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Abstract. We present a theoretical investigation of the hyperfine structure of the
5s5d 3D2 − 5s4f 3F

o
2,3 transitions in In ii. Earlier work has failed in determining

hyperfine constants for the upper levels of these transitions. We show that this is
due to strong off-diagonal hyperfine interaction, which not only changes the position
of the individual hyperfine lines, but also introduces large intensity redistributions
among the different hyperfine levels. We present hyperfine dependent gf-values and
show that off-diagonal hyperfine interaction reduces some of the gf-values by two orders
of magnitude, while others are increased by up to more than a factor of 6. We also
discuss the influence on the hyperfine structure of an accurate representation of the
level-splitting of the 5s4f configuration. We show that the hyperfine interaction in
3F

o
3 and 1F

o
3 is very hard to determine accurately even in a large scale calculation and

we derive a semi-empirical method for adjusting our results using an experimentally
known, diagonal hyperfine constant for 5s4f 1F

o
3. The resulting theoretical synthetic

spectra reproduces the experimental to high accuracy and facilitate identification of
all observed lines.
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1. Introduction

The hyperfine interaction can either result in an asymmetric broadening of the lines

in a spectrum or even in new ˝unexpected˝ hyperfine induced lines if the hyperfine

interaction is strong and the resolution is high. In high resolution stellar spectra, many

lines are broadened due to the hyperfine interaction. As the resolution is improved,

the demand on our detailed understanding of line shapes is increased, to be able to

extract more accurate information. As an example, it is important to include hyperfine

splitting in abundance analysis (Booth and Blackwell [1]). Jomaron et al. [2] showed

that the abundance of Mn in chemically peculiar HgMn stars can be overestimated by

2 to 3 orders of magnitude if the hyperfine structure is not taken into consideration.

It was also shown that if the hyperfine structure is included in a crude model, the

abundance can still be wrong by a factor of 4. To improve the analysis of spectra of

HgMn stars, the hyperfine structure of important elements have been experimentally

studied in laboratories, for example Ga ii by Karlsson and Litzén [3] and Mn i by

Blackwell-Whitehead et al. [4]. Nb plays an important role in studies of the chemical

evolution of heavy elements (Smith and Wallerstein [5] and Smith and Lambert [6]). To

improve this analysis an experimental investigation of the hyperfine structure of Nb ii

was recently performed by Nilsson and Ivarsson [7].

The hyperfine interaction is often described in terms of A and B hyperfine constants.

These can be determined experimentally through a fitting procedure to the spectrum

(see for example Aboussäıd et al. [8]). This is a good approximation if the splitting of

the fine structure levels are much larger than the hyperfine splitting. Aboussäıd et al.

[8] analyzed the hyperfine structure of the 3d24s − 3d4s4p transitions in Sc i and showed

that when the fines structure and hyperfine structure are of the same order of magnitude,

the off-diagonal hyperfine interaction can lead to strong intensity redistribution among

the hyperfine lines in the spectrum.

Karlsson and Litzén [3] made an attempt to determine the A and B hyperfine

constants for some transitions of astrophysical interest in Ga ii. They found that this

could not be done for the 4s4d − 4s4f transitions and they suggested that this was due

to strong off-diagonal hyperfine interaction. Andersson et al. [9] performed calculations

including the off-diagonal hyperfine interaction and could reproduce the experimental

spectrum of the 4s4d − 4s4f transitions by Karlsson and Litzén [3]. Recently, Andersson

[10] showed that similar cases can be expected for hyperfine transitions between terms

with high angular momentum L, where the upper levels belongs to a configuration with

an open s-shell. To be able to further investigate the hyperfine interaction in these

types of systems we are developing a set of programs connected to the grasp2k atomic

structure program (Jönsson et al [11]).

Karlsson and Litzén [12] investigated the hyperfine structure of In ii, in an attempt

to determine the A and B hyperfine constants. They found that the 5s5d 3D2 −
5s4f 3F

o
2,3 transitions could not be described by these diagonal constants and as a first

test of our programs we have investigated the hyperfine structure of these transitions
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and tried to reproduce the experimental spectrum by Karlsson and Litzén [12].

Paschen and Campbell [13] made an extensive analysis of the In ii system,

determining energies for a large number of levels belonging to configurations of the

form 5snl with n up to 19 for low l value and up to 14h for high l. They found that

almost all lines in the spectrum showed hyperfine structure and formed groups of lines

that extended over several cm−1. They also found that the observed interval between the

hyperfine lines did not follow the predictions from theory and therefore they were not

able to determine hyperfine constants in these cases. The deviation was interpreted as

perturbations between different hyperfine levels. However, Paschen and Campbell [13]

only took the nuclear magnetic dipole hyperfine interaction into consideration and left

out the electric quadrupole, i.e. they tried to fit the hyperfine structure only using

A hyperfine constants. The hyperfine structure of some low lying states has been

determined using both the A and the B constants. Peik et al. [14] determined the

hyperfine constants for 5s5p 3P
o
1, Larkins and Hannaford [15] determined the constants

for 5s5p 3P
o
0,1,2 and 5s6s 3S1 and Karlsson and Litzén [12] determined the constants for

a wide range of levels. On the theoretical side, Jönsson and Andersson [16] calculated

the hyperfine constants for a large number of low lying states in In ii. Some work has

also been performed concerning the off-diagonal hyperfine interaction. Zanthier et al.

[17, 18] studied the hyperfine induced 5s2 1S0 − 5s5p 3P
o
0 transition in connection with

the work of constructing an ultra precise optical clock.

The off-diagonal hyperfine interaction can not only result in intensity redistribution

among the hyperfine lines, but can also induce new types of transition channels. For

example are the ground state and the first excited states in Beryllium, Magnesium

and Sink like ions of the type ns2 1S0 and nsnp 3P
o
0 respectively. These excited

states can therefore not decay through any type of one-photon transition, but can only

spontaneously decay through a two-photon decay, making the lifetime of these states

very long. However, in the presence of a nuclear spin, the hyperfine interaction with

the nsnp 3P
o
1 and nsnp 1P

o
1 states respectively will open a so called hyperfine induced

electric dipole transition to the ground state, lowering the lifetime substantially. A

theoretical investigation of the hyperfine quenching of 2s2p 3P
o
0 in Be-like ions was

performed by Marques et al. [19]. Later, Brage et al. [20] performed a similar study

showing that the model used by Marques et al. [19] was not valid. The lifetime of the

2s2p 3P
o
0 level in 47T i18+ was recently measured by Schippers et al. [21] and the Be-like

iso-electronic sequence was re-investigated with improved models by both Cheng et al.

[22] and Andersson et al. [23]. The Mg-like iso-electronic sequence has earlier been

investigated by Marques et al. [24] and Brage et al. [20] and some disagreements were

found. Recently the lifetime of the 3s3p 3P
o
0 level in 27Al+ was measured by Rosenband

et al. [25] and Andersson et al. [26] performed a new theoretical investigation of the Mg-

like iso-electronic sequence finding agreement with the experimental result by Rosenband

et al. [25] and explaining the earlier problems with the calculations by Marques et al.

[24] and Brage et al. [20]. The Zn-like iso-electronic sequence has also been investigated

by Liu et al. [27].
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Much work has also been performed concerning hyperfine quenching of the third

excited level, 1s2p 3P
o
0, in He-like ions. Johnson et al. [28] performed calculations for

the whole iso-electronic sequence and Indelicato et al. [29] performed calculations for all

ions with Z > 40. Many lifetime measurements of hyperfine quenched 1s2p 3P
o
0 levels

in He-like ions has also been performed. For example in 19F by Engström et al. [30],
27Al Denne et al. [31], 31P Livingston and Hinterlong [32] and 61Ni Dunford et al. [33].

Not only hyperfine levels derived from a J = 0 fine structure level can have their

lifetimes affected by hyperfine interaction. Bergström et al. showed that the lifetimes

of the hyperfine levels belonging to the 6s19d 3D2 and 1D2 states in 87Sr are heavily

affected by the off-diagonal hyperfine interaction. Yao et al. [35, 36] predicted that

the hyperfine levels of the 3d94s 3D3 levels in 129Xe26+ should vary due to hyperfine

quenching. This was later experimentally confirmed by Träbert et al. [37].

Besides introducing intensity redistribution and opening new transition channels,

the off-diagonal hyperfine interaction can also change the energies of levels. For example

is the diagonal hyperfine interaction for the 1s2p 3P
o
0 level in He-like ions zero. However,

the off-diagonal hyperfine interaction with the 1s2p 3P
o
1 level is in some cases so strong

that it substantially lower the energy of the 3P
o
0 state. This has been determined

experimentally for 107Ag45+ by Marrus et al. [38].

In this paper we report on off-diagonal hyperfine interaction in excited states in

In II. This will result in pronounced line shifts, oscillator strength redistribution and

the appearance of otherwise forbidden or unexpected lines in the 5s5d 3D2 − 5s4f 3F
o
2,3

transition arrays. In spite of the fact that the resulting structure is very complex, we

will construct a model to explain, model and reproduce even details of the structure.

2. Theory

2.1. Hyperfine interaction

The interaction between the electrons and the electromagnetic multipole moments of

the nucleus splits each fine structure level into multiple hyperfine levels. The interaction

couples the nuclear spin, I, and the total electronic angular momentum, J , to a new

total angular momentum, F = I + J , and the hyperfine levels are denoted by their

value of the corresponding quantum number, F .

The hyperfine interaction operator can be written as (Lindgren and Rosén [39])

Hhpf =
∑

k

T (k) · M (k), (1)

where T (k) and M (k) are spherical tensor operators of rank k that operates on the

electronic and the nuclear part of the wave function respectively. In this work we have

included the first two terms in this expansion where k = 1 represents nuclear magnetic

dipole and k = 2 the nuclear electric quadrupole interaction. The hyperfine interaction

matrix element between two hyperfine levels |γIJFMF 〉 and |γ′IJ ′FMF 〉 thus consists
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of two terms,

〈γIJFMF |Hhpf |γ′IJ ′FMF 〉 = WM1 + WE2. (2)

Hyperfine level dependent wave functions can be constructed by coupling the total

electronic wave function, |γJMJ〉, and the nuclear wave function |IMI〉, using standard

angular momentum coupling theory. It can then easily be shown that the two types of

hyperfine interaction is represented by

WM1 = (−1)I+J+F

{
I J F

J ′ I 1

}
〈γJ‖T (1)‖γ′J ′〉〈I‖M (1)‖I〉 (3)

and

WE2 = (−1)I+J+F

{
I J F

J ′ I 2

}
〈γJ‖T (2)‖γ′J ′〉〈I‖M (2)‖I〉, (4)

We can use the standard definitions of the nuclear magnetic dipole moment,

µI = 〈II|M (1)
0 |II〉, and the nuclear electric quadrupole moment, Q = 2〈II|M (2)

0 |II〉,
to evaluate the reduced nuclear elements, i.e.

〈I‖M (1)‖I〉 = µI

√
(2I + 1)(I + 1)

I
(5)

〈I‖M (2)‖I〉 =
Q

2

√
(2I + 3)(I + 1)(2I + 1)

I(2I − 1)
. (6)

In this work we use values of µI and Q as tabulated by Kurucz [40].

2.2. The Hyperfine Constants

The hyperfine interaction is often viewed as a first-order perturbation to the energy,

only requiring zero order wave function, i.e. pure JIF states. This is equivalent to

only include the diagonal matrix elements of the hyperfine interaction matrix in the

calculations. The hyperfine interaction energy contribution to a certain hyperfine level

|γJIFMF 〉 is then given by

〈γJIFMF |T (1) · M (1) + T (2) · M (2)|γJIFMF 〉 =

= (1/2)AC + B
[
C(C + 1) − (4/3)J(J + 1)I(I + 1)

]
, (7)

where A and B are the hyperfine constants related to the magnetic dipole and electric

quadrupole hyperfine interaction respectively, and C = F (F + 1) − J(J + 1) − I(I + 1).

However, this method is not sufficient when the off-diagonal hyperfine interaction

is strong and the energy separations between the fine structure levels are small. This

occurs typically for a configuration with an occupied orbital of high orbital angular

momentum, leading to small fine structure, and open s-sub shells, inducing strong

hyperfine interaction. As we will see, these configurations often also have term splitting

of the same order of magnitude as the fine structure, and therefore will show pure

coupling neither in the jj- or the LS-case, complicating the picture even further.
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2.3. Transition Probability

The weighted oscillator strength, or the gf-value, between two hyperfine levels |ΓJIF 〉
and |Γ′J ′IF ′〉, can be written as

gf =
8π2meca

2
0σ

3h

∣∣∣〈ΓJIF‖D(1)‖Γ′J ′IF ′〉
∣∣∣
2

, (8)

using standard notations. The wave functions describing a hyperfine level, |ΓJIF 〉,
is constructed as a linear combination of pure JIF coupled basis functions, |γJIF 〉.
Rewriting |ΓJIF 〉 and |Γ′J ′IF ′〉 in form of their expansion, the gf -value is given by

gf =
8π2meca

2
0σ

3h

∣∣∣
∑

γJ

∑

γ′J ′

cγJcγ′J ′〈γJIF‖D(1)‖γ′J ′IF ′〉
∣∣∣
2

, (9)

where c:s represents the expansion coefficients in the basis functions for the upper and

lower state, respectively. The matrix elements in this equation can be expressed in

terms of reduced matrix elements, which only depends on the electronic part of the

wave function, as

〈γJIF‖D(1)‖γ′J ′IF ′〉 = (−1)I+J+F ′+1
√

(2F + 1)(2F ′ + 1)

×
{

F J I

J ′ F ′ 1

}
〈γJ‖D(1)‖γ′J ′〉. (10)

Combining (9) and (10) yields

gf =
8π2meca

2
0σ

3h
(2F + 1)(2F ′ + 1)

∣∣∣∣
∑

γJ

∑

γ′J ′

(−1)JcγJcγ′J ′

×

{
F J I

J ′ F ′ 1

}
〈γJ‖D(1)‖γ′J ′〉

∣∣∣∣
2

. (11)

3. The MCDHF method

Throughout this work, we used the Multi-Configuration Dirac-Hartree-Fock method

(MCDHF) [42], in the form of the grasp2k relativistic atomic structure package,

Jönsson et al. [11]. The MCDHF method is based on the fundamental assumption that

the Atomic State Function (ASF) |ΓJMJ〉 can be expressed as a linear combination of

Configuration State Functions (CSF:s) as

|ΓJMJ〉 =
∑

i

ci|γiJMJ〉. (12)

The CSF:s are in turn wave functions constructed as a coupled and anti-symmetric

sum of products of one electron wave functions, so called Dirac orbitals which can be

expressed as

φ(r, θ, ϕ, σ) =
1

r

(
P (r)χκm(θ, ϕ, σ)

iQ(r)χ−κm(θ, ϕ, σ)

)
. (13)
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The spin and angular dependent parts of the Dirac orbitals, χκm(θ, ϕ, σ) and

χ−κm(θ, ϕ, σ) are assumed to be known and the radial parts P (r) and Q(r) remain

to be determined.

Starting from the Dirac-Coulomb Hamiltonian the ASF:s were optimized to self

consistency in an iterative procedure where both the radial parts of the Dirac orbitals

and the expansion coefficients ci were optimized. In a subsequent Configuration

Interaction (CI) calculation (McKenzie et al. [43]), the zero-frequency limit of the

Breit interaction and the leading QED effects were included.

To simplify our notations when we later include hyperfine interaction in our model,

we define the optimized ASF:s from the Dirac-Coulomb Hamiltonian as J-state functions

(JSF:s). These should describe the fine structure levels in an isotope without a nuclear

spin. From the JSF:s a number of atomic properties such as the reduced hyperfine

interaction matrix elements and the transition matrix elements could be evaluated as

expectation values. The transitions of interest were calculated between JSF:s described

by independently optimized Dirac-orbitals. To be able to evaluate these, bi-orthogonal

transformation (Olsen et al. [44]) had to be performed. In the new representation,

the transition matrix elements in the Babushkin or Coulomb gauge could be calculated

using standard Racah algebra techniques (Grant [45]).

4. Method of calculation

4.1. Optimization of wave functions

The calculations were performed using the Restricted Active Space method, Roos et al.

[46], Olsen et al. [47] and Brage and Fischer [48]. This method is an orbital driven

technique where the calculations are expanded in a systematic manner. In each step

the configuration space is expanded by including configurations formed by allowing for

excitations from one or more reference configurations to a certain set of Dirac orbitals.

This method has been proven to be well suited for studying the convergence of the

calculations, as well as for investigating the importance of including various types of

correlations.

The even (5s5d) and the odd (5s4f) levels were optimized in two separate

calculations. Beginning with the even, we started from a Dirac-Hartree-Fock calculation

where all relativistic forms of the 5s5d configuration were included and the Dirac orbitals

were optimized. The calculation was then extended by expanding our configuration

space by including all configurations which could be formed by allowing for single and

double excitations from the multi-reference set 5s5d and 5p2 to certain sets of Dirac

orbitals. The systematic approach made it possible to investigate the importance of

different types of correlations. In our final model valence and core-valence correlation

with 4d was included. The configuration space then included all configurations of the

form

4d10nln′l′, 4d95snln′l′, 4d95pnln′l′, 4d95dnln′l′,
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where nl and n′l′ in each step belonged to the sets of orbitals

AS1 = {4f, 5s, 5p, 5d},
AS2 = AS1 + {5f, 5g, 6s, 6p, 6d},
AS3 = AS2 + {6f, 6g, 7s, 7p, 7d},
AS4 = AS3 + {7f, 7g, 8s, 8p, 8d}.

In each step only the new orbitals were optimized whereas the old were kept fixed.

The calculation for the odd level was performed in a similar way. The configuration

space was created by allowing for single and double excitations from the reference

configuration 5s4f , i.e. included all configurations of the form

4d10nln′l′, 4d94fnln′l′, 4d95snln′l′.

After the wave functions had been optimized, the zero-frequency limit of the Breit

interaction and the leading QED effects were included in a CI-calculation, that is

without orbital optimization. We used the JSF:s from these calculations to evaluate

reduced transition matrix elements between the 5s4f and 5s5d levels. Finally, by using a

subprogram of Hfszeeman (Andersson and Jönsson [49]) we computed reduced nuclear

magnetic and electric quadrupole hyperfine interaction matrix elements.

It has been shown (Lindgren and Morrison [50] and Jönsson [51]) that hyperfine

interaction is often sensitive to so called spin-polarization. This is represented in an

efficient way by allowing for single excitations from inner s-subshells and a small mixing

with such a state can have a substantial impact on the size of the hyperfine interaction.

To account for this effect one further step was added to the optimization of the even and

odd levels. In this step we included one additional s-orbital and added all configurations

which could be formed by allowing for one excitation from the 1s, 2s, 3s or 4s shell and

at the most one excitation from a valence electron. In this step only the new s-orbital

was varied. Again, we finished also this step with a Breit-QED CI calculation and used

the resulting JSF:s to evaluate reduced hyperfine interaction elements.

4.2. Hyperfine Structure

The hyperfine interaction was calculated using our newly developed program Hfsmix,

which is a modified version of a subprogram of Hfszeeman, Andersson and Jönsson [49].

Starting from the J-state function we construct hyperfine configuration state functions

(HCSF) using standard coupling theory. Using these together with the matrices of the

reduced magnetic dipole and electric quadrupole hyperfine interaction matrix elements,

Hfsmix calculates the energies and the corresponding final atomic state functions, the

F-state functions (FSF).

The hyperfine structure calculations discussed so far were completely ab initio.

Recreating the energy splittings within the configurations was however a true challenge,

since In ii represents a relatively heavy ion of low ionization stage. Our goal was to

reproduce an experimental spectrum, i.e. the hyperfine transition energies and the
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corresponding gf-values which are affected by strong off-diagonal hyperfine interaction.

To do this an accurate representation of the J-dependent energy spectrum was necessary.

We therefore re-scaled the grasp2k fine structure energies to experimental center-of-

intensity values found by Karlsson and Litzén [12]. The asymmetric broadening effect

of the hyperfine interaction, which was not considered by Karlsson and Litzén, allowed

us to modify these values even further.

Since hyperfine levels with different F quantum number can not mix, it was

convenient to performed the calculations in block form. An interaction matrix was

created for each F -value using (3) and (4) and then diagonalized, which yielded new

hyperfine level energies as well as the corresponding expansion coefficients of the

hyperfine configuration state functions, describing the F-state function. Using these

wave functions, the gf-values were calculated using a newly written program, Hfstrans,

that is based on equation (11) where the electric dipole transition reduced matrix

elements were calculated using grasp2k.

4.3. Spectrum Generation

The line intensities of a spectrum from a hollow cathode light source, as used by Karlsson

and Litzén [3],should be proportional to the gf-values (assuming that the radiative rates

are much larger than the competing collision rates). A synthetic spectrum may then be

generated by giving the lines gaussian profiles, due to doppler broadening, with a given

Full Width Half Maximum, FWHM.

We only considered one of the stable isotopes, 115In, in this work, since 113In has

a low abundance (4.3%) and the two isotopes have very similar nuclear properties.

They have the same nuclear spin 9/2, 115In has a nuclear magnetic dipole moment of

µI = 5.5408 and a nuclear electric quadrupole moment of Q = 0.861, whereas 113In has

the nuclear moments µI = 5.5289 and Q = 0.846 (Kurucz [40]). Furthermore, since the

FWHM of the lines is proportional to 1/
√

M the width will only differ by 0.9%. The

errors due to neglecting one of the isotopes was therefore well within our uncertainty

estimates.

5. Results and discussion

In Table 1 and 2 we present convergence studies of some atomic properties of interest

for the optimizations of the JSF:s. In Table 1 we study the convergence of the energy

splitting within 5s4f as the configuration space is expanded. In this table ASX refers

to the different steps in the calculations. From this table it is found that we achieved a

fairly good convergence for the energy splittings between AS3 and AS4. Comparing with

experimental energies by Karlsson and Litzén [12] it is found that our calculated energy

splitting between 5s4f 3F
o
3 and 1F

o
3 is close to the experimental value whereas large

discrepancies are found for the fine structure splitting. These splittings are however not

crucial, since we adjust the energies to experimental values, before including hyperfine
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Table 1. A convergence study of the energy splitting among the 5s4f levels relative
to 3F

o
2. All energies given in cm−1.

∆E3F o
3

∆E3F o
4

∆E1F o
3

AS1 14.34 58.66 175.98

AS2 3.93 13.10 96.30

AS3 2.53 9.92 53.47

AS4 2.66 10.50 52.26

Expa 4.92 21.65 56.02
a Karlsson and Litzén [12]

Table 2. A convergence study of the gf-values of the 5s5d 3D2−5s4f 3F
o
2,3 transitions.

3D2 − 3F
o
2

3D2 − 3F
o
3

Coul. Bab. Coul. Bab.

AS1 0.3605 0.7328 2.835 5.542

AS2 0.4704 0.6120 3.708 4.823

AS3 0.4905 0.5777 3.796 4.475

AS4 0.4923 0.5643 3.799 4.356

interaction.

In Table 2 we investigate the convergence of the gf-values for the two transitions we

focus on in this work, using both the Coulomb and the Babushkin form of the transition

operator. For exact wave functions, these should be identical. Therefore a comparison

of the two is an indicator of the accuracy of our calculations. Here the Babushkin gauge

corresponds to the length form in the non-relativistic limit and is in general considered

to give the most reliable results. From Table 2 it is found that good convergence is

obtained between AS3 and AS4. Comparing the Coulomb and the Babushkin results

it is found that the former are 13% smaller than the latter for both transitions.

5.1. Spectra of hyperfine lines

In Figure 1 we present our synthetic spectrum (solid line) compared to the experimental

one by Karlsson and Litzén [12] (dotted line). In this figure the left group of lines

represents hyperfine components of the 5s5d 3D2 − 5s4f 3F
o
2 transition, whereas the

right represents the components of the 5s5d 3D2 − 5s4f 3F
o
3 transition. It is clear that

while the former agrees well with the experimental spectrum, the latter shows strong

discrepancies.

The discrepancies of the hyperfine structure of the 5s5d 3D2 − 5s4f 3F
o
3 transition

can be understood from an investigation of the calculated A hyperfine interaction

constants. In Table 3 we present a convergence study of how the different hyperfine

constants of 5s4f varied as the calculation was expanded. Studying A(3F
o
2) and A(3F

o
4)
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Figure 1. Our synthetic spectrum (solid line) compared to experimental spectrum by
Karlsson and Litzén [12] (dotted line). Left group of peaks is the hyperfine components
of the 5s5d 3D2 − 5s4f 3F

o
2 transitions and the right group is the 3D2 − 3F

o
3.
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it is found that the values change significantly between the two first steps and then

seems to converge. Between AS4 and AS4sp there are also some changes. This is due to

the inclusion of the spin-polarization which in general increases the size of the hyperfine

interaction. These values are not part of the convergence study but should be compared

to experimental values if available. Studying A(3F
o
3) and A(1F

o
3) we find large deviations

between the different steps, but between AS3 and AS4 a fair convergence is obtained.

However, comparing A(1F
o
3) to the experimental value by Karlsson and Litzén [12], it

is found that our value is significantly too low.

In Table 3 we also present how the sum of A(3F
o
3) and A(1F

o
3) varies as the

calculation is expanded and it is found that this sum is just as stable as the hyperfine

constants A(3F
o
2) and A(3F

o
4). The reason for this is that that A(3F

o
3) and A(1F

o
3) are

very sensitive to the mixing coefficients of the (5s4f5/2)
o

3
and (5s4f7/2)

o

3
CSF:s in the

JSF:s describing 5s4f 3F
o
3 and 1F

o
3, since the hyperfine constants for the pure CSF:s

are 3030.9 and −2272.5MHz respectively. The sum of these constants is 758.4MHz, i.e.

about the same as the sum of A(3F
o
3) and A(1F

o
3) through the different steps of the

calculation. We will show that this can be used to adjust our hyperfine interaction

matrix elements.

The hyperfine structure of the lower 5s5d 3D2 level can also be described by

hyperfine constants and our theoretical value of A(3D2) = 1796MHz is close to the

experimental value of 1865MHz by Karlsson and Litzén [12]. The slightly too small

value for this hyperfine interaction matrix element is the main reason why the structure

of the 5s5d 3D2 − 5s4f 3F
o
2 transition is too narrow in our calculation compared to the

experiment.
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Table 3. A convergence study of the A hyperfine constants for the 5s4f levels. All
constants are given in MHz.

A(3F
o
2) A(3F

o
3) A(1F

o
3) A(3F

o
4) A(3F

o
3) + A(1F

o
3)

AS1 -2888 -578.7 1320.2 2180 741.5

AS2 -3260 51.5 762.9 2452 830.4

AS3 -3215 -223.3 1036.6 2418 813.4

AS4 -3260 -278.4 1102.5 2452 824.1

AS4sp -3473 -327.6 1205.1 2612 877.5

Expa 1736±21
a Karlsson and Litzén [12]

5.2. Semi-Empirical Adjustments to the Calculation

In this section we will discuss a method that, through a semi-empirical re-scaling of

some of the reduced nuclear magnetic dipole hyperfine interaction matrix elements, will

address the problem of obtaining correct expansion coefficients of the (5s4f5/2)
o

3
and

(5s4f7/2)
o

3
CSF:s describing the JSF:s of the states 5s4f 1F

o
3 and 3F

o
3. We start with

a re-scaling of all the diagonal elements of the 5s4f 3F
o
3 and 1F

o
3 states. This changes

the wave functions of the states of interest which makes it possible to also shift the

off-diagonal elements. In a third and final step we re-scale the matrix elements of the

5s5d 3D2 state as well, even though this has much less impact on the spectrum.

The adjustments done are based on the fact that the sum of the hyperfine constants

A(1F
o
3) and A(3F

o
3) remains more or less constant throughout the the calculations, as

discussed in the previous section. The idea behind the first adjustment is to re-scale

two of the four hyperfine constants to semi-empirical values. Using the experimental

value of A(1F
o
3) by Karlsson and Litzén [12], together with the fact that the sum of the

J=3 A-constants are well determined, we can also indirectly re-scale A(3F
o
3) . This will

in turn give a scaling factor for the corresponding reduced matrix element. The other

two diagonal elements, 〈3F o
4‖T (1)‖3F

o
4〉 and 〈3F o

2‖T (1)‖3F
o
2〉, are left unchanged, since

the 3F
o
4 is not included in this study and 3F

o
2 is heavily dominated by one CSF and we

can therefore assume that our value for the A(3F
o
2) is accurate.

The pure ab initio reduced matrix elements have the following values



0.72546 −0.67846 0.52425 0.00000

0.76930 −0.07049 0.63344 −0.51175

−0.59445 0.63344 0.25931 −0.66204

0.00000 0.60551 0.78334 −0.52841


 (14)

where the rows and columns are sorted as the J-states: 3F
o
4,

3F
o
3,

1F
o
3,

3F
o
2.

The electronic hyperfine interaction operator acts on one electron at a time, thus

T (1) =
∑n

i=1 t(1)(i) where n is the number of electrons. The contribution from the

hyperfine interaction can therefore be written as
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〈I[(αJ̃n−1)jn]JFMF |T (1) · M (1)|I[(βJ̃ ′
n−1)j

′
n]J ′FMF 〉 =

= (−1)I+J+F

{
I J F

J ′ I 1

}

×
∑

i

〈[(αJ̃n−1)jn]J‖t(1)(i)‖[(βJ̃ ′
n−1)j

′
n]J ′〉〈I‖M (1)‖I〉

(15)

We are interested in calculating the interaction matrix elements between the CSF:s

(5s4f5/2)
o

2,3
and (5s4f7/2)

o

3,4
. In deriving the expression for performing these calculation

we start by noting that there is no net contribution from electrons in closed shells and

we will therefore only have a summation over two terms. By decoupling all spectator

electrons we end up with the expression

〈I[(α0, 5s1/2)1/2, 4fj]JFMF |T (1) · M (1)|I[(β0, 5s1/2)1/2, 4fj′]J
′FMF 〉 =

= (−1)I+J+F+3/2δα,β

√
(2J + 1)(2J ′ + 1)

{
I J F

J ′ I 1

}
〈I‖M (1)‖I〉

×
[
(−1)j+J ′

δ4fj ,4fj′

{
1/2 j J

J ′ 1 1/2

}
〈5s1/2‖t(1)‖5s1/2〉

+ (−1)j′+J

{
1/2 j J

1 J ′ j ′

}
〈4fj‖t(1)‖4fj′〉

]
(16)

where α and β represents occupation numbers of sub-shells and all coupling information

needed to uniquely define the configuration state functions.

Using equation (16) we can estimate the relative size of the interaction matrix

elements between the four CSF:s (5s4f5/2)
o

2,3
and (5s4f7/2)

o

3,4
. By performing Dirac-Fock

calculations only including one CSF, the diagonal hyperfine interaction constants could

be evaluated and it was found that A
(
(5s4f5/2)

o

3

)
= 3031MHz and A

(
(5s4f7/2)

o

3

)
=

−2272MHz or A
(
(5s4f5/2)

o

3

)
= −1.334 · A

(
(5s4f7/2)

o

3

)
. Using equation (16) and

only including the contribution from the 5s electron, the relative size of the two

hyperfine constants are determined by the 6j-symbol and would be A
(
(5s4f5/2)

o

3

)
=

−4/3 · A
(
(5s4f7/2)

o

3

)
. Including the contribution from the 4f shells would increase

both of the hyperfine constants making the relative size smaller than −4/3. From this

it is obvious that the contributions from the 4f shells are very small compared to the

contribution from the 5s shell. This can also be understood from calculating the reduced

one-electron matrix elements in equation (16) using hydrogenic orbitals. Assuming that

the screening is the same in the three orbitals 5s, 4f5/2 and 4f7/2, the relative size of

the different reduced matrix elements would then be

〈4f5/2||t(1)||4f5/2〉 = 8.17 · 10−2〈5s||t(1)||5s〉
〈4f7/2||t(1)||4f7/2〉 = 6.09 · 10−2〈5s||t(1)||5s〉
〈4f7/2||t(1)||4f5/2〉 = 6.59 · 10−3〈5s||t(1)||5s〉
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However, to get a more reasonable screening for the 5s4f configuration In ii we

performed a Hartree-Fock calculation using the atsp2k (Fischer et al. [52]). It was

then found that the 5s electron see an average charge of about 15, whereas the 4f

electron see a charge of about 2. Using a charge of 2 for both the 4f5/2 and the 4f7/2

orbitals the relative size between the different reduced one electron matrix elements are

〈4f5/2||t(1)||4f5/2〉 = 1.94 · 10−4〈5s||t(1)||5s〉
〈4f7/2||t(1)||4f7/2〉 = 1.44 · 10−4〈5s||t(1)||5s〉
〈4f7/2||t(1)||4f5/2〉 = 1.56 · 10−5〈5s||t(1)||5s〉

From this it is clear that the 4f orbitals only plays a minor role for the hyperfine

interaction in the system we are investigating. Following this discussion, the nuclear

magnetic dipole hyperfine interaction matrix between the HCSF:s of the states 5s4f7/2

and 5s4f5/2 can schematically be represented by



E E ε 0

E E ε ε

ε ε E E
0 ε E E


 (17)

where the columns and rows are ordered according to configuration state functions

(5s4f7/2)
o

4
, (5s4f7/2)

o

3
, (5s4f5/2)

o

3
and (5s4f5/2)

o

2
. In this representation, ε symbolizes

elements dominated by contributions from the 4f -interactions, i.e. depending on the

reduced matrix element 〈4f7/2‖t(1)‖4f5/2〉, while the E is dominated by contributions

from 5s-interaction, depending on the element 〈5s1/2‖t(1)‖5s1/2〉. It is clear from the

discussion above that the former is expected to be significantly smaller than the latter.

One should be aware of that there also is a dependence on the 6-j symbols in (16). The

main fluctuation however, comes from the electronic reduced matrix element.

We start by assuming that the J-state functions of 3F
o
3 and 1F

o
3 can be represented

by a linear combinations of only the two CSF:S (5s4f7/2)
o

3
and (5s4f5/2)

o

3
, i.e.

|5s4f 3F
o
3〉 = a|(5s4f7/2)

o

3
〉 + b|(5s4f5/2)

o

3
〉 (18)

|5s4f 1F
o
3〉 = − b|(5s4f7/2)

o

3
〉 + a|(5s4f5/2)

o

3
〉 (19)

The corresponding self interaction (diagonal) reduced matrix elements are then

〈5s4f 3F
o
3‖T (1)‖5s4f 3F

o
3〉 =

= a2〈(5s4f7/2)
o

3
‖T (1)‖(5s4f7/2)

o

3
〉 + b2〈(5s4f5/2)

o

3
‖T (1)‖(5s4f5/2)

o

3
〉

+ 2ab〈(5s4f7/2)
o

3
‖T (1)‖(5s4f5/2)

o

3
〉

≈ a2〈(5s4f7/2)
o

3
‖T (1)‖(5s4f7/2)

o

3
〉 + b2〈(5s4f5/2)

o

3
‖T (1)‖(5s4f5/2)

0

3
〉 (20)

〈5s4f 3F
o
3‖T (1)‖5s4f 3F

o
3〉 = . . .

≈ b2〈(5s4f7/2)
o

3
‖T (1)‖(5s4f7/2)

o

3
〉 + a2〈(5s4f5/2)

o3‖T (1)‖(5s4f5/2)
o

3
〉 (21)

where we have used that the 〈(5s4f7/2)
o

3
‖T (1)‖(5s4f5/2)

o

3
〉 element is of order ε and

according to the discussion above these are small enough to be taken away.
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Table 4. The Ab Intio and re-scaled hyperfine interaction constants and reduced
matrix elements. The hyperfine constants are given in MHz and the reduced matrix
elements in au.

∑
A = A(1F o

3) + A(3F o
3).

〈1F o
3‖T (1)‖1F

o
3〉 〈3F o

3‖T (1)‖3F
o
3〉 A(1F

o
3) A(3F

o
3)

∑
A

AS4sp 0.25931 −0.07049 1205.07 −327.59 877.48

Rescaled 0.37356 −0.18473 1736a −858.52 877.48
aKarlsson and Litzén [12]

We will start by only considering the contribution to the JSF:s from these two main

CSF:s, in order to derive an adjustment procedure. This leads to that

a2 + b2 = 1 (22)

and the sum of equation (20) and 21) reduces to

〈5s4f 3F
o
3‖T (1)‖5s4f 3F

o
3〉 + 〈5s4f 3F

o
3‖T (1)‖5s4f 3F

o
3〉 =

= 〈(5s4f7/2)
o

3
‖T (1)‖(5s4f7/2)

o

3
〉 + 〈(5s4f5/2)

o

3
‖T (1)‖(5s4f5/2)

o

3
〉. (23)

This implies that if we in the expansion of |5s4f 3F
o
3〉 and |5s4f 1F

o
3〉 only include

(5s4f7/2)
o

3
〉 and |(5s4f5/2)

o

3
〉, the sum of the two hyperfine interaction reduced matrix

elements is constant and independent of expansion coefficients a and b. This fact of

course immediately follows from that the trace of a square matrix is invariant under

unitary transformations.

It is now straight forward to make a first semi-empirical approximation by re-scaling

the hyperfine constants (see Table 4). When we have determined the scaling factors, we

re-scale the two diagonal reduced matrix elements. The interaction matrix (14) is then

changed into



0.72546 −0.67846 0.52425 0.00000

0.76930 −0.18473 0.63344 −0.51175

−0.59445 0.63344 0.37356 −0.66204

0.00000 0.60551 0.78334 −0.52841


 (24)

The re-scaling of the diagonal reduced nuclear magnetic dipole hyperfine interaction

matrix elements can be used to adjust the mixing coefficients of the CSFs in the JSFs.

These can be used to compute adjusted values for both the off-diagonal hyperfine

interaction matrix elements as well as transition matrix elements.

To calculate the new mixing coefficients a′ and b′ we can not describe the JSF:s

only in terms of the CSF:s (5s4f7/2)
o

3
and (5s1/24f5/2)

o

3
, but have to add a ”rest term”

according to

|5s4f 3F
o
3〉 = a|(5s4f7/2)

o

3
〉 + b|(5s4f5/2)

o

3
〉 + . . . (25)

|5s4f 1F
o
3〉 = − b|(5s4f7/2)

o

3
〉 + a|(5s4f5/2)

o

3
〉 + . . . (26)
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Table 5. Theoretical values of the A hyperfine constants of the pure CSF:s |(5s4f7/2)o
3〉

and |(5s4f5/2)o
3〉. Also given are the mixing coefficients of the two CSF:s in the JSF of

5s4f 1F
o
3 from the AS4 calculation.

A mixing coeff.

(5s4f7/2)
o
3 −2272.46 a = 0.7802

(5s4f5/2)
o
3 3030.90 b = 0.6026∑

A 758.44

a2 + b2 0.9718

We can then express the corresponding hyperfine constants as

A(3F
o
3) = a2A

(
(5s4f7/2)

o
3

)
+ b2A

(
(5s4f5/2)

o
3

)
+ O(3F

o
3) (27)

A(1F
o
3) = b2A

(
(5s4f7/2)

o
3

)
+ a2A

(
(5s4f5/2)

o
3

)
+ O(1F3). (28)

The corrected mixing coefficients a′ and b′ can now be derived by solving the equation,

Aexp(
1F

o
3) = b′

2
A
(
(5s4f7/2)

o
3

)
+ a′2A

(
(5s4f5/2)

o
3

)
+ O(1F

o
3) (29)

under the condition

a2 + b2 = a′2 + b′
2
. (30)

The rest term is here the same as in equation (28), since the corresponding part of

the wave function is unaffected by our adjustments. From equation (29) we find that

O(1F
o
3) = 185.29MHz. All other information to solve equation 29 is found in Table (4)

and (5) and by choosing the solutions closest to the original values, we find that

a′ = 0.8419 (31)

b′ = 0.5128 (32)

With new values of the expansion coefficients, we find the following scaling factors for

the off-diagonal elements of matrix (24)



1 a′/a b′/b −
a′/a 1 a′b′/ab b′/b

b′/b a′b′/ab 1 a′/a

− b′/b a′/a 1


 (33)

and the final (J-state) hyperfine interaction matrix turns out as



0.72546 −0.73211 0.44613 0.00000

0.83014 −0.18473 0.58167 −0.43549

−0.50586 0.58167 0.37356 −0.71440

0.00000 0.51528 0.84529 −0.52841


 (34)

We also performed the corresponding re-scaling of the hyperfine interaction for the even

levels. Finally, since the transition matrix elements were changed by less than one
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Figure 2. Our synthetic adjusted spectrum (solid line) compared to experimental
spectrum by Karlsson and Litzén [12] (dotted line). Upper spectrum is the hyperfine
components of the 5s5d 3D2 − 5s4f 3F

o
2 transitions and the lower spectrum is the

3D2 − 3F
o
3.
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percent by this adjustment techniques, a value well within our uncertainty estimates,

we did not include them.

In Figure 2 we present the adjusted spectrum (solid line) in comparison with the

experimental by Karlsson and Litzén [12] (dotted line). Close agreement is found for

both parts and there is only some very small differences in energies and intensities.

To investigate the influence of the off-diagonal hyperfine interaction, we also

performed a calculation omitting this interaction. We call this the adjusted diagonal

calculation and it is based on the same assumptions as made by Karlsson and Litzén

[12] when they tried to understand the structure using A and B hyperfine constants.

In Figure 3 we compared the synthetic spectrum from the diagonal calculation (dotted)

to the adjusted one (solid). It is found that there are large differences between the two

spectra for the 5s5d 3D2 − 5s4f 3F
o
2 transitions, not only in the position but foremost

in the intensities. The differences are much smaller for the 5s5d 3D2 − 5s4f 3F
o
3

transitions but it is clear that the structure could not be described using diagonal

hyperfine constants.
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Figure 3. Comparison between a diagonal (dotted) and adjusted (solid) calculation.
All the individual lines are plotted separately. The upper spectrum is the 5s5d 3D2 −
5s4f 3F

o
2 transitions and the lower is the 3D2 − 3F

o
3
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5.3. Large calculation

To try to achieve better ab initio results a second calculation was performed using a

multi-reference set for the 5s4f optimization. We will refer to this calculation as the

large whereas we will refer to the one discussed above as the small or small adjusted. The

calculation followed the same steps as described in the section Method of Calculations

except that the configuration space was created from the multi-reference configuration

set 5s4f , 5s5p, 5p5d and 5d4f . Using this model the number of configurations grow

rapidly, and while running the calculation with the AS4 set of orbitals some files

generated by grasp2k became larger than 231 bytes, and therefore too large to handle

for a 32 bit program. Therefore we had to stop at the AS3 step and could not obtain

certain convergence in this calculation. However, it was found for the small calculation

that convergence was obtained both for energies and gf-values between AS3 and AS4

and it is therefore likely that we would have found convergence for the large calculation

if the AS4 calculation could have been performed.

It was found that the fine structure splitting in the large calculation was closer to
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Figure 4. Our synthetic spectrum generated from the large calculation (solid line)
compared to experimental spectrum by Karlsson and Litzén [12] (dotted line). Upper
spectrum is the 5s5d 3D2 − 5s4f 3F

o
2 transitions and the lower spectrum is the

3D2 − 3F
o
3.
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the experimental values than the small. The energy splitting between 5s4f 3F
o
3 and 1F

o
3

was calculated to 42.00cm−1, further away from the experimental value of 51.14cm−1

than the prediction from the small calculation of 49.60cm−1. Investigating the gf-values

it was found that the two gauges were differing by 16% and that the gf(3D2,
3F

o
2) was

almost identical to the value from the small calculations and the gf(3D2,
3F

o
3) was 4%

smaller.

In Figure 4 we present our synthetic spectra from the large calculation (solid line)

compared to the experimental spectra by Karlsson and Litzén [12] (dotted line). We

have displayed the low energy, 5s5d 3D2 − 5s4f 3F
o
2, transition in the top panel, while

the high energy, 5s5d 3D2 − 5s4f 3F
o
3, is displayed in the bottom one. It is clear that

both part shows good agreement, in general, between experimental and our synthetic

spectra.

In the low energy part of the spectrum we observe that the large and small

calculation produces almost identical spectra. In the high end part we find a significant

improvement from the small calculation and are in agreement with the small adjusted
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Figure 5. Identification of lines. The upper spectrum is the synthetic spectrum from
the small adjusted. In the lower spectrum are the 28 hyperfine transitions given a
gaussian profile, plotted separately and numbered for easy identification in Table 6.
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spectrum. Studying the expansion coefficients of the (5s4f5/2)
o

3
and (5s4f7/2)

o

3
CSF:s

in the JSF of 5s4f 3F
o
3 it is found that they are 0.8411 and 0.5144 respectively,

very close to 0.8419 and 0.5128 obtained from the small adjustment calculation. It is

somehow surprising that the large calculation reproduce these mixing coefficient bearing

in mind that the predicted energy splitting between 5s4f 3F
o
3 and 1F

o
3 are further from

experimental value than the small calculation. To get a better understanding of this

phenomenon, further investigations has to be performed concerning the optimization of

the JSF:s.

5.4. Line Identification

In Table 6 we present the calculated hyperfine transitions. The energies are derived with

the small adjusted calculation, and the gf-values comes from the large, small adjusted

and small adjusted diagonal calculations respectively. The lines are numbered for easy

identification in Figure 5.

Comparing gfadjust and gfdiag, it is notable how much larger impact the off-diagonal

hyperfine interaction has on the gf -values of the 5s5d 3D2 − 5s4f 3F
o
2 transition than

on the 5s5d 3D2 − 5s4f 3F
o
3. As discussed by Andersson [10], this could be understood

from the fact that the gf value of the former transition between the J-states are much

larger than the one for the latter. Introducing a hyperfine mixing between these states

will then have a much larger impact on the transitions involving 5s4f 3F
o
2 than 3F

o
3.

This effect can, in addition to comparing the two rightmost columns in Table 6, also be
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Table 6. gf-values from the large, small adjusted and small adjusted diagonal
calculations. The energies of the transitions are from the small adjusted calculation.

3D 3F
o

# J F J F E[cm−1] gflarge gfadjust gfdiag
1 2 13/2 2 13/2 21466.5448 8.37·10−1 8.23·10−1 1.22

2 2 11/2 2 13/2 21466.9318 8.09·10−1 8.98·10−1 3.67·10−1

3 2 13/2 2 11/2 21467.2322 2.69·10−1 2.65·10−1 3.67·10−1

4 2 11/2 2 11/2 21467.6192 1.62·10−1 1.35·10−1 4.59·10−1

5 2 9/2 2 11/2 21467.9563 1.06 1.14 5.36·10−1

6 2 11/2 2 9/2 21468.2497 3.55·10−1 3.33·10−1 5.36·10−1

7 2 9/2 2 9/2 21468.5868 1.11·10−3 5.71·10−3 6.88·10−2

8 2 7/2 2 9/2 21468.8697 9.23·10−1 9.65·10−1 5.29·10−1

9 2 9/2 2 7/2 21469.1472 3.21·10−1 2.88·10−1 5.29·10−1

10 2 7/2 2 7/2 21469.4301 1.64·10−1 1.91·10−1 2.16·10−2

11 2 5/2 2 7/2 21469.6546 5.38·10−1 5.45·10−1 3.57·10−1

12 2 7/2 2 5/2 21469.9032 2.06·10−1 1.78·10−1 3.57·10−1

13 2 5/2 2 5/2 21470.1278 5.42·10−1 5.53·10−1 3.24·10−1

14 2 13/2 3 15/2 21472.1878 9.33 9.88 10.0

15 2 13/2 3 13/2 21472.4821 2.25 2.37 2.02

16 2 13/2 3 11/2 21472.7156 3.06·10−1 3.22·10−1 2.31·10−1

17 2 11/2 3 13/2 21472.8690 5.86 6.17 6.73

18 2 11/2 3 11/2 21473.1025 3.25 3.41 3.13

19 2 11/2 3 9/2 21473.2744 7.86·10−1 8.23·10−1 6.37·10−1

20 2 9/2 3 11/2 21473.4396 3.38 3.54 4.14

21 2 9/2 3 9/2 21473.6115 3.34 3.49 3.45

22 2 9/2 3 7/2 21473.7247 1.33 1.39 1.17

23 2 7/2 3 9/2 21473.8944 1.67 1.75 2.17

24 2 7/2 3 7/2 21474.0076 2.77 2.89 3.05

25 2 7/2 3 5/2 21474.0700 1.88 1.96 1.79

26 2 5/2 3 7/2 21474.2322 5.82·10−1 6.08·10−1 7.86·10−1

27 2 5/2 3 5/2 21474.2945 1.68 1.75 1.97

28 2 5/2 3 3/2 21474.3186 2.41 2.52 2.50

seen in Figure 3 where the complete and diagonal calculations are compared.

Comparing gflarge and gfadjust we find that they are in most cases in fair agreement.

Starting with the transitions from 5s4f 3F
o
3 it is found that gflarge are 4-6% smaller

than gfadjust. This is due to the fact that the calculated gf -value between the JSF:s in

the large calculation was about 4% smaller than the gf -value from the small calculation.

The differences are larger comparing the transitions from 5s4f 3F
o
2. The two calculated

gf -values between the JSF:s were almost identical in the large and small calculation
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and could therefore not have any impact on the differences between the calculated

hyperfine dependent gf -values. The differences for these transitions are dominated by

the variations in the calculated hyperfine interaction matrix elements. From Table 6

it is found that the differences in the gf -values for the strong transitions are in most

cases well within 10%, which we would argue is in good agreement considering the large

differences between these and the predicted values from the diagonal calculation. For

the weaker transitions, the differences increases and for the weakest transition it is a

factor of 5. Comparing with gfdiag it is found that the off-diagonal hyperfine interaction

introduces strong cancelation effects for this transition. This cancelation emerges from

the mixing with the 3F
o
3F = 3 hyperfine level which has a gfdiag value to the same lower

hyperfine level which is 50 times larger. This makes the gf-value very sensitive to even

a very small difference in the off-diagonal hyperfine interaction matrix element, making

an accurate prediction extremely difficult.

Comparing the synthetic spectra from the large and the small adjusted calculation,

which both reproduces quite well the experimental spectrum (Figure 4 and 2), it is clear

that the latter is in better agreement and the gfadjust should therefore be considered as

the most accurate.

Conclusions

We have investigated the hyperfine structure of the 5s5d 3D2 − 5s4f 3F
o
2,3 transitions

in In ii. The structure of the spectrum for these transitions is heavily dependent on

off-diagonal hyperfine interaction. We have performed large scale calculations using

the MCDHF method and our synthetic spectrum was found to be in close agreement

with experiment. We also performed calculations using a much smaller configuration

space and derived a semi-empirical method which could correct for the inaccurate

term splitting in the 5s4f configuration using an experimentally determined hyperfine

interaction constant for the 5s4f 1F
o
3 level. This in turn allowed us to adjust both

the diagonal and off-diagonal hyperfine interaction matrix elements. It was found that

the synthetic spectrum obtained using this procedure was in excellent agreement with

experiment.

An accurate method for determining the hyperfine structure of transitions where

off-diagonal hyperfine interaction has a large impact could be an important aid in

abundance determinations using stellar spectra, or the identification of lines in high

resolution spectroscopy. For this purpose, the energy and the gf -value of all the

5s5d 3D2 − 5s4f 3F
o
2,3 transitions are given.
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[37] E. Träbert, P. Beiersdorfer and G.V. Brown Phys. Rev. Lett. 98 263001 (2007)
[38] R. Marrus, A. Simionovici, P. Indelicato, D.D. Dietrich, P. Charles, J-P Briand, K. Finlayson, F.

Bosch, D. Liesen and F. Parente Phys. Rev. Lett. 63 502 (1989)
[39] I. Lindgren and A. Rosén Case Stud. At. Phys. 4 97 (1974)
[40] R.L. Kurucz Phys. Scr. T47 110 (1993)
[41] R.D. Cowan The Theory of Atomic Structure and Spectra (University of California Press, 1981)
[42] I. P. Grant ”Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation

(Springer Series on Atomic, Optical and Plasma Physics, Berlin: Springer 2007)
[43] B. J. McKenzie, I. P. Grant and P. H. Norrington Comput. Phys. Commun. 21 233 (1980)
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