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Abstract. In a high intensity laser field an atom can absorb more photons than the
minimum necessary for ionization. It is known as above threshold ionization (ATI).
Theoretically it is the most difficult case to handle as we have to consider transitions
in continuum. To study ATI we use the perturbation theory and the Green’s function
formalism. We have derived the modified two-term Coulomb Green’s function (CGF)
Sturmian expansion. In each term explicit summation over all intermediate states
is carried out. The transition amplitude may be obtained in a closed form. The
generalized cross sections are evaluated for the photoionization of atomic hydrogen
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range of wavelengths for linear and circular polarization. In the cases for which data
is available our results agree very well with previous ones.
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1. Introduction

The study of photoionization processes in intense laser fields is a subject of interest

in atomic physics and astrophysics. In the case of ionization in strong laser fields the

total number of absorbed photons N may exceed the minimum number of photons K

necessary for ionization. Hence N = K + S, where S is the number of excess photons.

K = 1 and S = 0 refers to the single photoionization but S > 1 refers to the situation

when ATI takes place. We investigate ATI of atomic hydrogen by the circularly and

linearly polarized radiation for S = 1, 2, 3, 4.

The first who calculated transition rates for ATI of H (N = 2, S = 1) were Zernik

and Klopfenstein (1965). They solved the first-order non-homogeneous differential

equation. Klarsfeld (1969) employed the integral representation of CGF to calculate

the transition rates for ATI of H (N = 2, S = 1). In such a way it was not possible to

calculate transition amplitudes in the whole energy region. Karule (1971) proposed to

use CGF Sturmian expansion (Hostler 1970) to study multiphoton ionization (MPI) and

calculated transition rates of MPI for H in 1s state for N up to 16 (Karule, 1975). In the

case of ionization with excess photons all intermediate states belong to continuum. The

continuum wave functions are oscillating, not exponentially decreasing as the discrete

state wave functions. Therefore CGF Sturmian expansion, which converges for negative

energies of intermediate states, for positive energies diverges. Karule (1978, 1985)

adjusted the CGF Sturmian expansion for the calculation of ATI (N = 2, S = 1)

of atomic hydrogen in nl (1 ≤ n ≤ 9, 0 ≤ l ≤ n− 1) states by the analytic continuation

of transition amplitude. The same technique was applied also for the ATI of H in

1s state by Karule (1988) for 3 ≤ N ≤ 9, S = 1. The two-photon ATI of H by

circularly polarized radiation of H in ns states (1 ≤ n ≤ 6) is studied by (Klarsfeld and

Maquet 1979, 1980), resuming the divergent series via Pade-approximants techniques.

Aymar and Crance (1980) solved the system of nonhomogeneous differential equations

and calculated transition rates for the photoionization with one excess photon for H

in 1s state in the case of linear and circular polarization. Two-photon ATI of atomic

hydrogen is investigated also in papers of Fainstein et al (1984), Broad (1984) and Gao

and Starace (1988), Krylovetsky et al (2001). Shakeshaft (1986a, 1986b) calculated

the generalized cross sections for the ionization of atomic hydrogen in the ground state

by the circularly polarized radiation (K = 1, S = 1, 2, 3) solving the system of non-

homogeneous differential equations numerically. Karule and Pratt (1991) derived the

transformed CGF Sturmian expansion, which is similar to the modified CGF proposed

in this paper and evaluated the transition rates for two-photon ATI of H in the ground

state.
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2. Transition amplitudes and the modified CGF Sturmian expansion

In the framework of perturbation theory the transition probability in a unity of time for

N > 1 has nonlinear dependence on intensity and for an unimode laser reads

WN = σ̂NIN(~ω)−N . (1)

The generalized cross section by the definition is

σ̂N [ cm2NsN−1] = QI1−N(~ω)N−1

= QI1−N [13.605× 1.60219× 10−12(λRH)−1]N−1 (2)

where QI1−N is the ionization rate in W 1−Ncm2N , Q is the total cross section for N

photon ionization, I is the intensity of radiation in Wcm−2, λ is the wavelength in nm,

λ = 107[2RHω]−1, ω is the energy of a photon in a.u., ~ = h/2π is the Planck constant

and RH is the Rydberg constant. In our calculations we assign the Rydberg constant the

value that gives the best agreement with the experimental observations for the hydrogen

atom RH = 109 677.58.

The ionization rate for H in the n0l0 state may be written as follows

QI1−N = 4π2α a0 ωI1−N
0

∑

l

|T (N)(n0l0, El|ω)|2 (3)

where α = 1/137.037 is the fine structure constant, a0 = 5.2917 × 10−9cm is the

Bohr radius, I0 = 14.038× 1016Wcm−2, T (N) is the transition amplitude for N photon

ionization.

The calculation of the generalized cross section reduces to the evaluation of the transition

amplitude. In the dipole approximation radial component of the transition amplitude

for ATI of atomic hydrogen in n0l0 states is given by

T
(N)
rad =

∫ ∞

0

drN r3
NREl(rN)

N−1∏
j=1

∫ ∞

0

drj r3
j

×GLj
(rj, rj+1; Ωj) Rn0l0(r1) (4)

where N is the number of photons, Rn0l0, REl are the atomic hydrogen wave functions

of the initial and final state, GLj
is the radial part of CGF, n0 is the principal quantum

number, l0, Lj, l are the orbital moments, E0 = (−2n2
0)
−1, Ωj = E0 + jω = k2

j /2 > 0 and

E = E0+Nω = κ2/2 are the energies of the initial, intermediate and the final state. For

linearly polarized radiation the following selection rules are applicable for each photon

step Lj+1 = Lj ± 1. In the case of the circularly polarized radiation Lj+1 = Lj + 1.

Since angular momentum is strictly positive Lj cannot be zero when Lj+1 = Lj − 1.

The radial component of transition amplitude for the single photoionization (N = 1,

S = 0) has the form T
(1)
rad =

∫∞
0

dr r3REl(r)Rn0l0(r) (Bethe and Salpeter 1977).

The different representations of CGF and its application to the calculation of

multiphoton processes are discussed by Faisal (1987) and in the review paper of Maquet

et al (1998). One of the radial components of CGF, which is given by Hostler and Pratt
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(1963), may be written as follows

GL(r, r′; Ω) = −p Γ(L + 1− p)

(2L + 1)! rr′

×Mp,L+1/2(2r</p)Wp,L+1/2(2r
′
>/p)

(5)

where p = 1/
√−2Ω = −i/k, r< = min[r, r′], r> = max[r, r′]. Mp,L+1/2 and Wp,L+1/2

are the regular and irregular Whittaker functions (Erdelyi et al 1953). We have to use

different expressions for GL dependent on which of the radial variables is greater or

lesser. Thus (5) is difficult to apply for N > 2. Most often is used the CGF Sturmian

expansion (Hostler 1970)

GL(r, r′; Ω) =
∞∑

n=L+1

SnL(2r/p)SnL(2r′/p)

1− n/p
Ω < 0. (6)

The radial components of the Sturmian functions read

SnL(2r/p) = −(2/p)L+1rL[(n− L)2L+1]
−1/2

× exp(−r/p)L2L+1
n−L−1(2r/p)

where L2L+1
n−L−1 are Laguerre polynomials (Erdelyi et al 1953), (n−L)2L+1 is a Pohgammer

symbol (a)n = a(a + 1)...(a + n− 1), a0 = 1.

Sturmian functions (Rotenberg 1962, 1970) are the charge eigenfunctions. The radial

components of the Sturmian functions are solutions of the second order differential

equation[
1

r2

d

dr
r2 d

dr
− L(L + 1)

r2
+

2Z

r
− Ω

]
SnL(2r/p)

= −2Zn

r
SnL(2r/p) (7)

where Z is the charge, Zn = n/p are the charge eigenvalues, n is a positive integer.

The Sturmian functions provide a denumerable basis set that is complete with respect

to square integrable functions (Rotenberg 1970). If Z = 1 and p = n the Sturmian

functions resemble the radial eigenfunctions of the bound states of atomic hydrogen

by the factor n. For Ω < 0 values of p are real and the Sturmian wave functions are

exponentially decreasing. Thus convergence of CGF Sturmian expansion for Ω < 0 is

secured.

Sturmian functions for Ω > 0 have complex exponentials, which are periodic. Hence

Sturmian functions have an oscillatory behavior and CGF Sturmian expansion (6) for

Ω > 0 diverges. Thus we get nonconvergent transition amplitudes.

In present paper we develop the modified CGF Sturmian expansion to calculate

multiphoton processes with excess photons S ≥ 1. We divide the CGF Sturmian

expansion in two terms. In each term summation over intermediate states is carried

out explicitly (in Appendix A we provide a detailed description of transformation).

Thereafter the modified CGF may be written as follows

GL(r, r′; Ω) = GA
L(r, r′; Ω) + GB

L(r, r′; Ω) Ω > 0 (8)
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where

GA
L(r, r′; Ω) = −pΓ(L + 1− p)

(2L + 1)! rr′
Mp,L+1/2(2r/p)Wp,L+1/2(2r

′/p). (9a)

GB
L(r, r′; Ω) = rLr′−L−2p (L + 1− p)−1exp(−r/p) exp(r′/p)

×
∞∑

n=1

[(L + 1− p)n(2r/p)n]/[n!(2L + 2)n] (9b)

×
n−1∑
m=1

[(2L + 2)m(−2r′/p)−m]/[(L + 2− p)mΓ(−m)].

The expression for GA
L (9a) is similar to (5) but GA

L has an advantage as r and r′ have

not to be interchanged dependent on which of the radial variables is greater or lesser.

The first term of the modified CGF is complex and its imaginary part is equal to the

imaginary part of the total CGF, the second term is real

Im GA
L(r, r′; Ω) = πRΩL(r) RΩL(r′)

[GB
L(r, r′; Ω)]∗ = GB

L(r, r′; Ω)
(10)

where RΩL is the Coulomb wave function for an intermediate state, [GB
L]∗ is the complex

conjugate of GB
L.

The modified CGF is not convergent for r′ = 0, but using it we get the convergent

transition amplitude in a closed form. The radial integrals, which involve GA
L and the

atomic wave functions, are easily executed (Appendix B).

The terms of transition amplitude which involve GB
L and the atomic wave functions must

be real. We decompose REl into ingoing fkl and outgoing f ∗kl waves. The convergence of

the radial integrals, which involve REl and GB
L, is ensured replacing REl by 2Refkl. The

factor [Γ(−m)]−1 cancels integrating over the radial variables (more detailed description

of the integration over radial variables is given in Appendix B).

The application of modified CGF Sturmian expansion (8) may be extended to investi-

gate free-free transitions. The modified CGF Sturmian expansion proposed by Karule

and Pratt (1991) also can be applied to study free-free transitions but in this case ex-

pressions for some integrals are more complicated.

In papers of Karule (1978, 1985, 1988) CGF Sturmian expansion (6) was used to eval-

uate the transition amplitude. The obtained transition amplitude was divided by the

denominator (L + 1 − p + j) and summation over intermediate states was carried out

explicitly. Thus the series in terms of polynomials was changed to the series in terms of

Gauss hypergeometric functions. The convergence of transition amplitude was secured

by the transformation of Gauss hypergeometric functions (Erdelyi et al 1953). In such

a way it is not possible to make the summation over intermediate states for more than

a single excess photon. Hence the technique used in papers (Karule 1978, 1985, 1988)

is not applicable to calculate ATI of H for S > 1. It turns out to be not valid to study

ATI of H in Rydberg states (n > 10) and free-free transitions.
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3. Results and conclusion

The modified CGF is used to calculate the generalized cross sections for the

photoionization of atomic hydrogen in the ns states accompanied by the absorption

of up to four excess photons (S = 0, 1, 2, 3, 4). We treat the cases in which the

radiation field is linearly and circularly polarized. The single photoionization threshold

is λ/n2 = 91.1nm. We have carried out calculations in the wide range of wavelengths

10nm ≤ λ/n2 ≤ 90nm.

For linear polarization the following selection rules are applicable for each photon step:

Lj+1 = Lj ± 1. Hence for two-photon ionization of atomic hydrogen in ns states by

linearly polarized radiation we have two different final angular momenta l = 0, 2 and

two possible tracks, for N = 3 l = 1, 3 we have three possible tracks, for N = 4,

l = 0, 2, 4 six possible tracks, for N = 5, l = 1, 3, 5 nine possible tracks. For circular

polarization Lj+1 = Lj + 1. Thus for the ionization of H in ns state we have only one

track with the final angular momentum l = N .

The total generalized cross section for the ionization by circularly polarized radiation is

given by

σ̂N
c = CN

∑
τ

σ̂N
τl , σ̂N

l =
∑

τ

σ̂N
τl (11)

where σ̂N
l is the total generalized cross section for the linear polarization. σ̂N

τl is the cross

section for a track τ . Summation runs over all possible tracks. CN = (2N − 1)!!/N !.

Hence CN is the maximum theoretically possible value for the ratio σ̂N
c /σ̂N

l , which

may be reached if only one track with Lj+1 = Lj + 1 (the single track for the

circularly polarized radiation) contributes significantly to the total cross section for

the linear polarization. CN increases with N . [σ̂2
c/σ̂

2
l ]max = 3/2, [σ̂3

c/σ̂
3
l ]max = 5/2,

[σ̂4
c/σ̂

4
l ]max = 4.25, [σ̂5

c/σ̂
5
l ]max = 7.875. Calculated by us ratio σ̂N

c /σ̂N
l for the ATI of H

in 1s, 2s states increases with wavelength but never reaches its maximum value (Figures

1,2). σ̂2
c/σ̂

2
l ⇒ 3/2 holds for the ATI of H in high Rydberg states with l0 = n0− 1 (will

be published).

σ̂3
c/σ̂

3
l > σ̂4

c/σ̂
4
l > σ̂5

c/σ̂
5
l for the ionization of H in 1s and 2s states (Figures 1,2) in

the whole range of λ/n2. It may be explained by the rapidly growing number of tracks

with growing N in the case of linear polarization. All tracks contribute to the total

cross section. σ̂2
c/σ̂

2
l > σ̂3

c/σ̂
3
l holds in the whole region of λ in the case of ionization

from 1s state (Figure 1). For the ATI of H in 2s state σ̂3
c/σ̂

3
l > σ̂2

c/σ̂
2
l holds in the

region λ/n2 ≥ 80nm (Figure 2). In Figure 3 we show σ̂N
c /σ̂N

l versus principal quantum

number for λ/n2 = 80nm. These curves have maxima for N = 2, S = 1 at n = 2, for

N = 3, S = 2 at n = 4, for N = 4, S = 3 at n = 6 and for N = 5, S = 4 at n = 8.

The position of maxima is only slightly dependent on the wavelength. At 60nm we get

maxima for S = 1, 2, 3, 4 correspondingly at n = 3, 5, 8, 10. As the principal quantum

number increases beyond 10 the ratio σ̂N
c /σ̂N

l decreases for all N .

In the case of linear polarization the number of possible tracks for angular momenta

increases rapidly with each photon step. Therefore the time spent to calculate cross
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sections is growing very rapidly with N . Programming is done in Fortran language

and all computations are performed on desktop PC. To test the accuracy of results

calculations are performed also using a complex conjugate of CGF ( [GA
L ]∗, [GB

L]∗) and

f ∗κl. Smoothness of the curves for σ̂N
c /σ̂N

l also serves to test the accuracy of results.

In the cases for which data is available results are compared with previous ones. In

the cases of linear and circular polarization σ̂l, σ̂c are compared with data of Karule

(1978) for N = 2, S = 1 and Klarsfeld and Maquet (1980) for N = 2, S = 1 and

N = 3, S = 2 (Tables 1,2). In Table 2 the calculated generalized cross sections σ̂c for

N = 3, S = 2 and N = 4, S = 3 are given together with those calculated by Shakeshaft

(1986a,b) for the circularly polarized radiation. Results of present calculations are in a

good agreement with results of previous calculations.

Perturbation theory may be used when the intensity of the radiation field is moderate

(up to 1011−1013Wcm−2). The applicability of perturbation theory to the description of

atomic systems in intense laser fields (intensity I > 1013Wcm2) is a subject of continuing

concern. Calculated by us AC Stark shift of the ground state of atomic hydrogen using

the nonperturbative Floquet method (Karule and Gailitis, 2004) shows a good agreement

with calculations carried out in dipole approximation up to an intensity of 1015Wcm−2.

In the case of photoionization we have no resonances thus our calculations of generalized

cross sections for ATI of atomic hydrogen in the ground state also may be valid up to

an intensity I = 1015Wcm−2.

In Figure 4 we present the generalized cross sections for the photoionization N = 1 + S

(S = 0, 1, 2, 3, 4) of atomic hydrogen in ns states (n = 1, 5, 15, 30) by linearly

polarized radiation dependent on the energy of ejected electron E = −(2n2)−1 + Nω.

The generalized cross sections for linearly polarized radiation are decreasing linearly

dependent on the energy of ejected electrons. In the case of ionization of H2 by

linearly polarized radiation experimental measurements of electron yield dependent on

the energy of electrons up to 20eV have similar behavior except the region of low energies

(Blaga et al , 2009).
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Appendix A. The transformation of CGF Sturmian expansion

In this section we derive the modified CGF Sturmian expansion which can be used for

Ω > 0. We write the CGF (6) expansion over Laguerre polynomials and start with the

power series expansion for one of Laguerre polynomials

GL = −[22L+2rLr
′Lexp(r/p)]/[p2L+1(2L + 1)!]

×exp(−r′/p)
∞∑

j=0

L2L+1
j (2r′/p)(L + 1− p + j)−1 (A.1)

×
∞∑

n=0

[(2L + 2 + j)n(−2r/p)n]/[(2L + 2)nn!].

Dividing (2L + 2 + j)n by the denominator (L + 1− p + j) yields

(2L + 2 + j)n(L + 1− p + j)−1 = (L + 1 + p)n[(L + 1− p + j)−1

+
n−1∑
m=1

(2L + 2 + j)m/(p + L + 1)m+1]. (A.2)

Let us use the equality

(2L + 2)j(2L + 2 + j)m = (2L + 2)m(2L + 2 + m)j (A.3)

Substituting expressions (A.2) and (A3) into equation (A.1) we arrive at two-term CGF.

In both terms we have the infinite summation over the intermediate states j

GL = −[22L+2rLr
′Lexp(−r′/p)]/[p2L+1(2L + 1)!]

×{exp(−r/p)F (L + 1− p, 2L + 2; 2r/p)

×
∞∑

j=0

L2L+1
j (2r′/p)/(L + 1− p + j)

+ exp(r/p)
∞∑

n=1

[(L + 1 + p)n(−2r/p)n]/[(2L + 2)nn!] (A.4)

×
n−1∑
m=1

[(2L + 2)m/(L + 1 + p)m+1]

×
∞∑

j=0

[(2L + 2 + m)jL
2L+1
j (2r′/p)]/[(2L + 2)j]}.

The summation over all intermediate states in the first term of (A.4) (Erdelyi et al 1953)

yields
∞∑

j=0

L2L+1
j (2r/p)/(L + 1− p + j) = Γ(L + 1− p)Ψ(L + 1− p, 2L + 2; 2r/p). (A.5)

Thus we obtain the first term of the modified CGF (9a). In the second term of CGF

(A.4) summation over intermediate states is carried out as follows (Erdelyi et al 1953)
∞∑

j=0

[(2L + 2 + m)jL
2L+1
j (2r/p)/Γ(2L + 2 + j)]
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= (2r/p)−2L−2−m/Γ(−m). (A.6)

We get the second term in the form

[GB
L(r, r′; Ω)]∗ = −rLr′−L−2p (L + 1 + p)−1exp(r/p) exp(−r′/p)

×
∞∑

n=1

[(L + 1 + p)n(−2r/p)n]/[n!(2L + 2)n] Ω > 0 (A.7)

×
n−1∑
m=1

[(2L + 2)m(p/2r′)−m]/[(L + 2 + p)mΓ(−m)].

[GB
L]∗ (A.7) and GB

L (9b) are the complex conjugates of one another but both of them

are real. To get the convergent expressions for transition amplitudes we have to use GB
L

(9b) if as the first term of CGF is used GA
L(9a).

In the paper Karule and Pratt (1991) to carry out summation over intermediate states

we introduced a variable X in the second term of CGF. Hence the summation over all

intermediate states (Erdelyi et al 1953) yields
∞∑

j=0

(2L + 2 + m)jL
2L+1
j (2r/p)Xj/(2L + 2)j (A.8)

= (1−X)−2L−2−mF (2L + 2 + m, 2L + 2; 2r(1−X−1)/p)

lim X ⇒ 1.

In this case the second term of CGF has a hypergeometric function. We can go to the

limit X ⇒ 1 after the integration over the radial variables in transition amplitude. Both

modified CGF Sturmian expansions may be used to study ATI of H and the application

may be extended to study free-free transitions. The second term of the modified CGF

in a form (9b) is simpler. Hence it is better suited for computation since transition

amplitudes can be calculated more easily and rapidly.

Appendix B. The evaluation of the transition rate for N=2, S=1

The modified CGF has two terms. Hence in the case two-photon ionization (N = 2)

radial component of the transition amplitude also has two terms

Trad(n0l0, El; Ω) = TA(n0l0, El; Ω) + TB(n0l0, El; Ω) (B.1)

where l0 = 0, L = 1 and l = 0, 2.

In both terms the integration runs over two radial variables. To ensure the convergence

of TB we decompose REl(r) into ingoing fκl and outgoing f ∗κl waves

REl = fκl + f ∗κl κ =
√

2E. (B.2)

The ingoing wave has the form

fκl = CEl(−2r)l+1 exp(−iκr − π/κ)/Γ(l + 1− i/κ)

×Ψ(l + 1 + i/k, 2l + 2; 2iκr) (B.3)
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CEl = [1− exp(−2π/κ)]−1

l∏
s=1

(1 + κ2s2).

The wave functions of atomic hydrogen and the term GB
L (9b) of the modified CGF are

real. Hence TB also is real and may be written as follows

TB = 2Re

∫ ∞

0

dr r3fκl(r)

∫ ∞

0

dr′ r′ 3GB
L(r, r′)Rn0l0(r

′). (B.4)

The integral over the radial variable r′ is easily to execute and it ensures the cancelation

of Γ(−m)

I1 = [Γ(−m)]−1

∫ ∞

0

dr exp(ik − 1/n0) rl−L+1−m

×F (l0 + 1− n0, 2l0 + 2; 2r/n0) (B.5)

= (−m)l0−L+2(1/n0 − ik)L−l0+m−2

×F (l0 + 1− n0, l0 − L + 2−m; 2l0 + 2; 1 + x1)

where x1 = (1/n0 − ik)/(1/n0 + ik).

The other integral has the form

I2 =

∫ ∞

0

dr exp(−iκ− ik) rL+l+n+3

×ψ(l + 1 + i/k, 2l + 2; 2ikr). (B.6)

To carry out this integral we use a formula given by Erdelyi et al (1953).

The first part of transition amplitude may be written as follows

TA = −Γ(L + 1− p)p−1

∫ ∞

0

dr r2REl(r)Mp,L+1/2(r)

×
∫ ∞

0

dr′ r′2Wp,L+1/2(r
′)Rn0l0(r

′). (B.7)

The integral over the radial variable r involves two confluent hypergeometric functions

I3 =

∫ ∞

0

dr exp(−ikr − iκr) rL+l+3 (B.8)

×F (a, 2L + 2; 2ikr) F (b, 2l + 2; 2iκr)

where κ =
√

2E, k =
√

2Ω, a = L + 1 − p, b = l + 1 − q. Gordon (1929) has given a

closed form for such integrals, which differ for l = L + 1 and l = L − 1 (Landau and

Lifshitz 1965). We integrate (B.8) using the expression derived by Karule (1990), which

may be applied for l = L± 1

I3 = Γ(L + l + 4)/[i(k + κ)]L+l+4xa
2(−x2)

−b

×
L−l+2∑
m=0

[(l − L− 2)m (b)m(1 + x−1
2 )m]/[m!(2l + 2)m] (B.9)

×F1(a, L− l − 2−m,L + 3 + q; 2L + 2; 1− x−1
2 , z)

where x2 = (κ − k)/(κ + k), |x2| < 1, z = 1 − x−2
2 > 1. F1 is Appell hypergeometric

function (Erdelyi et al 1953) of two variables. Appell function by definition is the series
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in terms of Gauss hypergeometric functions

F1(α, β′, β, γ; x, y) =
∞∑

n=0

αnβ
′
nx

n

n!γn

F (α + n, β, γ + n; y). (B.10)

Appell function in the equation (B.9) has an argument |z| > 1 and therefore diverge.

Transforming the Appell hypergeometric function (Erdelyi et al 1953) we get the

convergent expression for the integral I3

F1(a, L− l − 2−m,L + 3 + q; 2L + 2; 1− x−1
2 , z) (B.11)

= x2a
2 F1(a, L− l − 2−m, b + m; 2L + 2; 1− x2, z2)

where z2 = 1− x2
2.

The integral I3 was carried out also in another way

I3 = 2C Re

∫ ∞

0

dr exp(−ikr − iκr) rL+l+3 (B.12)

×F (a, 2L + 2; 2ikr) Ψ(b, 2l + 2; 2iκr)

where C = (2l + 1)!(−1)l+1exp(−π/κ)[Γ(l + 1 + q)]−1.

The second integral of TA
L involves two different confluent hypergeometric functions

(Erdelyi et al 1953)

I4 =

∫ ∞

0

dr exp(−r/n0 − r/p) rL+l0+3 (B.13)

×F (a0, 2l0 + 2, 2r/n0) Ψ(a, 2L + 2; 2r/p)

where a0 = l0 + 1 − n0 is a negative integer. One of the confluent hypergeometric

functions is a polynomial, which we expand in the power series. Thus the integral

simplifies. In such a way, to carry out this integral, we may follow up the same course

as for integral I2 (Erdelyi et al 1953). For ATI with N > 2 and in the case of free-free

transitions there are integrals

I5 =

∫ ∞

0

dr exp(−r/pj − r/pj+1) rLj+Lj+1+3 (B.14)

×F (aj, 2Lj + 2, 2r/pj) Ψ(aj+1, 2Lj+1 + 2; 2r/pj+1)

where aj = Lj + 1− pj and aj+1 = Lj+1 + 1− pj+1.

The integrals I3 (B.12) and I5 (B.14) may be carried out in a closed form as the series

in terms of convergent Gauss functions.

Only infinite summation makes evaluation of the term with GB
L more complicated.
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Tables and table captions

Table 1. The generalized cross sections σ̂1s(cm2NsN−1)
for the ionization of atomic hydrogen in the state 1s with
excess photons S = 1, 2, 3, 4 by the linearly polarized
radiation. The total number of photons is N = S + 1.
a) Karule(1978), b) Klarsfeld and Maquet(1980)

λ(nm) S = 1 S = 2 S = 3 S = 4

10 8.12-57 7.73-93 7.21-129 3.72-163
8.12-57(a)

20 2.99-55 1.15-90 4.28-126 4.21-160
2.99-55(a) 1.14-90(b)

30 2.43-54 2.10-89 1.73-124 2.41-158
2.43-54(a)

40 1.07-53 1.64-88 2.36-123 4.12-157
1.07-53(a) 1.63-88(b)

50 3.37-53 8.00-88 1.76-122 3.68-156
3.37-53(a)

60 8.07-53 2.92-87 9.09-122 2.21-155
8.07-53(a) 2.90-87(b)

70 1.94-52 8.77-87 3.63-121 1.03-154
1.94-52(a)

80 3.92-52 2.28-86 1.20-120 4.07-154
3.92-52(a) 2.27-86(b)

90 7.35-52 5.34-86 3.48-120 1.44-153
7.35-52(a)
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Table 2. Generalized cross sections σ̂1s (cm2NsN−1)
for the ionization of atomic hydrogen in the state 1s with
excess photons S = 1, 2, 3, 4 by the circularly polarized
radiation. The total number of photons is N = S + 1.
a) Karule(1978), b) Klarsfeld and Maquet(1980),
c) Shakeshaft(1986a,b).

λ(nm) S = 1 S = 2 S = 3 S = 4

10 6.00-57 3.65-93 2.04-129 4.95-167
6.00-57(a)

20 2.42-55 6.33-91 1.47-126 2.23-163
2.42-55(a) 6.29-91(b)

30 3.22-54 1.33-89 7.15-125 2.99-161
3.22-54(a)

40 1.01-53 1.17-88 1.15-123 9.87-160
1.01-53(a) 1.16-88(b)
1.0 -53(c) 1.3 -88(c)

50 3.39-53 6.44-88 1.01-122 1.55-158
3.39-53(a)
3.4 -53(c) 6.4 -88(c) 1.1 -122(c)

60 9.22-53 2.63-87 6.09-122 1.56-157
9.22-53(a) 2.62-87(b)
9.2 -53(c) 2.6 -87(c) 6.2 -122(c)

70 2.17-52 8.74-87 2.81-121 1.16-156
2.17-52(a)
2.2 -52(c) 8.7 -87(c) 2.9 -121(c)

80 4.58-52 2.51-86 1.07-120 6.95-156
4.58-52(a) 2.62-86(b)
4.6 -52(c) 2.5 -86(c) 1.1 -120(c)

90 8.95-52 6.42-86 3.53-120 3.50-155
8.95-52(a)



Above threshold ionization of atomic hydrogen in ns states 15

Figure 1. σ̂N
c /σ̂N

l as a function of the wavelength for the atomic
hydrogen in 1s state. N is the total number of photons, S is the
number of excess photons.

Figure 2. σ̂N
c /σ̂N

l as a function of λ/n2 (n = 2) for the atomic
hydrogen in 2s state. N is the total number of photons, S is the
number of excess photons.
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Figure 3. σ̂N
c /σ̂N

l for the atomic hydrogen in ns states as a
function of the principal quantum number for λ/n2 = 80nm. N is
the total number of photons, S is the number of excess photons.

Figure 4. log σ̂N
l for the ionization of atomic hydrogen in 1s, 5s,

15s and 25s states by linearly polarized radiation as a function of
the energy of ejected electron multiplied by n2 for λ/n2 = 80nm.
S is the number of excess photons.


