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Abstract.
A semi–classical model is derived for describing the interaction between coherent
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1. Introduction

The interactions between electromagnetic radiation and neutral atoms, and in particu-

lar their nonlinear aspects, have found an intriguing protagonist with the realization of

coherent atomic beams, strong Bosonic degeneracy being the reason why Bose–Einstein

condensates (BEC) are playing a major role in this research field. When considering

coherent atomic beams, the intrinsic nonlinearity related to atom–atom interactions

should be taken into account and, under the appropriate conditions, it can be described

with a mathematical model strictly resembling that of the optical Kerr nonlinearity [1].

However, the presence of a light wave introduces more nonlinear features in the atom

physics and we are interested in studying these effects from the point of view of atom

manipulation and creation of localized light–atom structures.

The light wave acting as a nonlinear medium can mediate atomic interactions, in com-

plete analogy to the role played by a nonlinear medium in the case of light nonlinearities.

In the simplest model under dipole approximation, the electromagnetic radiation induces

emission of dipole radiation which in turn gives rise to a long range interaction among

the atoms, [2, 3]. This model has attracted much interest since the pioneering work of

Askar’jan [4] and Ashkin [5] who demonstrated how it was possible to describe and test

the effects of electromagnetic radiation on neutral atoms, which made it possible to fo-

cus atoms with light. Klimontovich and Luzgin then proceeded in showing how neutral

atoms can focus light as a result of light pressure dipole forces, [6]. The main concep-

tual difference between those original models and the description of coherent atomic

beams is due to the presence of long range coherence as pointed out by Saffman, [7],

who modelled the contribution of light–mediated dipole–dipole interactions in terms of

a contact potential while other authors worked out a description from first principles

purely within the framework of quantum mechanics, [8, 9]. Efforts have also been made

to go beyond the mean field approximation keeping into account as much as possible

of the physics, including for example the effects of the inhomogeneity of the system

and describing the physical effects that could be expected, see for instance [10]. Here

we will consider a mean field model and in what follows, taking into account also the

effects of the system inhomogeneity, we will give a description of the same phenomenon

based on the analogy between matter waves and classical waves. We will then consider

the possible formation of mutually localized structures and the possibility of having a

collapse–like phenomenon even in one dimension.

2. Semiclassical approach

A semi–classical approach for describing the laser–induced atom interactions in a BEC

was presented in [11], where the difference between the local field (the microscopic field

acting on an atom) and the macroscopic field (the field averaged over a volume containing

many atoms) was taken into account. Semi–classical reasoning leads to an extension of



Co–propagation of Laser and BEC 3

the Gross–Pitaevskii equation normally used to describe BECs through the definition of

laser–induced forces (striction forces) which, written as gradient forces, yield a potential

energy in agreement with fully quantum mechanical results. To calculate these forces,

Helmholtz considered the work done by the electric field on a dielectric, [12]. By working

out the stress tensor through the variation of the dielectric free energy, an expression

for the force was found for the case of a time independent electric field, [13]. This result

was then generalized to the case of time dependent fields by Pitaevskii, [14], who showed

that the expression for the stress tensor in this case is given by the time average of the

same tensor calculated for a constant field. A straightforward application of Pitaevskii’s

results gives for the atom–atom interaction force induced by a far-off resonant laser field

Re[E exp(−iωLt)] on a zero-temperature, dilute BEC:

f =
n

16π
∇
[
|E|2 ∂ε

∂n

]
, (1)

where n is the condensate atom density and ε is the dielectric permittivity of the

condensate gas which has to be suitably modelled. Quantum theory and macroscopic

electrodynamics, [15], both yield

ε = 1 +
4παn

1 − 4π
3
αn

, (2)

where, as derived from quantum theory, α = −d2/h̄∆ is the atomic polarizability at the

laser frequency, with ∆ = ωL−ωa being the detuning from the nearest atomic resonance

frequency ωa, and d is the dipole matrix element of the resonant transition. It is

important to underline that (1) and (2) delimit the atomic physics we shall describe: The

concept of force being a classical one, we will neglect quantum fluctuations, stochastic

heating, incoherently scattered light and focus our attention on the coherent behaviour of

the system. This limits the validity of the model mainly to large detunings |∆| � ωa,Γ

(where Γ is the atoms natural line width). Besides, any singularity occuring within

this model is un–physical since losses and saturation effects (which are not accounted

for) would then become important. Neglecting these effects allows us to study possible

mutual localization mechanisms and, in the eventuality of collapsing cases, this analysis

will be relevant for the evolution stage occurring before saturation mechanisms become

important. The character of long range coherence is captured through the dipole–dipole

interaction term.

The total force acting on a single atom is F = f/n = −∇Vd and the generalized Gross–

Pitaevskii equation for the condensate wave function Ψ(r, t) in the spirit of mean field

theory reads, [1]:

ih̄
∂Ψ

∂t
= Ĥ0Ψ +


U0|Ψ|2 − α

4

|E|2
(
1 − 4π

3
α|Ψ|2

)2


Ψ. (3)

Here Ĥ0 is the linear single-particle Schrödinger Hamiltonian, the wave function Ψ is

normalized as N =
∫
|Ψ|2dr with N denoting the total number of atoms, so that the gas

density is n = |Ψ|2, U0 = 4πh̄2as/m, m is the atom mass and as is the s–wave scattering
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length which can be either positive or negative (repulsive or attractive collisional inter-

action). It must be kept in mind that this equation is valid for moderate laser intensities

and for atom densities high enough to allow for a semi-classical description including

near dipole-dipole interactions.

As already mentioned, effects of the laser–induced dipole–dipole interactions have been

considered for instance in [7] or [8], but with a simplified interaction term, justified

by the relatively low atomic densities and large detunings considered, which allowed

an expansion of the potential energy term for |Ψ|2α � 1. This is the most important

difference between the present work and [7] since a low density expansion makes the

dipole interaction term independent of the sign of the detuning. It is natural, however,

to expect that the structural dynamics of the condensate will depend on the nature of

the nonlinearity, i.e. the sign of the detuning, and in the present investigation we will

consider the fully nonlinear term. Depending on the sign of the detuning, the atom non

linearity can have either a saturation character (∆ > 0, blue detuning, i.e. α < 0) or a

singularity character (∆ < 0, red detuning, i.e. α > 0). By studying the consequences

of the full non linear term on the density structures of an atomic beam copropagating

with a laser beam, we expect to find an extension of well known results on cold atom

guiding, see for instance [16] and references therein.

3. Basic equations

A first analysis which considered the full atomic nonlinearity but only a simplified

description of the laser dynamics, predicted the formation of self–localized atomic

structures, [11]. However, the feedback of the atoms on the laser was not taken into

account and this effect may be of importance. In order to describe this feed back effect,

it is necessary to include also a description of the evolution of the electromagnetic

radiation, coupled to that of the atoms in order to analyze the possibility of mutual

guiding and formation of localized structures.

The starting point are Maxwell’s equations for propagation in a medium. Since we are

interested in a stationary solution, we shall have

E(r, t) = Re[E(r) exp(−iωLt)] (4)

Ψ(r, t) = Φ(r) exp(−iωat). (5)

Under the assumption of Ln � λL or ∇ε · E ' 0 where Ln is the characteristic length

scale of transverse density modulations and λL is the radiation wavelength, we have

from ∇ · D = 0 that ∇ · E ' 0 and the wave equation

∇×∇× E +
1

c2
∂2D

∂t2
= 0 (6)

given (2), becomes (ωL = kLc)

∇2E + k2
L

(
1 +

4πα|Φ|2

1 − 4π
3
α|Φ|2

)
E = 0 (7)
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which corresponds to three scalar equations for the three components of the

electromagnetic field.

This equation is further simplified by using the slowly varying envelope approximation,

i.e. writing

E(r) = a(r⊥, z) exp(ikLz)e, (8)

Φ(r) = ψ(r⊥, z) exp(ikaz), (9)

where r⊥ denotes the dimensions transverse to the propagation direction z, e is the

polarization vector of the field and ka is the atom wave number. The coupled system of

equations (3), (7), can then be written in normalized variables as

iµ
∂ψ̃

∂z̃
= −1

2
∇̃2

⊥ψ̃ +
1

2
βcoll|ψ̃|2ψ̃ − s

2

|ã|2
(
1 − s|ψ̃|2

)2 ψ̃ (10)

i
∂ã

∂z̃
= −1

2
∇̃2

⊥ã−
3s

2

|ψ̃|2ã
1 − s|ψ̃|2

, (11)

where the following normalisation has been used: r̃ = rkL, for the atom wave function

ψ̃ = ψ/ψ∗ with (4π|α|/3)ψ2
∗ = 1, for the laser ã = a/a∗, with m|α|a2

∗/(2h̄
2k2

L) = 1,

s = sign(α), µ = ka/kL and βcoll = 6as/(k
2
L|α|). The tilde will be dropped hereafter

unless otherwise stated.

If the assumption of a classical model for the laser field is justified by the choice of the

intensity regime, it is clear that, for a mean field model to be valid based on the simplest

possible approximation to the many–body atomic wave function, we must consider not

only a zero temperature limit but also a low density limit with na3
s � 1, see [17]. It

will be shown hereafter that the parameter range in which we are interested is such as

to satisfy this requirement.

We note that, although the laser equation is formally linear, it will nevertheless involve

non-linear evolution due to the presence of the |ψ|2 term. For simplicity, in all studied

cases we assume µ = 1 and consider one transverse dimension only, r⊥ = x, assuming

that the system has a very large extension in y and can be considered as homogeneous in

that direction. It is possible to find exact localized, stationary solutions via the shoot-

ing method which will be discussed elsewhere, [18]. Our main concern in the present

investigation is how the initial transverse distributions of atom density (|ψ(x, 0)|2) and

laser intensity (|a(x, 0)|2) vary during propagation along z.

4. Laser and BEC atomic beam propagation

From the point of view of physical effects, the most interesting case is that of an initially

flat laser intensity profile where no gradient forces due to the electromagnetic radiation

are present at the beginning of the propagation. As already pointed out by Saffman, [7],

spatial gradients can grow even on such an homogeneous intensity profile. However, in

contrast with [7], we do not consider an explicit non linearity for the laser equation and
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in our case such gradients will be due to the effect of the atoms only. To gain insight

on the physics acting during the very first stage of propagation, it is useful to look at

the evolution of the laser intensity profile.

4.1. Initial laser evolution

In general, we may describe the propagating laser pulse amplitude as proportional to

exp (ihx + ikz) where neither h nor k are known. The “group velocity” of the pulse

along x during propagation is vx = −∂k/∂h|h0 (where h0 is the central wave number in

x, which is assumed to be zero). We expect the laser profile to diffract along x during the

pulse propagation along z and the role of the atoms must be clarified. With an initially

flat amplitude profile (e.g., supergaussian) the second derivative with respect to x in

(11) can be safely neglected. Thus the presence of the atoms translates into a chirp on

the laser transverse wave number as can be seen by separating real and imaginary part in

(11), discarding the second derivative and solving for the laser amplitude |a| and phase

ϕ (a = |a|exp(iϕ)). Straightforward algebra gives ϕ = 2πkLα|ψ|2z/(1 − 4πα|ψ|2/3).

The effect of such a chirp is well known in optics and it can be understood by noting

that the modified phase ϕ(x, z) induces a modification in the propagation velocity along

x of the different Fourier components of the pulse. In fact, we can now write for the

propagating pulse |a|exp (iϕ(x) + ikz) which shows how the chirp effect is to create an

instantaneous x–wave number, [20],

hc =
∂ϕ

∂x
=

2παkLz(
1 − 4π

3
α|ψ|2

)2

∂|ψ|2

∂x
. (12)

i.e., h = h0 + hc. Assuming an initial Gaussian form for the atom wave function well

localized within the laser intensity distribution, the qualitative behaviour of the chirp

as a function of x is shown in figure.1. Since we have‡ dvx/dh = −∂2k/∂h2|h0 > 0,

parts of the pulse with h > h0 whill have a higher propagation velocity along x and

viceversa. Looking at figure1, we expect that those parts of the pulse that are local-

ized around the positive peak of the chirp function will move with higher velocities in

the direction of positive x while those parts of the pulse that are localized around the

negative peak will slow down. In the red detuning case, this creates a central peak in

the laser intensity profile and two symmetric troughs where the chirp effect is stronger

and empties the pulse. This is clearly seen in the numerical simulations immediately

after the simulations start. In the blue detuning case, the result of the chirp effect is the

opposite, thus the seed for further evolution depends on the sign of the detuning. An

example of the modification induced on the laser intensity profile can be seen in figure2

for two runs with the same initial conditions but opposite sign of the detuning. Once

this initial change in the laser structure is formed, it drives a dynamical reaction on the

‡ As can be seen by Taylor–expanding k = k(h0) + ∂k/∂h|h0(h− h0) + 1/2∂2k/∂h2|h0(h− h0)2 + . . ..
According to the usual transformation ik ↔ i∂/∂z from the expansion for k we obtain an equation for
the laser amplitude which corresponds exactly to our (11) if ∂2k/∂h2|h0 < 0
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Figure 1. Qualitative behaviour of the chirp function (12), solid line, for an initial
Gaussian atom density distribution, dashed line. Left: Red detuning, i.e. sign(α) > 0;
right: Blue detuning, i.e. sign(α) < 0
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Figure 2. Atom density and laser intensity (detail of flat top) for red detuning (left)
and blue detuning (right) after a very short propagation (z = 0.0012λL). Dotted
line: Initial intensity distribution. Parameters are the same as for run a, see text.
Normalization as given in the text.
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atom density since the potential now felt by the atoms has been modified. Again, the

response will be different according to the sign of the detuning.

4.2. Red detuning

This is an interesting case since the atoms will feel a focusing action from the dipole–

induced potential. In particular, such an action will be strenghten by the initial

formation of a central peak in the laser intensity and may lead to a catastrophic

instability with subsequent collapse even in the one dimensional case. As noticed

above, the atom equation has a singular nonlinearity and we may define a critical atom

density as ψ2
∗ = 3/(4π|α|) in unnormalized variables (i.e., ψ2

∗ = 1 normalized variables),

dependent on the detuning and on the dipole moment. However, the presence of the

collisional nonlinearity cannot be neglected and should play an even more important

role as soon as the atom density undergoes focusing. For a negative scattering lenght,

the more the atoms are focused the stronger the focusing action and this is expected

to strictly limit the stability of the system against collapse. Whereas a repulsive

collisional non linearity, acting in the same direction as the diffractive kinetic energy

contribution, should tend to balance the focusing effect of the laser induced non linearity.

The possibility to reach this equilibrium (i.e., a structure consisting of two stationary

localized coupled solutions) depends on the initial conditions and, to our knowledge,

cannot be studied analytically. We have investigated numerically the parameter range

for stability/collapse at fixed initial width of both the supergaussian laser intensity and

the gaussian atom density profile given as

ψ(x, 0) = ψ0e
(−x2/2d2

a) (13)

a(x, 0) = a0e
−(x2/2d2

L)
g

(14)

where g is the supergaussian parameter (g = 10 in the simulations).

In order to describe the numerical results it is useful to present a reference case

whith parameters such that the system settles down rather smoothly onto a stationary,

mutually localized structure for both atom density and laser intensity. A possible such

case (the one referred to as run (a), has da = 5λL, dL = 40λL, initial peak atom

density 5.81 10−18m−3 (corresponding to ψ̃0
2

= 3.41 10−4), inital peak laser intensity

0.0153mW/cm2 (corresponding to ã0
2 = 0.0181), with βcoll = 38 which corresponds

for instance to a detuning of 100 times the decay rate for 87Rb atoms. From these

initial conditions, the system stabilizes onto the localized structures shown in figure3,

with the evolution of the peak atom density and laser intensity showing characteristic

relaxation oscillations during the approach to the final stationary state, see figure4. The

atom transient dynamics is governed by an interplay between their kinetic energy and

interatomic repulsive interactions together with the focusing laser-induced potential.

The atoms initially see a potential trap induced by the presence of the laser combined

to a central repulsive barrier due to their own repulsive interaction, see inset in figure3.
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Figure 3. Stationary atom density and laser intensity after 1.02 105λL of propagation
along z for run (a). Dotted lines: initial distributions. Normalization as in the text.
The inset shows the potential initially felt by the atoms.

The natural thing to happen is for the atoms to escape from the central region where they

are initially localized. The increase in the peak laser intensity (chirp effect) combined

to the decrease in repulsion (decrease in the central atom density) both tend to create a

central trap where initally there was a repulsive barrier, with the effect that some atoms

remain centrally localized while those spreading out will move to encounter the lateral

walls of the laser–induced potential trap.

The laser intensity profile tends to evolve according to what known for super–gaussian

pulses (notice that initially dL >> da), [21], forming modulations on its shoulders which

in turn modify the laser–induced potential trap thus affecting the natural broadening

of the atom wave function. Some atoms, and part of the electromagnetic radiation too,

will escape out of the laser–induced trap but most of them in this case remain trapped

and return back to interact with the central bunch. This process continues until a

final stationary state is reached. Figure5 shows some snapshots of this evolution. The

resulting structures have proved to be extremely robust against numerical perturbation

tests.

Although, for fixed dL/da, the physics of the laser evolution (i.e., central chirp,

lateral modulation and shoulder formation) is qualitatively the same, the nature of

the transient for the atoms changes depending on ψ0/a0 since the balance between the

different effects changes as can be seen by looking at the initial potential felt by the

atom wave function, see figure6.

Increasing the initial atom peak density, with fixed initial laser peak intensity, leads

to the formation of mutually localized structures with higher and higher peak density,

see figure 7(A). These results also give a good idea of what sort of physical parameters

can be expected for these structures. For the initial conditions given in the caption of
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Figure 5. Snapshots of the evolution of atom and laser wave functions during
propagation along z for run (a). In red the initial wave functions. Normalization
as in the text.

figure 7(A) and an initial red detuning of about 3.81 GHz, i.e. 100 times the decay rate

of 87Rb of the 52S1/2 − 52P3/2 atomic resonance, the peak atom densities and peak laser

intensities tend to settle down to values of the order of 10−19m−3 and 0.06mW/cm2. The

maximum peak atom densities and peak laser intensities reached during this evolution

process are of the order of 1.8 1019m−3 and 0.1mW/cm2. Thus even at the maximum

values reached, the low density condition na3 � 1 still holds, being na3 ∼ 10−5 − 10−6

for all cases of figure 7.

In the model we have presented, all absorption processes were neglected, a legitimate

assumption provided that the laser detuning ∆ is so large compared with the

spontaneous emission rate that the imaginary part of the dielectric permittivity can be
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Figure 6. Initial potential experienced by the atom wave function for two different
initial peak densities: n0 = 5.81 1018m−3 (same as run (a), ψ̃0 = 0.0185, dotted line),
n0 = 1.44 1020m−3 (ψ̃0 = 0.092, solid line). The initial peak laser intensity and all
other parameters are the same as for run (a). Normalization as in the text.

considered negligibly small. In this case the effect of resonance absorption on the BEC

density modulations is small but will define the life time of these structures. Even at

very large detunings, resonance absorption could come into play due to photoassociation

which can be an effective mechanism of excitation of the high-lying vibrational levels of

an excited molecule created from two atoms during a collisional process [22]. However,

photoassociation spectra are in general known to be quite narrow and, comparing the

range of detunings we are considering here with experimental data for photoassociation

spectra, see for instance [23], shows that it is possible to neglect photoassociation effects

in the parameter range considered for our model.

For too high initial values of ψ̃0 we have found a new regime and a qualitatively different

stationary state with the creation of two symmetric, mutually localized structures,

moving outwards, see figure8. This is the result of having initially a central repulsive

push not counterbalanced by the action of the laser in spite of the enhancement due to

the chirp effect. The formation, dynamics and characteristics of these jet–like structures

will be discussed elsewhere. A further increase in ψ0 yields a dominant broadening of

the atom laser function and a monotonous decrease of the peak atom density.

Increasing the initial laser peak intensity for a fixed initial atom density, also makes

it possible to generate a continuous family of mutually localized solutions, see figure7(B)

with examples of final stationary structures shown in figure9.

However, this also opens up the possibility of a collapse–like instability when the

initial laser intensity is larger than a critical value which depends on the initial atom

density. We have identified as collapsing cases, within the approximations of this

model, those cases in which the peak atom density showed an increase towards the

critical value corresponding to ψ̃2
0 = 1, i.e. n∗ = 1.7 1022m−3. From the numerical

point of view, the propagation step required to maintain the error within given limits,

decreases to zero. There seems to be a threshold intensity such that, above this, the
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Figure 7. (A) Atom peak densities during propagation for fixed laser peak intensity
ã0 = 0.1346, I0 = 0.0153mW/cm2 and (a) ψ̃0 = 0.0185, n0 = 5.81 1018m−3, (b) ψ̃0 =
0.0316, n0 = 1.7 1019m−3, (c) ψ̃0 = 0.054, n0 = 4.96 1019m−3. (B) Atom peak densities
during propagation for fixed atom peak density ψ̃0 = 0.0185, n0 = 5.81 1018m−3 and
(a) ã0 = 0.1346, I0 = 0.0153mW/cm2, (b) ã0 = 0.3873, I0 = 0.127mW/cm2, (c)
ã0 = 0.5477, I0 = 0.254mW/cm2, (d) ã0 = 1, I0 = 0.847mW/cm2. Normalization as
in the text.
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Figure 8. Structures formed starting from initial peak density n0 = 1.44 1020m−3

(corresponding to the solid line potential in figure6). All other parameters are the
same as for run (a). Normalization as in the text.

diffractive contributions to the atom dynamics can no longer balance the focusing effect

of the dipole–dipole interaction anymore. Furthermore, due to the singular character

of the focusing non linearity, this threshold decreases for higher initial atom densities.

The numerically observed threshold intensities for collapse are given in figure10(A)

for a range of initial atom densities. It is plausible that for low atom densities no

collapse occurs, irrespective of how large the laser intensity is, however the corresponding

extremely rapid dynamical features observed cannot be described under the hypothesis

of the slowly varying envelope approximation. The effect of lowering the laser intensity
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Figure 9. Left column: Stationary atom density and laser intensity after 1.99 104λL

of propagation along z for run(b) of figure7(B). Right column: after 1.61 104λL

of propagation along z for run(d) of figure7(B). Dotted lines: initial distributions.
Normalization as in the text.
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Figure 10. (A) Minimum initial laser intensity at which collapse was numerically
observed for different values of the initial atom density n0 given with respect to
the critical one n∗. (B) Peak atom densities during propagation for varying initial
laser intensities. For all cases ψ̃0 = 0.1, n0 = 1.7 1020m−3 and (a) ã0 = 1, I0 =
0.847mW/cm2, (b) ã0 = 1.8, I0 = 1.52mW/cm2, (c) ã0 = 1.975, I0 = 1.67mW/cm2,
(d) ã0 = 10, I0 = 8.47mW/cm2. Normalization as in the text.

is shown in figure10(B) for a particular value of the initial atom density.

5. Conclusion

The present analysis has demonstrated that it should be possible to exploit the

interaction of coherent electromagnetic radiation and BEC atomic beams to generate

mutually localized structures. Assuming an initial flat–top profile for the laser intensity,

the final peak densities and intensities as well as the widths of the generated structures,
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depend on the initial conditions. It also seems possible to induce a collapse–like

phenomenon on these systems. However, in such cases the model used here is insufficient

and must be generalized to incorporate additional effects that are neglected in the

present analysis.

Acknowledgments

F.C. would like to acknowledge the hospitality offered by the department of Radio and

Space Physics of Chalmers University of Technology during the preparation of this work.

References

[1] Dalfovo F, Giorgini S, Pitaevskii LP, Stringari S 1999 Rev. Mod. Phys. 71 463–512
[2] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1998 Atom-Photon Interactions (Berlin:

Wiley,).
[3] Craig D P and Thirunamachandran T 1984 Molecular Quantum Electrodynamics (London:

Academic Press)
[4] Askhar’yan G A 1962 Zh. Eksp. Teor. Fiz. 42 1567 [1962 Sov. Phys JETP 15 1088]
[5] Ashkim A 1970 Phys. Rev. Lett. 25 1321.
[6] Klimontovich Yu L and Luzgin S N 1979 JETP Lett. 30 610.
[7] Saffman M 1998 Phys. Rev. Lett. 81 65.
[8] Wallis H 1997 Phys. Rev. A 56 2060.

Krutitsky K V, Burgbacher F and Audretsch J 1999 Phys. Rev. A 59 1517.
[9] Giovanazzi S, O’Dell D and Kurizki G 2002 Phys. Rev. Lett. 88 130402.

O’Dell D, Giovanazzi S, Kurizki G and Akulin V M 2000 Phys. Rev. Lett. 84 5687.
[10] Avetisyan Yu A and Trifonov E D 2008 JETP 106 426.

Kurizki G, Mazets I E, O’dell D and Schleich W P 2004 IJMPB 18 961.
[11] Cattani F, Anderson D, Kim A and Lisak M 2005, JETP Lett. 81 561.
[12] von Helmholtz 1881 Wied. Ann. 13 385.
[13] Landau L D and Lifshitz E M 1960Electrodynamics of Continuous Media (New York: Pergamon

Press).
[14] Pitaevskii L P 1961 Sov. Phys. JETP 39 1008.
[15] Born M and Wolf E 1959 Principles of Optics (London: Pergamon Press)
[16] Balykin V I, Minogin V G and Letokhov V S 2000 Rep. Progr. Phys. 63 1429.
[17] Dalfovo F, Giorgini S, Piatevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463–512.

Leggett A J 2001 Rev. Mod. Phys. 73 307–356.
[18] Cattani F, Geyko V, Kim A, Anderson D and Lisak M, submitted to Phys. Rev. A.
[19] Marcuse D 1981 Appl. Opt. 20 3573.

Iwashita K, Nakagawa K, Nakano Y and Suzuki Y 1982 Electron. Lett. 18 873.
[20] Agrawal G P 1995 Nonlinear fiber optics (London: Academic Press Limited).
[21] Parent A, Morin M and Lavigne P 1992 Opt. Quantum Electron. 24 1071; Bagini V et al. 1996

JOSA A 13 1385.
[22] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1.
[23] Fioretti A, Amiot C, Dion C M, Dulieu O, Mazzoni M, Smirne G and Gabbanini C 2001 Eur.

Phys. J. D 15 189–198.



Figure 10 b (figure15.eps)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

z/λ
L

|ψ
(x

=
0)

|2

(B)

(a)

(b)

(c)
(d)


	Contents of catt0115.tex
	Go to page 1 of 14
	Go to page 2 of 14
	Go to page 3 of 14
	Go to page 4 of 14
	Go to page 5 of 14
	Go to page 6 of 14
	Go to page 7 of 14
	Go to page 8 of 14
	Go to page 9 of 14
	Go to page 10 of 14
	Go to page 11 of 14
	Go to page 12 of 14
	Go to page 13 of 14
	Go to page 14 of 14

	Contents of Figure 10 b (figure15.eps)

