglement-purity phase diagram for different class of initial states of the two

qubits. In particular, figure 5 a) shows the parametric plot of concurrence and purity

for a Bell-like state with two excitation Ψ with α2 = 1/20. In figure 5 b) the state of

preparation of the system is a Bell-like state with one excitation Φ with α2 = 1/5 and

θ = 0. The two plots are qualitatively very different.

The dynamical feature we noticed from the analysis of figure 1 is even more

apparent in figure 5 a): deterioration, and revivals as well, of entanglement and purity

come together during the dynamics of a Ψ state. The initial moment of the time

evolution corresponds to the upper corner of the C-P diagram, the system evolves toward

smaller entanglement and purity, till sudden death of entanglement occurs; afterwards

entanglement and purity revive accordingly. We plot the curve up to the time 30 γ0t,

similar structures appear later on in the dynamics until the system reaches its pure

and separable asymptotic state, the ground state (at the lower right corner of the CP

diagram).

Analogously, in part b) of figure 5 the upper right corner of the C-P diagram

corresponds to the starting time of the dynamics. Entanglement and purity decrease

together until at (P = 0.5, C = 0.3) a change of behavior occurs: after that while

concurrence is still decreasing purity starts to increase. Once more a sudden change

in the dynamical interplay has place at the point when concurrence becomes zero and

entanglement and purity behave again in the same way. As time passes the system starts

travelling back on the same curve, therefore there is a period of time for which while

purity is decreasing concurrence increases. This is a clear sign of non-Markovianity. In

fact, as pointed out by Ziman and Buzek [7] the C-P line associated to a Markovian

process must be non-increasing respect to concurrence, this prevents the presence of

loops in the diagram even though allows the growth of purity when concurrence is

decreasing. Here, revivals of concurrence can be accompanied by decrement of purity,

and the system travels partially back and forth on the same curve till it reaches its

asymptotic state which is a mixed non separable state, statistical mixture of the ground

and sub-radiant state. To the best of our knowledge this type of dynamics was not yet

been observed.
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Figure 5. (Color online) Parametric plot of the time evolution of concurrence and
purity of two qubits when initially prepared in: a) a Bell-like state with two excitation
Ψ with α2 = 1/20; b) a Bell-like state with one excitation Φ with α2 = 1/5 and θ = 0.

4. Werner states

In this section we study the two qubits entanglement dynamics of extended Werner-

like states in a common zero-temperature Lorentzian structured reservoir. Our goal

here is to study how, starting from an initial state that is not perfectly pure, as in

realistic experimental conditions, affects the entanglement dynamics, and in particular

the occurrence of ESD and ESB phenomena.

4.1. Terminology and previous works

The standard two-qubit Werner state, introduced in 1989 by Werner [30], is defined as

ρW = r|−〉〈−| + 1 − r

4
I, (18)

where |−〉 is the singlet state. In [30] Werner demonstrated that while pure entangled

states always violate the Bell inequality, mixed entangled states might not. The Werner

state is the first entangled state to be proven to satisfy all Bell inequalities [30]. The

generalized or Werner-like states are defined as

ρWL = r|M〉〈M | + 1 − r

4
I (19)

with |M〉 one of the four maximally entangled Bell states. For a given r, Werner

and Werner-like states exhibit the same entanglement. A further generalization is the

extended Werner-like states (EWL), containing a non-maximally entangled state part,

which are defined as

ρΦ
EWL = r|Φ〉〈Φ| + 1 − r

4
I, (20)

where |Φ〉 = α|10〉 + eiθ(1 − α2)1/2|01〉, and

ρΨ
EWL = r|Ψ〉〈Ψ| + 1 − r

4
I, (21)

with |Ψ〉 = α|00〉+ eiθ(1 − α2)1/2|11〉.
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The dynamics of entanglement of two qubits prepared in Werner, Werner-like or

extended Werner-like states has attracted a lot of attention. The appearance of ESD

has been demonstrated for two qubits prepared in a Werner-like state and interacting

with Markovian independent reservoirs [31, 32] or with independent noisy channels

[33]. Violation of Bell inequality has been examined in independent thermal reservoirs

[34, 35]. Entanglement has been studied in a Markovian common thermal reservoir [36],

in the presence of collective dephasing [37] and in the maximal noise limit [38]. Finally,

the dynamics of an EWL in two independent Lorentzian structured reservoirs has been

investigated in [22].

Moreover, Werner and Werner-like states have been used so far in many applications

in quantum information processes such as teleportation [20] and entanglement

teleportation [39]. The experimental preparation and characterization of the Werner

states have also been widely investigated. Werner states are prepared via spontaneous

parametric down-conversion [40] or using a universal source of entanglement [41], and

used in ancilla-assisted process tomography [42] and secure quantum key distribution

[21].

4.2. Entanglement dynamics

We evaluate the dynamics of the entanglement of EWL states as a function of the initial

amount of mixedness, controlled by the purity parameter r, and as a function of the

initial degree of entanglement measured by α2.

The study of the evolution of this kind of states allows to infer how the degree

of purity of the initial state influences the entanglement dynamics. We also compare

our results with those obtained in [22] for two qubits in two independent Lorentzian

structured reservoirs.

Figures 6, 7 and 8 show the entanglement dynamics as a function of the

dimensionless quantity γ0t (with γ0 = 4Ω2/Γ the Markovian decay rate of the atoms)

and of the purity parameter r, for the two EWL states in (20) and (21). In figure 6 the

qubits are initially in the state given by (20) with α2 = 1/2 and θ = 0. When r = 1

the qubits are prepared in the super-radiant state, entanglement exhibits oscillations

and ESD is never present. However, whenever a little amount of mixedness is added,

periods of finite-time disentanglement immediately occur. This is due to the appearance

of some population in the excited state |11〉. As a consequence the oscillating part of the

concurrence {2|z(t)| − 2
√

a(t)d(t)} can become negative. Due to the non-Markovianity

of the system and to the effective coupling provided by the common reservoir, ESD

regions are followed by revivals, and for long times entanglement reaches a stationary

value. When r < 1/3 the state is initially factorized, but as time passes, because

of the reservoir-mediated interaction, entanglement between the qubits is suddenly

created. The non-Markovianity of the reservoir enriches the dynamics causing revivals

of disentanglement. Eventually the entanglement reaches a non-zero stationary value.

The amount of entanglement that has been created depends on the population of the
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Figure 6. (Color online) Concurrence as a function of scaled time and r for two atoms
prepared in the Werner state (20) (Φ) with α2 = 1/2 and θ = 0.
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Figure 7. (Color online) Concurrence as a function of scaled time and r for two atoms
prepared in the Werner state (20) (Φ) with α2 = 1/2 and θ = π.
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Figure 8. (Color online) Concurrence as a function of scaled time and r for two atoms
prepared in the Werner state (21) (Ψ) with α2 = 1/2 and θ = 0.

sub-radiant state, which carries the entanglement.

If the qubits are prepared in the state given by (20) with α2 = 1/2 and θ = π,

the dynamics is completely different compared to the previous θ = 0 case, as shown

in figure 7. In fact when r = 1 the qubits are prepared in the sub-radiant state and

concurrence does not evolve, being at any time equal to 1. When the mixed part is

present little oscillations appear, but eventually the concurrence attains the stationary

value (1 + 3r)/4. When r < 1/3 the initial state is factorized, entanglement is suddenly

created, a revival of disentanglement is present, and again after some oscillations

concurrence reaches its stationary value.

When α2 6= 1/2 and/or θ 6= 0, π the non-mixed part of the initial state is a

superposition of super-radiant and sub-radiant states. Thus the entanglement dynamics

depends on the weights of those two states. As a result there is a wide variety of

entanglement dynamics in between the two asymptotic behaviors described above.

In figure 8 the qubits are prepared in the state given by (21) with α2 = 1/2 and

θ = 0. Note however that the results are independent of the choice of the relative

phase θ. For r = 1 the initial state is the Bell state (|00〉 + |11〉)/
√

2. For this initial

condition not only there is no ESD, but also concurrence vanishes only for infinite

time. When an increasing amount of mixedness is present in the initial state, finite-

time disentanglement appears. ESD is then followed by revivals and, as expected, a

certain amount of entanglement is preserved. Analogously to the other EWL state, for

r < 1/3 the initial state is factorized. For the reasons mentioned above, entanglement is

suddenly created, momentarily deteriorated, and it finally goes to the stationary value
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r/4, coinciding with the population of the sub-radiant state. For this type of EWL

state different choices of α lead to the same qualitative behavior of the entanglement

dynamics.

The results we just described for two qubits in a common structured reservoir are

quite different from those presented in [22] for two qubits in two independent Lorentzian

structured reservoirs. First of all, if two uncoupled qubits interact with two independent

reservoirs, entanglement cannot be created from a factorized state. Hence, the ESB

region, characterizing the dynamics in a common reservoir, is not present in the results

of [22], for any of the EWL states. Moreover, for qubits prepared in the initial state

of (21), we notice that the reservoir-mediated interaction between the qubits keeps the

value of concurrence higher compared to the two independent reservoirs case.

The crucial difference between the common and independent reservoirs cases is that

for qubits in two independent reservoirs the decoherence-free sub-radiant state does not

exist. When the qubits are in two independent reservoirs, the entanglement dynamics

of the |+〉 and |−〉 states are the same. As a consequence the relative phase θ in (12)

and (20) does not affect the results. This is definitely in contrast with the results we

present in figures 6 and 7, showing two completely different asymptotic behavior when

changing the relative phase θ of a π factor.

5. Conclusive Remarks

In this paper we have investigated the dynamical relation between entanglement and

mixedness in a system of two qubits interacting with a common zero temperature non-

Markovian reservoir. We have used the exactly solvable model presented in [19], in the

Appendix we attach the analytical solution in the Laplace transform space in the case

of extended-Werner-like states. All the plots we have presented in this work have been

derived by manipulation of the exact analytic solution in the Laplace transform space.

Our results show that decoherence induced by the environment does not necessarily

affect in the same way the entanglement content and the purity of the state.

Nevertheless, for qubits prepared in two-photon Bell-like states or in states comprising

the maximally excited state |11〉, loss of entanglement is generally accompanied by

increasing of mixedness. ESD seems to appear when the state becomes highly mixed,

whereas revivals of entanglement are associated to minima of the entropy, where the

state becomes purer. Moreover when starting from a factorized state, sudden birth of

entanglement occurs for lower values of mixedness, while revivals of disentanglement are

accompanied by peaks of the entropy.

The dynamical connection between entanglement and mixedness becomes much

more complex for initial Bell-like state with one excitation. However, by looking at the

dynamics of the population of the super-radiant and sub-radiant states, one sees two

sets of maxima of entanglement can be identified. The super-radiant component mainly

carries the entanglement when it is maximally populated; when its population is zero,

the entanglement is associated to the sub-radiant component. When the populations of
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these states are equal, the entanglement vanishes.

The dynamical interplay between the entanglement content and the purity of the

state of the two qubits can be more clearly seen in the concurrence-versus-purity phase

diagram. There, it is apparent that when starting from a Bell-like state with two

excitations entanglement and purity behave accordingly, decreasing or reviving at the

same time. For an initial Bell-like state with one excitation their trade-off is far less

trivial, the diagram shows loops (the system traveling back and forth over the same

curve) and revivals of entanglement can take place in correspondence of decrement of

purity. Those are further signs of the non-Markovianity of the system [7].

We have also considered the entanglement dynamics of a particular class of mixed

states, the extended Werner-like states. We have demonstrated that the amount of

purity of the initial state plays a key role in the entanglement dynamics, controlling

the appearance of ESD and ESB phenomena. As expected, for stronger non-Markovian

conditions, the dynamics exhibits stronger and longer lasting entanglement oscillations

as well as an increasing number of dark periods and revivals as well. On the other hand,

in the Markovian regime, no oscillations are present, however the basic features of the

dynamics, and so the ESD and ESB regions, are still present.

Entanglement and purity are two different physical quantities characterizing the

degree of non-classicality of a quantum state. Understanding their interplay is important

not only from an applicative but also from a fundamental point of view. We believe

that the present results contribute to the comprehension of their dynamical relations.
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Appendix

Here we present the exact analytic solution for two qubits interacting with a Lorentzian

structured reservoir, when the qubits are prepared in an EWL state as in (20) and (21).

We provide the expressions for the density matrix element in (6) as a function of the

solution ρ̃ij of the pseudomode master equation [43] in (5) and (6) of [19]

a(t) = ρ̃aa(t) + ρ̃bb(t) + ρ̃cc(t),

b(t) =
ρ̃++(t) + ρ̃−−(t) + ρ̃+−(t) + ρ̃−+(t)

2
,

c(t) =
ρ̃++(t) + ρ̃−−(t) − ρ̃+−(t) − ρ̃−+(t)

2
,

z(t) =
ρ̃++(t) − ρ̃−−(t) − ρ̃+−(t) + ρ̃−+(t)

2
, (22)
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d(t) = 1 − a(t) − b(t) − c(t) = ρ̃ff (t),

w(t) = ρ̃af (t),

ρ̃++(t) = ρ̃dd(t) + ρ̃ee(t).

The subscripts a, b and c refer to the states in which both the qubits are in the ground

state, and the pseudomode has 0, 1 or 2 excitations respectively. In d and e the atomic

system is in the super-radiant state, and the pseudomode has 0 or 1 excitations. f is

the state having 0 excitations in the pseudomode and both the qubits in their excited

states.

The analytic expressions are given in the Laplace transform space. In the following

we provide the solutions for a EWL state of the form (20):

ρ̃aa(t) = L−1
{
− 1

4s
(−1 + r +

64Γ2Ω4(−1 + r)l(s)

j(s)k(s)

− 8ΓΩ2(1 + r + 4α
√

1 − α2r cos θ)

j(s)
)
}
, (23)

ρ̃bb(t) = L−1
{ 2Ω2

j(s)
(1 + r − 8ΓΩ2(−1 + r)l(s)

k(s)
+ 4α

√
1 − α2r cos θ)

}
, (24)

ρ̃cc(t) = L−1
{
−48Ω4(−1 + r)(Γ + s)

k(s)

}
, (25)

ρ̃dd(t) = L−1
{ 1

4j(s)
(− 1

k(s)
(8ΓΩ2(−1 + r)(6Γ5 + 31Γ4s + 20Γ3(−2Ω2 + 3s2)

+5Γ2s(−20Ω2 + 11s2) + 8Γ(56Ω4 − 17

2
Ω2s2 + 3s4)

+4(120Ω4s − 2Ω2s3 + s5))) + (8Ω2 + (Γ + s)(Γ + 2s))

(1 + r + 4α
√

1 − α2r cos θ))
}

, (26)

ρ̃ee(t) = L−1
{
−2Ω2(−1 + r)(6Γ3 + 8ΓΩ2 + 13Γ2s + 12Ω2s + 9Γs2 + 2s3)

k(s)

}
, (27)

ρ̃ff (t) = L−1
{
− 1

4k(s)
((−1 + r)(6Γ5 + 31Γ4s + 4Γ3(38Ω2 + 15s2)

+Γ2s(412Ω2 + 55s2) + 8Γ(40Ω4 +
91

2
Ω2s2 + 3s4)

+4(72Ω4s + 26Ω2s3 + s5)))
}
, (28)

ρ̃+−(t) = L−1
{r(Γ + 2s)(−1 + 2α2 + 2iα

√
1 − α2 sin θ))

2(4Ω2 + s(Γ + 2s)

}
, (29)

ρ̃−+(t) = ρ̃∗
+−(t), (30)

ρ̃−−(t) =
r(1 − 2α

√
1 − α2 cos θ)

2
+

1 − r

4
, (31)
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ρ̃af (t) = 0. (32)

The solutions for both the EWL states are written as functions of k(s), j(s), l(s)

defined as

k(s) = (16ΓΩ2 + 2Γ2s + 24Ω2s + 3Γs2 + s3)

(3Γ3 + 28ΓΩ2 + 11Γ2s + 24Ω2s + 12Γs2 + 4s3), (33)

j(s) = (Γ + 2s)(8Ω2 + s(Γ + s)), (34)

l(s) = (6Γ3 + 31Γ2s + Γ(56Ω2 + 45s2) + 20(3Ω2s + s3)). (35)

Here we present the solutions for a EWL state of the form (21):

ρ̃aa(t) = L−1
{
− 1

4s
(−1 + r − 4α2r +

8ΓΩ2(−1 + r)

j(s)

+
64Γ2Ω4(−1 + (−3 + 4α2)r)l(s)

j(s)k(s)
)
}

, (36)

ρ̃bb(t) = L−1
{ 2Ω2

j(s)
(1 − r − 8ΓΩ2(−1 + (−3 + 4α2)r)l(s)

k(s)
)
}
, (37)

ρ̃cc(t) = L−1
{
−48Ω4(−1 + (−3 + 4α2)r)(Γ + s)

k(s)

}
, (38)

ρ̃dd(t) = L−1
{
− 1

4j(s)

(
(8Ω2 + (Γ + s)(Γ + 2s))(−1 + r)

+
1

k(s)
(8ΓΩ2(−1 + (−3 + 4α2)r)(6Γ5 + 31Γ4s + 20Γ3(−2Ω2 + 3s2)

+5Γ2s(−20Ω2 + 11s2) + 8Γ(56Ω4 − 17

2
Ω2s2 + 3s4)

+4(120Ω4s − 2Ω2s3 + s5)))
)}

, (39)

ρ̃ee(t) = L−1
{
− 2Ω2

k(s)
(−1+(−3+4α2)r)(6Γ3 +8ΓΩ2 +13Γ2s+12Ω2s+9Γs2 +2s3)

}
,(40)

ρ̃ff (t) = L−1
{
− 1

4k(s)
((−1 + (−3 + 4α2)r)(6Γ5 + 31Γ4s + 4Γ3(38Ω2 + 15s2)

+Γ2s(412Ω2 + 55s2) + 8Γ(40Ω4 +
91

2
Ω2s2 + 3s4)

+4(72Ω4s + 26Ω2s3 + s5)))
}
, (41)

ρ̃af (t) = L−1
{αr

√
1 − α2((8Ω2 + (Γ + s)(Γ + 2s))

4ΓΩ2 + Γ2s + 12Ω2 + 3Γs2 + 2s3

}
, (42)

ρ̃−−(t) = ρ̃+−(t) = ρ̃−+(t) = 0. (43)
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