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Abstract. We study atomic Josephson junctions (AJJs) with one and two bosonic
species confined by a double-well potential. Proceeding from the second quantized
Hamiltonian, we show that it is possible to describe the zero-temperature AJJs
microscopic dynamics by means of extended Bose-Hubbard (EBH) models, which
include usually-neglected nonlinear terms. Within the mean-field approximation, the
Heisenberg equations derived from such two-mode models provide a description of
AJJs macroscopic dynamics in terms of ordinary differential equations (ODEs). We
discuss the possibility to distinguish the Rabi, Josephson, and Fock regimes, in terms of
the macroscopic parameters which appear in the EBH Hamiltonians and, then, in the
ODEs. We compare the predictions for the relative populations of the Bose gases atoms
in the two wells obtained from the numerical solutions of the two-mode ODEs, with
those deriving from the direct numerical integration of the Gross-Pitaevskii equations
(GPEs). Our investigations shows that the nonlinear terms of the ODEs are crucial
to achieve a good agreement between ODEs and GPEs approaches, and in particular
to give quantitative predictions of the self-trapping regime.
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1. Introduction

The prediction [1] of Bose-Einstein condensation (BEC) and the experimental

achievement of BEC [2] has played a crucial role for theoretical and experimental

developments in the physics of ultracold atoms. The study of the atomic counterpart [3,

4, 5, 6, 7] of the Josephson effect which occurs in superconductor-oxide-superconductor

junctions [8] - which is an example of macroscopic quantum coherence - represents one

of these developments. Albiez et al. [9] have provided the first experimental realization

of the atomic Josephson junction (AJJ) previously analyzed theoretically in a certain

number of papers [3, 4, 5, 6, 7]. In 2007 Gati et al. [10] reviewed the experiment by

Albiez et al. [9] and compared the experimental data with the predictions of a many-

body two-mode model [11] and a mean-field description. In the above references the

analysis of AJJs physics is carried out in the presence of a single bosonic component. The

possibility to tune intra- and inter-species interactions [12, 13] by means of the Feshbach

resonance technique makes possible to study of AJJs with two bosonic species trapped

together by double-well potentials and to use BECs mixtures as powerful instruments

to investigate quantum coherence and nonlinear phenomena, with particular attention

to the existence of self-trapped modes and intrinsically localized states.

In the superfluid regime the dynamics of the relative populations and relative phases

of the Bose condensed atoms can be described by Josepshon’s two-mode equations, which

are ordinary differential equations (ODEs), see for example Refs. [5, 14, 15, 16, 17].

This description is achieved in the presence of a confining double-well potential, with

a single bosonic component [5] and also with bosonic mixtures [14, 15, 16, 17, 18].

One of the most interesting aspects of AJJs analysis is to compare the predictions

deriving from the ODEs with the ones obtained from the Gross-Pitaevskii equations

(GPEs). For single component condensates, Salasnich et al. [6] have shown that a

good agreement exists between the results obtained from the GPE and those of the

ODEs. Similar agreement was obtained in [7] for AJJs realized with weakly interacting

solitons localized in two adjacent wells of an optical lattice. However, the situation may

be quite different for multicomponent condensates, due to the interplay of intra- and

inter-species interactions which enlarges the number of achievable states (for instance,

mixed symmetry states can exist only in the presence of the inter-species interaction) as

well as their stability, giving to the system many more dynamical possibilities. Recently

it was shown that for the two components case the integration of the ODEs allows to

predict the analogous of the macroscopic quantum self-trapping phenomenon observed

in AJJs with one bosonic component [15, 17]. This phenomenon has been discussed for

a two-components nonlinear Schrödinger model with a double-well potential by Wang

and co-workers [19]. More recently, a comparison between the reduced ODEs system

and the full GPE dynamics was performed, showing that, for various conditions, a good

agreement exists between the two kinds of predictions [17].

The aim of the present work is to analyze how the accuracy of the two-mode

approximation can be improved by taking into account the usually-neglected nonlinear
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terms. These terms derive from the overlaps between wave functions localized in

different wells. Both for single component and for two components AJJs - introduced

in the second section - we proceed from a full second quantized description of the

system. In Sec. III we describe the system by the extended Bose-Hubbard (EBH)

Hamiltonian. In the single component case, the EBH Hamiltonian is the two-sites

restriction of the Hamiltonian considered in Refs. [20, 21] to analyze bosons loaded in

one dimensional optical lattices. In the two species case, the EBH Hamiltonian is the

extended version of the one considered by Kuklov and Svistunov in Ref. [22] to study

the counterflow superfluidity of two-species ultracold atoms. We note that the study

of the two components bosonic system proceeding from a pure quantum approach is a

subject of wide interest. In fact, this topic is dealt with in certain regions of the phase

space in Ref. [23] and in the case of hardcore bosons as discussed in Ref. [24].

The EBH Hamiltonian sustains the dynamics of the single-particle operators via the

Heisenberg equations of motion [25, 26]. By performing the mean-field approximation

on the single-particle operators of each component, the improved ODEs are achieved.

In the third section we also discuss how it is possible to distinguish the Rabi regime,

the Josephson regime, and the Fock regime. This analysis is carried out in terms of the

macroscopic parameters involved in the EBH Hamiltonians and, then, at the right hand

sides of the improved ODEs as discussed for single AJJs in Ref. [27]. In Sec. IV we

write down the GPEs for the one and the two components AJJs. Here we compare the

results obtained by numerically integrating the GPEs with the predictions obtained by

numerically solving the improved ODEs. Moreover, in the fourth section we plot the

phase-plane portraits of the dynamical variables fractional imbalance-relative phase.

Finally, in Sec. V we draw our conclusions.

2. The system

We consider two interacting dilute and ultracold Bose gases denoted below by 1 and 2.

We suppose that the two gases are confined in a double-well trap produced, for example,

by a far off-resonance laser barrier that separates each trapped condensate in two parts,

L (left) and R (right). We assume, moreover, that the two condensates interact with

each other and that the trapping potential Vtrap(r) for both components is taken to be

the superposition of a strong harmonic confinement in the radial (x-y) plane and of a

double-well (DW) potential in the axial (z) direction. We model the trapping potential

as:

Vtrap(r) =
miω

2
i

2
(x2 + y2) + VDW (z) , (1)

where mi is the mass of the ith component. For simplicity we take ω1 = ω2 ≡ ω. For

symmetric configurations in the z direction, we take - for the ith species - the double-well

in Eq. (1) as

VDW (z) = VL(z) + VR(z)
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VL(z) = −V0

[
Sech2(

z + z0
b

)
]

VR(z) = −V0

[
Sech2(

z − z0
b

)
]

V0 = ~ωi[1 + Sech2(
2z0
b

)]−1 ,

(2)

that is the combination of two Pöschl-Teller (PT) potentials, VL(z) and VR(z), centered

at the points −z0 and z0, and separated by a potential barrier which may be changed

by varying b (see Fig. 1). We use PT potentials only for the benefit of improving

accuracy in our numerical GPEs calculations (see the fourth section), taking advantage

of the integrability of the underlying linear system. We remark, however, that our

results apply to a generic double-well potential. Eigenvalues and eigenfuctions of the

Pöschl-Teller potential for a single well are known analytically. The wave functions of

the ground state of Vα(z) (α = L,R), centered around −z0 (+z0) are [28] :

φ(α,i,PT )(z) = A[1 − Tanh2(
z ± z0
b

)]Bi/2

Bi = −1

2
+

√
2miV0b2

~2
+

1

4
. (3)

The constant A, in Eq. (3), ensures the normalization of the wave function in each well.
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Figure 1. The double-well potential (2) as a function of z for z0 = 3 and different
values of b. The dot-dashed line corresponds to b = 0.7, the continuous line corresponds
to b = 1, and the dashed line corresponds to b = 1.3. Lengths are measured in units

of a⊥,i =
√

~
miω

and energies in units of ~ω .
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3. The second quantization Hamiltonian

To describe our system at zero-temperature, we proceed from the second quantized

Hamiltonian, which reads

Ĥ =
∑

i=1,2

∫
d3r Ψ̂†

i(r)
(
− ~2

2mi
∇2 + Vtrap(r)

)
Ψ̂i(r)

+
∑

i=1,2

gi

2

∫
d3rΨ̂†

i(r)Ψ̂
†
i(r)Ψ̂i(r)Ψ̂i(r)

+ g12

∫
d3rΨ̂†

1(r)Ψ̂
†
2(r)Ψ̂2(r)Ψ̂1(r) , (4)

where Vtrap(r) is the potential (1). The coupling constants gi and g12 are the intra- and

inter-species atom-atom interaction strengths, respectively. These constants are given

by

gi =
4π~2ai

mi
, (5)

g12 =
2π~2a12

mr

, (6)

where the reduced mass mr is equal to m1m2/(m1 + m2). Eqs. (5) and (6) relate

the two coupling constants to the respective s-wave scattering lengths, ai and a12.

In the following, we shall consider both gi and g12 as free parameters, due to the

possibility of changing the s-wave scattering lengths ai and a12 by the technique of

Feshbach resonances. In the following, we will neglect the mass difference between the

two bosonic components of the mixture, as for example in Ref. [13], and assume that

m1 = m2 ≡ m. In Eq. (4), the field Ψ̂i(r) (Ψ̂†
i(r)) destroys (creates) a boson of the ith

species at the point r, and obeys the usual bosonic commutation relations. We expand

the field operator Ψ̂i(r) in terms of operators âα,i (â†α,i) - destroying (creating) a boson

of the ith species in the well α = L,R - according to:

Ψ̂i(r) =
∑

α=L,R

Φα,i(r)âα,i , (7)

where â’s and â†’s satisfy the usual boson commutation relations and the functions Φα,i

form an orthonormal set. Due to the form (1) of the trapping potential, Φα,i(r) can be

decomposed as

Φα,i(r) = wi(x)wi(y)φα,i(z) , (8)

where wi(x) and wi(y) are the ground state wave functions of the harmonic oscillator

potentials miω
2
i x

2/2 and miω
2
i y

2/2, respectively. The functions φL,i(z) and φR,i(z) at

right hand side of Eq. (8) are two functions well localized in the left and right well,

respectively. These functions are real and orthonormal. The functions φL,i(z) and

φR,i(z) can be determined following the same perturbative approach as in Ref. [17].
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Under the same conditions, these functions may be written in terms of the φ(L,i,PT )(z)

and φ(R,i,PT )(z) of Eq. (3) as:

φL,i(z) =
1

2

[
(

1√
1 + s

+
1√

1 − s
)φ(L,i,PT )(z) + (

1√
1 + s

− 1√
1 − s

)φ(R,i,PT )(z)
]

φR,i(z) =
1

2

[
(

1√
1 + s

− 1√
1 − s

)φ(L,i,PT )(z) + (
1√

1 + s
+

1√
1 − s

)φ(R,i,PT )(z)
]
,

(9)

where s =
∫ +∞
−∞ dz φ(L,i,PT )(z)φ(R,i,PT )(z).

3.1. AJJs with a single bosonic species

Let us start our analysis by considering the presence of a single bosonic component.

In this case, the inter-species coupling constant (6) is equal to zero. We use the field

operator expansion (8) in the second quantized Hamiltonian (4). The AJJs microscopic

dynamics is controlled by the EBH Hamiltonian [20, 25, 26]. The EBH model, by

omitting the species index i, is described by the Hamiltonian

ĤEBH = E0
Lâ

†
LâL + E0

Râ
†
RâR +

UL

2
â†Lâ

†
LâLâL

+
UR

2
â†Râ

†
RâRâR −K(â†LâR + â†RâL)

+ Kc(â
†
Ln̂LâR + â†Ln̂RâR + â†Rn̂LâL + â†Rn̂RâL)

+ V â†Lâ
†
RâLâR +Kp(â

†
Lâ

†
LâRâR + â†Râ

†
RâLâL) .

(10)

Here n̂α = â†αâα is the number of particles in the αth well. E0
α are the energies of the

two wells, Uα > 0 are the boson-boson repulsive interaction amplitudes, and K is the

tunnel matrix element, which is the Rabi oscillation energy in the case of a model with

Uα equal to zero. The parameter Kc is the induced collisionally hopping amplitude, V

is the density-density bosonic interaction amplitude, and Kp describes the pair bosonic

hopping [20]. By using the decomposition (8) and the explicit form of w(x) and w(y), the

macroscopic parameters (10) may be shown to be related to the intra-species coupling

constant (5) and to the other microscopic parameters (the mass and the frequency of

the harmonic trap) by the formulas

E0
α =

∫
dz

[ ~2

2m
(
dφα

dz
)2 + (VDW +

~2

2ma2
⊥

+
mω2a2

⊥
2

)(φα)2
]

Uα = g̃

∫ +∞

−∞
dz (φα(z))4

K = −
∫
dz

[ ~2

2m

dφL

dz

dφR

dz
+ VDW (z)φLφR

]

Kc = g̃

∫ +∞

−∞
dz (φα(z))3 φβ(z)

V = 2g̃

∫ +∞

−∞
dz (φα(z))2 (φβ(z))2
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Kp =
V

4
, (11)

where g̃ =
g

2πa2
⊥

. We observe that the first two lines of Hamiltonian (10) involve only

the overlaps between φα’s localized in the same well, see [5]. The third and fourth lines of

the Hamiltonian (10) include also the overlaps between φα’s localized in different wells,

see [27]. Proceeding from the Hamiltonian (10), we write down criteria to individuate

different oscillations regimes sustained by the AJJs dynamics. To this end, as discussed

in Refs. [4, 27], we express the Hamiltonian (10) in terms of the following operators:

Ĵx =
1

2
(â†LâL − â†RâR)

Ĵy =
i

2
(â†LâR − â†RâL)

Ĵz =
1

2
(â†LâR + â†RâL) , (12)

and the SU(2) algebra invariant Ĵ2 = (N̂/2)(N̂/2 + 1), with N̂ being equal to n̂L + n̂R

[29].

We assume that the two potential wells are symmetric, E0
L = E0

R ≡ E and

UL = UR ≡ U . Neglecting constant terms, and using the fact that N � 1, we get

Ĥ = (U − V )Ĵ2
x − 2 (K −KcN)Ĵz + V Ĵ2

z . (13)

Here, if the condition (U − V ) � V is verified, we can consider only the terms in Ĵ2
x

and Ĵz. Then by defining the parameter R as

R =
(U − V )N

(K −KcN)
(14)

we are able (see Ref. [4]) to distinguish the three following regimes

• Rabi: R � 1;

• Josephson: 1 � R � N2;

• Fock: N2 � R.

In the Rabi regime the bosons are in a coherent state and oscillate with a frequency

given simply by the energy difference between the ground state and the first excited

state associated to the double-well potential. In the Josephson regime the bosons are

in a coherent state and oscillate with a frequency which depends on the parameters U ,

Kc, and V . Moreover, if the interaction strength is sufficiently large the self-trapping

takes place. In the Fock regime the bosons are in a Fock state characterized by the

suppression of number fluctuations. Now, we observe that the Hamiltonian (10) can

be viewed as the two sites restriction of the Hamiltonian considered in Refs. [20, 21]

within the study of bosons loaded in one dimensional optical lattices. In particular, in

Ref. [20] it is shown that within the Fock regime two regions open up. To this end we

denote by ∆ the energetic gap between the Fock state with N0 bosons per well and the

Fock state with (N0 + 1) per well [20]

∆ = 2(E + U N0) . (15)
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Then, when

|4∆ − (2N0 + 1)V | > V (16)

we have a pure Mott insulating phase (PMI), driven by the density-density on-site

interaction. When

|4∆ − (2N0 + 1)V | < V (17)

we have a Density-Wave Mott insulating (DWMI) regime, driven by the nearest-

neighbors interaction [20]. Note that the DWMI phase is characterized by number

fluctuations suppression as well.

At this point, we remark that we are interested in determining the fully coherent

dynamical oscillations of population of the Bose condensed atoms between the left and

right wells. Then, we proceed from the Heisenberg equations of motion for the model

Hamiltonian (10). These equations of motion control the temporal evolution of âα. We

observe that in the superfluid regime the system is in a coherent state and the following

mean-field approximation [25]

〈âα〉 =
√
Nα exp(iθα)

〈n̂α〉 = Nα (18)

can be performed. The averages involved in Eq. (18) are evaluated with respect to the

coherent state. Under the assumption of symmetric wells and by inserting the mean-

field approximation (18) into the aforementioned Heisenberg equations of motion, we

get

ż(t) = −2(K −KcN)

~
√

1 − z2(t) sin θ(t)

+
V N

2~
(1 − z2(t)) sin 2θ(t)

θ̇(t) =
U − V

~
Nz(t) +

2(K −KcN)

~
z(t) cos θ(t)√

1 − z2(t)

− V N

2~
z(t) cos 2θ(t) , (19)

where N = NL+NR is the total number of bosons, and z = (NL−NR)/N and θ = θR−θL

are, respectively, the fractional imbalance and the relative phase.

3.2. AJJs with two bosonic species

In this subsection we shall consider AJJs in the presence of two interacting bosonic

components. In this case both the coupling constants (5) and (6) are finite, and the two

mode EBH model is described by the Hamiltonian

Ĥ =
∑

i=1,2

Ĥ(EBH,i) + Ĥ12 . (20)

The Hamiltonian Ĥ(EBH,i) is the single component Hamiltonian (10) written in terms

of the operators âα,i and â†α,i. The parameters E0
α, Uα, K, Kc, V , Kp, and the function
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φα will read E0
α,i, Uα,i, Ki, Kc,i, Vi, Kp,i, and φα,i, respectively. The microscopic

quantities referred to a single bosonic component will be modified according to the

same prescription. Under the hypothesis of symmetric wells, the coupling Hamiltonian

Ĥ12 reads:

Ĥ12 = U12(â
†
L,1â

†
L,2âL,1âL,2 + â†R,1â

†
R,2âR,1âR,2)

+ V12(â
†
L,1â

†
R,2âL,1âR,2 + â†L,2â

†
R,1âL,2âR,1)

+ Kp,12(â
†
L,1â

†
L,2âR,2âR,1 + â†R,1â

†
R,2âL,2âL,1

+ â†L,1â
†
R,2âL,2âR,1 + â†R,1â

†
L,2âR,2âL,1)

+ Kc,12(â
†
L,1n̂L,2âR,1 + â†R,1n̂L,2âL,1

+ â†L,2n̂L,1âR,2 + â†R,2n̂L,1âL,2

+ â†L,2n̂R,1âR,2 + â†R,2n̂R,1âL,2

+ â†L,1n̂R,2âR,1 + â†R,1n̂R,2âL,1) . (21)

In Eq. (21), U12 is the inter-species interaction amplitude between bosons localized

in the same well, and V12 is the inter-species interaction amplitude between bosons

localized in different wells. The quantity Kp,12 is the inter-species pair hopping (hopping

of particle-particle or hole-hole pair made up of bosons of different species); Kc,12 is the

amplitude of the inter-species collisionally induced hopping. By using the decomposition

(8) and the explicit form of wi(x) and wi(y), the aforementioned parameters are shown

to be related to the inter-species coupling constant (6) by:

U12 = g̃12

∫ +∞

−∞
dz (φα,i(z))

2(φα,j(z))
2

V12 = g̃12

∫ +∞

−∞
dz (φα,i(z))

2(φβ,j(z))
2

Kc,12 = g̃12

∫ +∞

−∞
dz (φα,i(z))

3(φβ,j(z))

Kp,12 = V12 , (22)

where g̃12 =
g12

π(a2
⊥,1 + a2

⊥,2)
. Note that we are considering both the overlaps between

φα’s localized in the same well (Uα,i and U12) - that are the only terms taken into

account in Ref. [17] - and the overlaps between φα’s localized in different wells (V12,

Kp,12, Kc,12). We observe that, in general, due to the presence of the parameters (22)

the identification of different oscillation regimes proceeding from the Hamiltonian (20)

is not immediate as for single component AJJs. Nevertheless, under certain conditions

we are able to write down criteria to select the different regimes sustained by the two

components AJJs dynamics. First, let us focus on the case in which only the overlaps

between φα’s localized in the same well are considered. If certain relations exist between

the intra- and the inter-species interactions amplitudes, we can recognize the two-species

corresponding of the Rabi, Josephson and Fock regimes discussed in the case of single
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component AJJs. For each component i, we define the quantity γi as

γi =
UiNi

Ki

. (23)

We recognize the following ”weak-coupled” Rabi, Josephson, and Fock regimes

• Rabi: γi � 1, |U12| ' Ui;

• Josephson: 1 � γi � N2
i , |U12| ≤ Ui;

• Fock: N2
i � γi.

In the Josephson regime, even if the intra-species interaction is not strong enough to

ensure self-trapping by itself, self-trapping occurs when the inter-species interaction

strength exceeds a crossover value. In the Fock regime the net number of atoms in the

transport is suppressed. However, with repulsive inter-species interaction the so-called

counterflow survives [22]. This means that the currents of the two species are equal

in absolute values and are in opposite directions. This conductive regime is named

super(counter)fluid phase (SCF). As discussed in Ref. [22], the system supports the

SCF phase of the two components when

U1 + U2 − 2U12 � 1 . (24)

When the condition

U1 + U2 = 2U12 (25)

is met, a phase separation (PS) is observed in the system and the system can be viewed

as composed by two totally independent Bose gases confined in the double-well potential.

On a physical level, this phase separation means that one bosonic component will occupy

the left well and the other the right well. If the inter-species interaction is attractive

and the hypothesis N1 = N2 ≡ N is verified, then, when

U1 + U2 − 2 |U12| � 1 (26)

a superfluid phase, in which the superfluid consists of pairs of bosons, is supported by

the system. This phase is named superfluid paired phase [31].

So far we have neglected the role played by the terms deriving from the overlaps

between φα’s localized in different wells. The presence of these terms makes the scenario

more complicated. However, also in this situation, under certain conditions, it is possible

to achieve a classification of the oscillations regimes. To this end, as discussed for the

single component case, we express the Hamiltonian (20) in terms of the operators Ĵx,i,

Ĵy,i, Ĵz,i defined in Eq. (12) and the SU(2) algebra invariant Ĵ2
i = (N̂i/2)(N̂i/2 + 1),

with N̂i being equal to n̂L,i + n̂R,i. Since we are assuming symmetric potential wells,

we can write that E0
L,i = E0

R,i ≡ Ei, UL,i = UR,i ≡ Ui. Neglecting constant terms, and

using the fact that Ni � 1, we get

Ĥ = (Ui − Vi)Ĵ
2
x,i − 2 (K −Kc,iNi −Kc,12Nj)Ĵz,i

+ ViĴ
2
z,i + 4((U12 − V12)Ĵx,1Ĵx,2 + V12Ĵz,1Ĵz,2)

+ U12(n̂L,1n̂R,2 + n̂R,1n̂L,2) + V12(n̂L,1n̂L,2 + n̂R,1n̂R,2) .

(27)
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Again, if (Ui − Vi) � Vi, V12, and (U12 − V12) � Vi, V12, we can consider only the terms

in Ĵ2
x,i, Ĵz,i, and Ĵx,1Ĵx,2. We will assume also that N1 = N2 ≡ N , U1 = U2 ≡ U ,

V1 = V2 ≡ V , and Kc,1 = Kc,2 ≡ Kc, and that the initial conditions are the same for

both the components. In analogy to the case of a single component AJJ, we define the

parameter R̃ as

R̃ =
((U − V ) + 4(U12 − V12))N

(K − (Kc +Kc,12)N)
. (28)

Again, we are able to distinguish the three regimes:

• Rabi: R̃ � 1;

• Josephson: 1 � R̃ � N2;

• Fock: N2 � R̃.

At this point, we remark that we are interested in determining the fully coherent

dynamical oscillations of population of the two bosonic components between the left

and right wells. Then, we proceed from the Heinseberg equations of motion for the

model Hamiltonian (20). These equations of motion control the temporal evolution of

âα,i. Again, by inserting the mean-field approximation valid in the superfluid regime -

〈âα,i〉 =
√
Nα,i exp(iθα,i), 〈n̂α,i〉 = Nα,i - into the aforementioned Heisenberg equations

of motion, one gets the coupled differential equations for the fractional imbalance

zi = (NL,i −NR,i)/Ni and relative phase θi = θR,i − θL,i of the two species:

żi(t) = − 2(Ki −Kc,iNi)

~

√
1 − z2

i (t) sin θi(t)

+
ViNi

2~
(1 − z2

i (t)) sin 2θi(t)

+
2

~
(V12

√
1 − z2

j (t) cos θj(t)

+ Kc,12)Nj

√
1 − z2

i (t) sin θi(t)

θ̇i(t) =
Ui − Vi

~
Nizi(t) +

2(Ki −Kc,iNi)

~
zi(t) cos θi(t)√

1 − z2
i (t)

− ViNi

2~
zi(t) cos 2θi(t) +

U12 − V12

~
Njzj(t)

− 2

~
(V12

√
1 − z2

j (t) cos θj(t)

+ Kc,12)Nj
zi(t) cos θi(t)√

1 − z2
i (t)

.

(29)

4. Gross-Pitaevskii equations predictions: comparison with ordinary

differential equations results

So far we have discussed how AJJs dynamics can be described by means of the ODEs,

i.e. Eqs. (19) and (29). We know that AJJs dynamics can be analyzed, in the mean-field
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approximation, in terms of partial differential equations, i.e. the GPEs. This description

can be achieved proceeding from the Heisenberg motion equations for the field operators

Ψ̂i(r, t), (i = 1, 2), associated to the Hamiltonian (4), that is

i~∂tΨ̂i = [Ψ̂i, Ĥ] . (30)

The average - denoted by 〈...〉 - of both sides of Eq. (30) evaluated with respect to the

coherent state, provides the two coupled GPEs

i~
∂Ψi

∂t
= − ~2

2mi
∇2Ψi + [Vtrap(r) + gi|Ψi|2 + gij|Ψj|2]Ψi . (31)

The macroscopic wave functions Ψi(r, t) = 〈Ψ̂i(r, t)〉 of interacting BECs in the trapping

potential Vtrap(r) at zero-temperature satisfy Eq. (31). The wave function Ψi(r, t) is

subject to the normalization condition
∫
d3r |Ψi(r, t)|2 = Ni . (32)

We are interested to study the dynamical oscillations of the populations of each

condensate between the left and right wells when the the barrier is large enough so

that the link is weak. To exploit the strong harmonic confinement in the (x-y) plane

and get the effective one-dimensional (1D) equations describing the dynamics in the z

directions, we write the Lagrangian associated to the GPE equations in (31)

L =

∫
d3r

([ ∑

i=1,2

Ψ̄i(i~
∂

∂t
+

~2

2mi

∇2)Ψi

− Vtrap(r)|Ψi|2 −
gi

2
|Ψi|4

]
− gij|Ψi|2|Ψj|2

)
,

(33)

where Ψ̄i denotes the complex conjugate of Ψi, and i 6= j; then, by following the

decomposition (8) and the Gaussian approximation for the radial part of wave function,

we adopt the ansatz

Ψi(x, y, z, t) =
1√
πa⊥,i

exp
[
− x2 + y2

2a2
⊥,i

]
fi(z, t) , (34)

where the field fi(z, t) obey to
∫ +∞
−∞ dz|fi(z)|2 = Ni, so that the normalization condition

given by Eq. (32) is satisfied. Note that the Gaussian ansatz with the transverse width

simply given by a⊥,i is reliable under very strong transverse confinements, namely when

g̃i|fi|2 � 2 ~ωi [32]. By inserting the ansatz (34) in Eq. (33) and performing the

integration in the radial plane, we obtain the effective 1D Lagrangian for the field

fi(z, t). Such an effective 1D Lagrangian reads

L̃ =

∫
dz

([ ∑

i=1,2

f̄i(i~
∂

∂t
+

~2

2mi

∂2

∂z2
)fi

− (εi + VDW (z))|fi|2 −
g̃i

2
|fi|4

]
− g̃ij|fi|2|fj|2

)
,

(35)
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Figure 2. Fractional imbalance z(t) vs. time for single component atomic Josephson
junctions. The parameters of the double-well potential (2) are chosen to be b = 1
and z0 = 3. The dashed line represents data from the integration of GPE (37), the
continuous line represents data from the integration of ODEs (19), and the dot-dashed
one represents data from the integration ODEs (19) with Kc = V = 0. We have set
N = 200 and K = 4.955 × 10−3. We have used the initial conditions z(0) = 0.6 and
θ(0) = 0. In the top panels (from left to right): U = 0.05 K, Kc = −1.842 × 10−6,
V = 2.268× 10−7; U = 0.1 K, Kc = −3.684× 10−6, V = 4.535× 10−7. In the bottom
panels (from left to right): U = 0.2 K, Kc = −7.368 × 10−6, V = 9.070 × 10−7;
U = 0.5 K, Kc = −1.842× 10−5, V = 2.268× 10−6. Time is measured in units of ω−1

and energies are measured in units of ~ω.

where εi is given by εi =
~2

2mia2
⊥,i

+
miω

2
i a

2
⊥,i

2
. By varying L̃ with respect to f̄i, we obtain

the 1D GPE for the field fi

i~
∂fi

∂t
= − ~2

2mi

∂2fi

∂z2
+ [εi + VDW (z) + g̃i|fi|2 + g̃ij|fj|2]fi . (36)
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Figure 3. Phase diagrams of the fractional imbalance z(t) vs. macroscopic phase θ(t)
for single component atomic Josephson junctions. The parameters of the double-well
potential (2) are the same as in Fig. 2. In both the panels we have set N = 200 and
K = 4.955× 10−3.
Left panel: the dashed line represents data from the ODE (19) with U = 0.05 K and
Kc = V = 0; the continuous line represents data from the ODE (19) with U = 0.05 K,
Kc = −1.842× 10−6 and V = 2.268× 10−7.
The right panel shows the phase diagram for the self-trapping. In this panel the
dashed line represents data from the ODE (19) with U = 0.2 K and Kc = V = 0; the
continuous line represents data from the ODE (19) with U = 0.2 K, Kc = −7.368×10−6

and V = 9.070× 10−7. Initial conditions are the same as in Fig. 2. Time is measured
in units of ω−1 and energies are measured in units of ~ω.

In the presence of a single bosonic component, g12 = 0; then, the two coupled 1D GPEs

Eq. (36), omitting the species index i, reduce to

i~
∂f

∂t
= − ~2

2m

∂2f

∂z2
+ [ε + VDW (z) + g̃|f |2]f . (37)

Now, we observe that it is possible to write the fields fi, (i = 1, 2), by using the two-mode

approximation as done, for example, in Ref. [17]

fi(z, t) = ψL,i(t)φL,i(z) + ψR,i(t)φR,i(z)

ψα,i(t) =
√
Nα,i(t) exp(iθα,i(t)) , (38)

with φα,i(z) constructed as discussed in Sec. III, see Eq. (9). Then, one takes into

account the overlaps both between φα’s localized in the same well and between φα’s

localized in different wells. By following the same path as in Ref. [17], when the inter-

species coupling constant g12 is finite, it is possible to recover Eqs. (29) for binary AJJs,

while for g12 equal to zero one gets back the Eqs. (19) for single component AJJs .

At this point - both for single component and for two components AJJs - we may

compare the predictions of the ODEs, Eqs. (19) and (29), and those of the GPEs,

Eqs. (37) and (36). The results of this analysis are reported in Fig. 2 for the single

component case, and in Figs. 4, 6 for the two components case. In obtaining Fig. 2

we have fixed the parameters b and z0 of the double-well potential (2). Then, by using

the functions (9) into the third of Eqs. (11), we have obtained the tunneling amplitude
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Figure 4. Fractional imbalance zi(t) of the two bosonic species vs. time. The
parameters of the double-well potential (2) are chosen to be b = 1 and z0 = 3. Here,
the dashed line represents data from the integration of GPEs (36), the continuous line
represents data from the integration of ODEs (29), and the dot-dashed line represents
data from the integration ODEs (29) with Kc,i = Vi = Kc,12 = V12 = 0 (i.e. the ODEs
analyzed in Ref. [17]). We have fixed N1 = 200 and N2 = 100. Moreover, K1 =
K2 ≡ K = 4.955 × 10−3, U1 = U2 ≡ U = 0.1 K, Kc,1 = Kc,2 ≡ Kc = −3.684 × 10−6,
V1 = V2 ≡ V = 2.268 × 10−7. We used the initial conditions z1(0) = 0.5 = −z2(0)
and θ1(0) = θ2(0) = 0. In the top panels we set U12 = −U/20, Kc,12 = −Kc/20,
V12 = −V/40, in the middle panels U12 = −U/2, Kc,12 = −Kc/2, V12 = −V/4, and in
the bottom panels U12 = −U , Kc,12 = −Kc, V12 = −V/2. Time is measured in units
of (ω1)−1 = (ω2)−1 ≡ ω−1 and energies are measured in units of ~ω.
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Figure 5. Phase diagrams of the fractional imbalance zi(t) vs. macroscopic phase
θi(t) of the two bosonic species. The parameters of the double-well potential (2)
are the same as in Fig. 4. In both the panels we have set N1 = 200, N2 = 100,
K1 = K2 ≡ K = 4.955 × 10−3, U1 = U2 ≡ U = 0.1K. In both the panels, the
dashed line represents data from the ODEs (29) with U12 = −U/2 and Kc,i = Vi =
Kc,12 = V12 = 0, the continuous line represents data from the ODEs with U12 = −U/2,
Kc,1 = Kc,2 ≡ Kc = −3.684 × 10−6, V1 = V2 ≡ V = 2.268 × 10−7, Kc,12 = −Kc/2,
V12 = −V/4. Initial conditions are the same as in Fig. 4. Time is measured in units
of (ω1)−1 = (ω2)−1 ≡ ω−1 and energies are measured in units of ~ω.
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Figure 6. Fractional imbalance zi(t) of the two bosonic species vs. time. In the
double-well potential (2) we set b = 1 and z0 = 3. In this figure the dashed line
represents data from the integration of GPEs (36), the continuous line represents data
from the integration of ODEs (29), and the dot-dashed line represents data from the
integration ODEs (29) with Kc,i = Vi = Kc,12 = V12 = 0 (i.e. the ODEs analyzed
in Ref. [17]). We have fixed N1 = 200 and N2 = 100. Moreover, K1 = K2 ≡
K = 4.955 × 10−3, U1 = U2 ≡ U = 0.1 K, Kc,1 = Kc,2 ≡ Kc = −3.684 × 10−6,
V1 = V2 ≡ V = 2.268×10−7, U12 = −2 U , Kc,12 = −2 Kc V12 = −V . Initial conditions
are the same as in Fig. 4. Time is measured in units of (ω1)−1 = (ω2)−1 ≡ ω−1 and
energies are measured in units of ~ω.
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Figure 7. Phase diagrams of the fractional imbalance zi(t) vs. macroscopic phase
θi(t) of the two bosonic species for the self-trapping. The parameters of the double-well
potential (2) are the same as in Fig. 4. In both the panels we have set N1 = 200,
N2 = 100, K1 = K2 ≡ K = 4.955 × 10−3, U1 = U2 ≡ U = 0.1 K. In both the
panels, the dashed line represents data from the ODEs (29) with U12 = −2 U and
Kc,i = Vi = Kc,12 = V12 = 0, the continuous line represents data from the ODEs
with U12 = −2 U , Kc,1 = Kc,2 ≡ Kc = −3.684× 10−6, V1 = V2 ≡ V = 2.268 × 10−7,
Kc,12 = −2Kc, V12 = −V . Initial conditions are the same as in Fig. 4. Time is
measured in units of (ω1)−1 = (ω2)−1 ≡ ω−1 and energies are measured in units of ~ω.

K. We have keeped fixed K and we have plotted the predictions of the ODEs (19) for

z(t) in correspondence to different intra-species interactions both when Kc and V are

zero - dot-dashed lines - and in the presence of Kc and V - continuous lines; the dashed

lines represent z(t) obtained by numerically integrating the GPE (37). In Figs. 4, 6

we have fixed the tunneling amplitude Ki - as done previously in the single component

case - and the intra-species interaction Ui, and we have plotted the predictions of the

ODEs (29) for zi(t) in correspondence to different inter-species interactions both when

Kc,i, Vi, Kc,12, V12 are all equal to zero - dot-dashed lines - and in the presence of

Kc,i, Vi, Kc,12, V12 - continuous lines; again, the dashed lines represent zi(t) obtained

by numerically integrating the GPEs (36). In the two top panels of Fig. 2 and in all

the panels of Fig. 4, we have plotted the temporal evolution of the bosonic fractional

imbalances z when they oscillate around a zero time-averaged value, i.e. 〈z(t)〉 = 0. We

see that the usually-neglected nonlinear terms play a crucial role in order to improve

the agreement between the GPEs the ODEs predictions. In fact, neglecting these terms,

the solutions of ODEs and GPEs diverge rather rapidly, as shown by dot-dashed lines in

Fig. 2 - single component AJJs - and by dot-dashed lines in Fig. 4, for two components

AJJs. The two bottom panels of Fig. 2 show the results of our analysis when the intra-

species interaction amplitude U is sufficiently large to induce oscillations of z(t) around

a non zero time-averaged value, that is the self-trapping. We see that the inclusion

within the description of the system of the usually-neglected nonlinear terms produces

an improvement in the agreement between the ODEs and GPE predictions. In the

two components case, from Fig. 4 we can see that the nonlinearity associated to the
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intra-species interaction is not strong enough to induce oscillations of zi around a non

zero time-averaged value. Nevertheless, if the inter-species interaction is sufficiently

large, oscillations of zi around 〈zi(t)〉 6= 0 are observed. We have reported this kind of

behavior for both the components in Fig. 6. From this figure we can see that, especially

in the case of large inter-species interaction, the role played by the parameters describing

the overlaps between φα’s localized in different wells becomes essential to improve the

agreement between the ODEs and the GPEs predictions. Moreover, in Fig. 3 - single

component AJJs - and in Fig. 5 and Fig. 7 - two components AJJs - we show the

phase-plain portraits of the dynamical variables zi and θi for different values of the

macroscopic parameters (11) and (22) (see Figs. 3, 5, 7 for the details). These figures

show the comparison between the trajectories in the phases space obtained by integrating

the ODEs in the absence of the usually-neglected nonlinear terms (dashed lines), and

the trajectories obtained from the improved version of ODEs (continuous lines). In

particular, the left and the right panels of Fig. 3 show the phases space trajectories for

the Josephson and self-trapping regimes, respectively, for single component AJJs. For

two components AJJs, in Fig. 5 we have plotted the phases space trajectories for the

Josephson regime, and in Fig. 7 we have plotted the phases space trajectories when the

system is self-trapped. From Figs. 3, 5, 7 we can see that the trajectories predicted

when the ODEs Eqs. (19) and (29) are solved in the absence of the usually-neglected

nonlinear terms are sufficiently close to those predicted when these ODEs are solved in

the presence of the aforementioned terms. Then, the dynamical evolution predicted by

the standard ODEs reveals to have a good degree of reliability.

5. Conclusions

We have analyzed atomic Josephson junctions for a single Bose gas and for binary

mixtures of bosons in a double-well potential along the axial direction and a strong

harmonic confinement in the transverse directions. We have shown that for both the

cases the Hamiltonian belongs to the extended Bose-Hubbard model and besides the

density-density interaction it contains the pair hopping and collisionally induced hopping

terms. These terms derive from the overlaps between wave functions localized in different

potential wells. We started from these Hamiltonian models and established connections

with spin Hamiltonians. Proceeding from these, we have discussed the possibility to

discriminate, under certain conditions, different dynamical regimes sustained by the

bosonic junctions. From the mean field analysis of the equations of motion for the

single-particle operators involved in the extended Bose-Hubbard Hamiltonians, we have

obtained the ordinary differential equations that control the macroscopic dynamics

of the atomic Josephson junctions. Within the analysis of the atomic Josephson

junctions macroscopic dynamics we have plotted the phase-plane portraits of the

dynamical variables (fractional imbalance-relative phase) showing that the inclusion of

the aforementioned collisionally induced hopping and pair hopping terms are crucial to

get good agreement between the dynamics of the Josephson model described by ordinary
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differential equations and the one of the time dependent Gross-Pitaevskii equations,

especially when the atom-atom interaction is strong.

Finally, it is important to remark that the obtained results are of general validity

also for more confining (e.g. not saturating to zero at large distances) double-well po-

tentials. Nevertheless, it is possible to design a model of pair hopping and collisionally

induced hopping for bosonic atoms that is physically meaningful when optical lattices

play the role of confining potentials. Physical effects related to pair hopping and colli-

sionally induced hopping should be observable in generalizations of current experiments

to detect the superfluid and insulating phases [33].
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