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Abstract. We present an ab initio study of the HeH+ molecule. Using the quantum
chemistry package MOLPRO and a large adapted basis set, we have calculated the
adiabatic potential energy curves of the first 20 1Σ+, 19 3Σ+, 12 1Π, 9 3Π, 4 1∆
and 2 3∆ electronic states of the ion in CASSCF and CI approaches. The results
are compared with previous works. The radial and rotational non-adiabatic coupling
matrix elements as well as the dipole moments are also calculated. The asymptotic
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states is also studied. Using the radial couplings, the diabatic representation is defined
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1. Introduction

HeH+, or hydrohelium cation, is thought to be the first molecular species to appear in the

Universe, its formation being due to radiative association between H+ and He (Roberge

& Dalgarno 1982). In addition, the high fractional abundance of HeH+ should allow

its detection in stars formed from primordial material such as the recently discovered

very metal-poor stars HE1327-2326 and HE0107-5240 (Frebel et al 2005) or in He-rich

environment as in the white dwarfs SDSS J133739+000142 and LHS 3250 (Harris et al

2004). The inclusion of HeH+ in the existing atmospherical models of those objects could

have serious implications. It should also be present in the planetary nebula NGC7027

but has eluded observation (Moorhead et al 1988). In fact, up to now, none of the

several attempts to extraterrestrial observation of HeH+ have been conclusive (Engel et

al 2005). Considering that the excited states of HeH+ are too shallow or unstable to

support a visible or UV spectrum, those assessments have risen up a number of studies

to obtain theoretically and experimentally the most accurate rotational spectrum of

HeH+ in the ground state, culminating with the recent work of Stanke et al (Stanke et

al 2006). In addition to extremely accurate knowledge of the spectroscopic properties

of the hydrohelium cation, the various mechanisms leading to its formation or decay

must be investigated to obtain a correct estimation of the population of the levels. In

this context, the first experimental data for the photodissociation cross section in the

far UV has been obtained recently using the free electron laser FLASH at Hambourg

(Pedersen et al 2007), showing important disagreement with the previous theoretical

works and motivating new calculations (Sodoga et al 2009, Dimitriu & Saenz 2009).

Despite the fact that its astrophysical observation is still questionable, HeH+ is

clearly present in helium-hydrogen laboratory plasmas. Indeed, since its first observation

in mass spectrometry of discharges in mixtures of helium and hydrogen in 1925

(Hogness & Lunn, 1925), HeH+ has been found to be one of the major components

in other He/H plasma sources such as high voltage glow discharges, synchrotron

devices, inductively coupled plasma generators, capacitively coupled RF discharges,

and magnetically confined plasmas, the last one playing of course a very special role in

today’s development of thermonuclear fusion. Helium emission lines have been proposed

recently as a diagnostic tool for divertor regions of the tokamak. However, to model the

intensity of these emission lines, a knowledge of the cross sections of the charge transfer

processes which populate the emitting levels of helium up to n = 4 is essential. At low

or very low collisional energy, the theoretical description of charge transfer requires a

molecular approach and the calculation of the excited states of the HeH+ quasi molecule

(Rosmej et al 2006).

From a theoretical point of view, the hydrohelium cation is the simplest closed-shell

heteronuclear molecule and therefore a considerable amount of work has been dedicated

to high precision calculations of its ground state, including accurate description of

relativistic and non-adiabatic effects (Stanke et al 2008). In a lesser measure, the first

excited states have also been used to assess the efficiency of different ab initio methods
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to describe states that are not the lowest of their symmetry (Richings & Karadakov

2007) or to understand and remedy the failure of time-dependent density functional

theory to provide accurate charge transfer excitation energies (Giesbertz et al 2008).

The most complete study of the excited states of HeH+ has been performed by Green et

al in a series of four articles (Green et al 1974a, 1974b, 1976, 1978). States up to n = 3

(where n is the highest principal quantum number in the dissociation configuration of

hydrogen or helium) have been calculated using a CI (Configuration Interaction) method

with a combination of Slater-type orbitals and ellipsoidal orbitals. Despite the fact that

this exhaustive study includes the calculation of dipole matrix elements and radial non-

adiabatic couplings, its accuracy has never been assessed and the use of these results

directly in quantum molecular dynamics programs is problematic due to the lack of data

for medium or large internuclear distances.

While the first excited states of the neutral HeH molecule emanate from the

excitation of the hydrogen atom alone, the first part of the electronic spectrum of HeH+

results from a mixing between states arising from single excitations of neutral helium or

hydrogen. The higher part of the spectrum is built upon single excitations of the He+

cation as well as double excitations of neutral helium and of the ground state of the H−

anion.

The purpose of this article is to reexamine the first part of the electronic spectrum

of HeH+ molecule and to extend its description up to n = 4 with high-level ab initio

quantum chemistry methods in order to provide adequate material required for both

spectroscopy and dynamical studies such as charge transfer processes in excited states

(Loreau et al 2010) or photodissociation in the far UV domain (Sodoga et al 2009). In

addition, the diabatic representation of the potential energy curves is investigated. The

results of the present work are compared to the corresponding data in the literature,

when available.

All the data described in this paper are accessible on demand to the corresponding

author of this article.

2. One electron basis set and asymptotic atomic energy levels

One problem encountered in this work is the construction of a reliable gaussian basis

set allowing the description of the formation of the HeH+ molecular ion from the first

Rydberg states of the H and He atoms up to n = 4. As mentioned above, the first

part of the electronic spectrum corresponds indeed asymptotically to the excitation of

both hydrogen and neutral helium. Therefore, our basis set consists for each atom of

the aug-cc-pV5Z basis set (Dunning, 1989; Woon and Dunning, 1994) augmented by

[3s, 3p, 2d, 1f ] Gaussian type orbitals optimized to reproduce the spectroscopic orbitals

of the He and H excited states. A different atomic basis has been developed up to

n = 4 for He depending on whether the molecular state under consideration is a

singlet or a triplet state. Those additional sets of orbitals have been obtained by

fitting Slater type orbitals from calculations performed for each atomic state using the
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AUTOSTRUCTURE package (Eissner et al 1974, Badnell 1986, 1997). In total, a

[8s,7p,5d,3f,1g] basis set as been used for both atoms. The additional orbitals and their

contraction coefficients are given in the appendix.

For all values of `, this basis set reproduces the exact non-relativistic atomic levels

of hydrogen up to n = 3 within 15 cm−1. The electronegativity of H− deviates from the

experimental value from 37 cm−1 in a full CI level of approximation. Different gaussian

basis sets have already been proposed in the literature mainly for the calculation of the

ground state of HeH+ (Jurek et al 1995 and references therein) or the ground and excited

states of the neutral HeH molecule which correspond asymptotically to excitations of H

up to n = 3 (van Hemert and Peyerimhoff 1991). Using this last atomic basis set, the

levels for the hydrogen atom are reproduced within 20 cm−1 for the s and p states and

within 70 cm−1 for the d state.

In the non-relativistic approximation, the 1s nl (n = 1 − 3) levels of helium are

described at a full CI level by our basis set within 115 cm−1 for s states, 60 cm−1 for p

states and 30 cm−1 for d states.

For both atoms, the s states for n = 4 are more difficult to reproduce, mainly

due to the lack of upper states and the large number of lower states, but are still in a

reasonable agreement (145 cm−1 at most) with the exact values. The other n = 4 states

are reproduced within 42 cm−1 for both atoms.

In conclusion, although this basis set is rather small, it is adapted to the HeH+

system and will allow a correct description of the potential energy curves as well as the

determination of the non-adiabatic couplings which, in our approach, require CASSCF

(Complete Active Space Self-Consistent Field) calculations.

3. Potential energy curves

The Born-Oppenheimer adiabatic potential energy curves (PEC) for the lowest

molecular states corresponding asymptotically to excitation in the n = 1−4 atomic shells

have been calculated as a function of the internuclear distance R using the MOLPRO

molecular structure package (Werner et al 2006). This includes 20 1Σ+, 19 3Σ+, 12
1Π, 9 3Π, 4 1∆ and 2 3∆ states, which constitutes a total of 66 electronic states. All

these states, as well as their energy at R = 70 a.u. and their dissociation products, are

presented in Tables 1 to 6. To obtain the PEC, we performed a state-averaged CASSCF

(Werner and Knowles 1985, Knowles and Werner 1985) using the active spaces listed in

table 7, followed by a full CI.

As we will not consider any spin-dependent interaction, the singlet and triplet states

can be calculated separately.

3.1. Adiabatic n = 1 potential energy curves

The n = 1 states consist of two 1Σ+ and one 3Σ+ states and are shown in figure 1. All

three are bound states that support a vibrational structure.
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Table 1. 1Σ+ states included in the calculations and their dissociation product. In this
table, we use the notation H(nl) or He(1snl 1L) to denote the electronic wavefunctions
of the corresponding electronic states. Due to the He+ charge, there is a Stark effect
on the hydrogen levels (see text). The mixing coefficients have been calculated by
diagonalizing the perturbation matrix due to the electric field.

m Energy (hartree) Dissociative atomic wavefunctions †
at R = 70 a.u.

n = 1 1 -2.90324307 He(1s2)
2 -2.49995502 H(1s)

n = 2 3 -2.14589424 He(1s2s 1S)
4 -2.12556499 1√

2
H(2s) + 1√

2
H(2p)

5 -2.12433765 1√
2
H(2s) - 1√

2
H(2p)

6 -2.12374055 He(1s2p 1P o)

n = 3 7 -2.06157066 He(1s3s 1S)
8 -2.05758300 1√

3
H(3s) - 1√

2
H(3p) + 1√

6
H(3d)

9 -2.05632793 He(1s3d 1D)

10 -2.05537040 1√
3
H(3s) -

√
2
3H(3d)

11 -2.05379172 He(1s3p 1P o)
12 -2.05411889 1√

3
H(3s) + 1√

2
H(3p) + 1√

6
H(3d)

n = 4 13 -2.03701879 He(1s4s 1S)
14 -2.03502013 1

2H(4s) - 3
2
√

5
H(4p) + 1

2H(4d) - 1
2
√

5
H(4f)

15 -2.03266813 He(1s4f 1F o)
16 -2.03194805 1

2H(4s) - 1
2
√

5
H(4p) - 1

2H(4d) + 3
2
√

5
H(4f)

17 -2.03027998 He(1s4d 1D)
18 -2.02961868 1

2H(4s) + 1
2
√

5
H(4p) - 1

2H(4d) - 3
2
√

5
H(4f)

19 -2.02851159 He(1s4p 1P o)
20 -2.02802390 1

2H(4s) + 3
2
√

5
H(4p) + 1

2H(4d) + 1
2
√

5
H(4f)

† It is understood that H(nl) is accompanied by He+(1s) and that He(1snl 1L)
is accompanied by H+.

Our calculations reproduce correctly the equilibrium distance of 1.463 a.u. of

the X 1Σ+ state. The dissociation energy of the ground state calculated by Kolos

and Peek (1976) is De = 16 455.64 cm−1 and a more accurate value of 16 456.51

cm−1, which include diagonal Born-Oppenheimer corrections, was given by Bishop and

Cheung (1979). From an experimental point of view, a numerical procedure particularly

successful when data are fragmentary has been employed by Coxon and Hajigeorgiou

(1999) to inverse the spectroscopic line positions of the ground state potential of HeH+.

A remarkable agreement has been obtained with the theoretical values of Bishop and

Cheung (1979).

The value obtained in this work for the dissociation energy is of 16 464 cm−1. The

energy depth in our calculation is therefore less than 9 cm−1 too shallow and is to be

compared to the result of van Hemert and Peyerimhoff (1990) which is 298 cm−1 too

large. Following these authors, this discrepancy is indicative of a basis set deficiency.
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Table 2. 3Σ+ states states included in the calculations and their dissociation product.
In this table, we use the notation H(nl) or He(1snl 3L) to denote the electronic
wavefunctions of the corresponding electronic states. Due to the He+ charge, there
is a Stark effect on the hydrogen levels (see text). The mixing coefficients have been
calculated by diagonalizing the perturbation matrix due to the electric field.

m Energy (hartree) Dissociative atomic wavefunctions †
at R = 70 a.u.

n = 1 1 -2.49996040 H(1s)
n = 2 2 -2.17513428 He(1s2s 3S)

3 -2.13288467 He(1s2p 3P o)
4 -2.12557046 1√

2
H(2s) + 1√

2
H(2p))

5 -2.12434310 1√
2
H(2s) - 1√

2
H(2p)

n = 3 6 -2.06880105 He(1s3s 3S)
7 -2.05841457 He(1s3p 3P o)
8 -2.05758856 1√

3
H(3s) - 1√

2
H(3p) + 1√

6
H(3d)

9 -2.05537599 1√
3
H(3s) -

√
2
3H(3d)

10 -2.05520640 He(1s3d 3D)
11 -2.05379735 1√

3
H(3s) + 1√

2
H(3p) + 1√

6
H(3d)

n = 4 12 -2.03814067 He(1s4s 3S)
13 -2.03562121 He(1s4p 3P o)
14 -2.03292454 1

2H(4s) - 3
2
√

5
H(4p) + 1

2H(4d) - 1
2
√

5
H(4f)

15 -2.03195557 1
2H(4s) - 1

2
√

5
H(4p) - 1

2H(4d) + 3
2
√

5
H(4f)

16 -2.02962842 He(1s4d 3D)
17 -2.02955929 1

2H(4s) + 1
2
√

5
H(4p) - 1

2H(4d) - 3
2
√

5
H(4f)

18 -2.02803385 3
2
√

5
H(4p) + 1

2H(4d) + 1
2
√

5
H(4f)

19 -2.01655785 He(1s4f 3F o)

† It is understood that H(nl) is accompanied by He+(1s) and that He(1snl 3L)
is accompanied by H+.

The Basis Set Superposition Effect (BSSE) has been evaluated by the counterpoise

method and has been found to be negligible.

In addition, using a B-spline basis set method, we have resolved the vibrational

nuclear equation for 4HeH+ and obtained 12 vibrational bound states, as was found in

the recent paper of Stanke et al (2006).

The A 1Σ+ and the a 3Σ+ states have been studied by Kolos (1976) in the adiabatic

approximation. They both present weakly attractive potential curves with a minimum

at large internuclear distances, Re = 5.53 a.u. and 4.47 a.u. for the singlet and the

triplet (respectively), to be compared with our values of 5.53 a.u. and 4.45 a.u. We have

determined the dissociation energies De = 849.71 cm−1 for the A state and De = 379.70

cm−1 for the a state. A study of the vibrational structure of the a 3Σ+ state of 4HeH+

has been performed by Chibisov et al (1996) using the potential energy curve of Michels

(1966) extended by an analytical expression in the asymptotic region. They found that

this potential supports 5 bound vibrational levels, while our resolution of the vibrational
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Table 3. 1Π states included in the calculations and their dissociation product. In this
table, we use the notation H(nl) or He(1snl 1L) to denote the electronic wavefunctions
of the corresponding electronic states. Due to the He+ charge, there is a Stark effect
on the hydrogen levels (see text). The mixing coefficients have been calculated by
diagonalizing the perturbation matrix due to the electric field.

m Energy (hartree) Dissociative atomic wavefunctions †
at R = 70 a.u.

n = 2 1 -2.12491660 H(2p)
2 -2.12368473 He(1s2p 1P o)

n = 3 3 -2.05639837 1√
2
H(3p) + 1√

2
H(3d)

4 -2.05616425 He(1s3d 1D)
5 -2.05456333 1√

2
H(3p) - 1√

2
H(3d)

6 -2.05419837 He(1s3p 1P o)

n = 4 7 -2.03379403 1√
3
H(4p) - 1√

2
H(4d) + 1√

6
H(4f)

8 -2.03345358 He(1s4f 1F o)

9 -2.03081819 1√
3
H(4p) -

√
2
3H(4f)

10 -2.03065750 He(1s4d 1D)
11 -2.02892558 1√

3
H(4p) + 1√

2
H(4d) + 1√

6
H(4f)

12 -2.02877573 He(1s4p1P o)

† It is understood that H(nl) is accompanied by He+(1s) and that He(1snl 1L)
is accompanied by H+.

Table 4. 3Π states included in the calculations and their dissociation product. In this
table, we use the notation H(nl) or He(1snl 3L) to denote the electronic wavefunctions
of the corresponding electronic states. Due to the He+ charge, there is a Stark effect
on the hydrogen levels (see text). The mixing coefficients have been calculated by
diagonalizing the perturbation matrix due to the electric field.

m Energy (hartree) Dissociative atomic wavefunctions †
at R = 70 a.u.

n = 2 1 -2.13282525 He(1s2p 1P o)
2 -2.12491845 H(2p)

n = 3 3 -2.05814410 He(1s3p 1P o)
4 -2.05640023 1√

2
H(3p) + 1√

2
H(3d)

5 -2.05526105 He(1s3d 1D)
6 -2.05456518 1√

2
H(3p) - 1√

2
H(3d)

n = 4 7 -2.03371307 He(1s4p1P o)
8 -2.03323584 1√

3
H(4p) - 1√

2
H(4d) + 1√

6
H(4f)

9 -2.03081642 1√
3
H(4p) -

√
2
3H(4f)

† It is understood that H(nl) is accompanied by He+(1s) and that He(1snl 3L)
is accompanied by H+.
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Table 5. 1∆ states included in the calculations and their dissociation product. In this
table, we use the notation H(nl) or He(1snl 1L) to denote the electronic wavefunctions
of the corresponding electronic states. Due to the He+ charge, there is a Stark effect
on the hydrogen levels (see text). The mixing coefficients have been calculated by
diagonalizing the perturbation matrix due to the electric field.

m Energy (hartree) Dissociative atomic wavefunctions †
at R = 70 a.u.

n = 3 1 -2.05540649 H(3d)
2 -2.05537712 He(1s3d 1D)

n = 4 3 -2.03206818 He(1s4f 1F o)
4 -2.03204221 1√

2
H(4d) + 1√

2
H(4f))

† It is understood that H(nl) is accompanied by He+(1s) and that He(1snl 1L)
is accompanied by H+.

Table 6. 3∆ states included in the calculations and their dissociation product. In this
table, we use the notation H(nl) or He(1snl 3L) to denote the electronic wavefunctions
of the corresponding electronic states. Due to the He+ charge, there is a Stark effect
on the hydrogen levels (see text). The mixing coefficients have been calculated by
diagonalizing the perturbation matrix due to the electric field.

m Energy (hartree) Dissociative atomic wavefunctions †
at R = 70 a.u.

n = 3 1 -2.05543591 He(1s3d 1D) + H+

2 -2.05540833 He+(1s) + H(3d)

† It is understood that H(nl) is accompanied by He+(1s) and that He(1snl 3L)
is accompanied by H+.

Table 7. Active spaces used in state-averaged CASSCF calculations.

n value 1Σ+ 3Σ+ 1Π 3Π 1,3∆

1 (6σ, 2π) (X1Σ+) (9σ, 4π, 1δ)
(9σ, 4π, 1δ) (A1Σ+)

2 (9σ, 4π, 1δ) (9σ, 4π, 1δ) (9σ, 4π, 1δ) (9σ, 4π, 1δ)
3 (12σ, 6π, 4δ) (12σ, 8π, 2δ) (4σ, 8π, 6δ) (4σ, 10π, 2δ) (6σ, 4π, 4δ)
4 (28σ, 2δ) (28σ) (2σ, 13π, 2δ) (6σ, 4π, 4δ)

motion produced 6 bound levels. However, the binding energy of the last level is less

than 1 cm−1. The largest difference between our energy values and those of Chibisov et

al is of 2 cm−1. It is also important to note that the non-adiabatic couplings between

the 3Σ+ states have been neglected in both calculations and could modify significantly

the energy of the levels, as it has been shown already for the vibrational structure of the

ground state (Stanke et al 2006). Finally, in our calculations, we found that 4 bound

vibrational levels are supported by the A 1Σ+ state of 4HeH+.
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Figure 1. Adiabatic potential energy curves (in hartrees) of the n = 1 states.
Comparison with the work of Kolos (1976) and Kolos & Peek (1976).

3.2. Adiabatic potential energy curves for the first Rydberg 1,3Σ+ states

The n = 2−4 states of HeH+ can be divided in two groups. The first category dissociated

asymptotically into H+ and neutral He in an excited 1s n` 1,3L state, while the second

one dissociated into He+ in its 1s ground state and an excited n` state of H. Both

categories of states alternated along the electronic spectrum resulting in a large number

of avoided crossings leading to charge exchange dynamics. For the Σ symmetry, the

total number of states up to n = 4 is 20 for the singlets and 19 for the triplets. They are

shown in figures 2 and 3, respectively. In these figures, the states of the first category

are drawn in black while the states of the second category are in red.

The n = 2 manifolds have a very similar behaviour in both singlet and triplet spin

symmetries. However, for the singlet states an avoided crossing between the two highest

states occurs at an internuclear distance of 50 a.u. This crossing is understandable once

looking at the asymptotical behaviour of those two 1Σ+ states, which is governed by

the Stark effect. Indeed, at large internuclear distances, the system is composed of a

neutral atom, perturbed by an ion. The atomic dissociative states are He(1s2p 1P o) +

H+ and He+(1s) + H(2s), respectively for the highest and the lowest state.

If we restrict the description to quadratic effects in the field, the helium state

behaves asymptotically in the presence of the H+ charge as

E(R) = E0
He(1s2p 1P o) −

αHe(1s2p 1P o)

2R4
(1)

and the 2s state of H, under the electric field produced by He+, as

E(R) = E0
He+(1s)+H(2s) +

3

R2
−
αH(2s)

2R4
(2)
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Figure 2. Adiabatic potential energy curves for the n = 2 − 4 1Σ+ states. In black,
states dissociating into He(1snl 1L) + H+. In red, states dissociating into He+(1s) +
H(nl).

-2.25

-2.2

-2.15

-2.1

-2.05

-2

-1.95

-1.9

-1.85

-1.8

0 10 20 30 40 50

n=2

n=3
n=4

E (Eh)

R (a0)

Figure 3. Adiabatic potential energy curves for the n = 2 − 4 3Σ+ states. In black,
states dissociating into He(1snl 3L) + H+. In red, states dissociating into He+(1s) +
H(nl).
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where E0 represent the atomic energies. In addition, the |2s〉 state of hydrogen becomes
1√
2
|2s〉 − 1√

2
|2p〉.

The first-order Stark effect produces a term proportional to 1/R2, which vanishes

unless the atomic state is degenerate with a state of opposite parity (Goldman and

Cassar 2005). The term proportional to 1/R4 is due to the second-order Stark effect,

and the constant α is the dipole polarizability. The polarizabilities for the helium states

can be found in Yan (2000, 2002) while the polarizabilities for hydrogen are obtained

analytically (Radzig and Smirnov 1985). The result is that while the helium state

presents an almost flat asymptotic curve, the hydrogen state decreases to its atomic

value, and a crossing occur in the analytical model at R = 50 a.u., almost exactly as in

the ab initio calculation.

From figure 4, we see that the asymptotic n = 2 states are correctly described using

the Stark effect up to order 2. To a lesser extent, it is also the case of the n = 3 singlet

states (see figure 5): for example, the analytical model reproduces the crossing which

occurs at 90 a.u. between the eleventh and twelfth states dissociating respectively into

He+(1s) + H(3s) and He(1s3p 1P ) + H+ (see table 1).

In the Born-Oppenheimer approximation, in which the quantum chemical

calculations are performed, these crossings are avoided. However, the large amplitude

and the narrowness of the non-adiabatic couplings at those points indicates that a full

diagonal diabatic representation at the crossing is perfectly justified.
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Figure 4. Asymptotic behaviour of the three highest n = 2 1Σ+ states. The numbers
in subscript refer to the value of m as defined in table 1.

It is clear from the figures 2 and 3 that the number of avoided crossings increases

strongly with n and that their positions are shifted to larger internuclear distances.

Those avoided crossings mask partially the intrinsic oscillatory behaviour of the higher

states that has been observed in previous calculations (Boutalib and Gadea, 1992). This

behaviour has been related to the nodal structure of the Rydberg orbitals which may

start to be important in the n = 4 manifold and can be clearly seen in the last two
3Σ+ states. The second observation is that the states belonging to different manifolds
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Figure 5. Asymptotic behaviour of the five highest n = 3 1Σ+ states.

are very close in energy, especially at internuclear distances smaller than 10 a.u. In

addition, well-defined avoided crossings couple the last state of a manifold to the first

state of the next manifold at large internuclear distances (7 a.u. between n = 2 and

n = 3 and 18 a.u. between n = 3 and n = 4 for the singlet symmetry).

Finally, due to the presence of the n = 5 states, very close in energy and not

adequately described in our calculations, the representation of the highest n = 4 states

is probably less accurate than for the other members of the Rydberg series.

The comparison can be made with the previous work of Green et al (Green et al

1974a, 1974b, 1976, 1978) for the n = 2 singlet and triplet states in the range R = 1− 5

a.u. and with the data of Klüner et al (1999) for the 3 first singlet states in the range

R = 1 − 10 a.u. The different sets of results are very similar for both spin symmetry,

the present calculations being systematically more stable in energy.

We also note that Klüner et al (1999) have associated, at short internuclear

distances, the last state of the n = 2 manifold in their calculations as dissociating

into He(1s2p 1P o) + H+ while due to the crossing involving this state at 50 a.u., it

actually corresponds to He+(1s) + H(n = 2) (see table 1). This is very important since

these authors are interested in the electron transfer mechanism and they have eliminated

the last n = 2 state from their dynamical calculations.

For the n = 3 manifold, only Green et al provide a full set of results for both singlet

and triplet states. The differences with our data are more important than for the n = 2

states in both spin multiplicities, especially for the highest states which undergo avoided

crossings with the lowest n = 4 states.

Tables 8 and 9 give the location of all the major avoided crossing points for singlet

and triplet states which have been determined by an analysis of the calculated radial

non-adiabatic couplings (see section 4.1).
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3.3. Adiabatic potential energy curves for the first Rydberg 1,3Π and 1,3∆ states

The potential energy curves of the 1Π and 3Π states are presented in figures 6 and 7,

respectively. The PEC have again a very similar behaviour for both spin multiplicities.

Indeed, the first and the third state seem to present a shallow well, and we also see that

an avoided crossing between the last three n = 3 states occurs at R = 18 a.u. Finally,

the last n = 3 state and the first n = 4 state interact strongly at about 8 a.u.

Once again, the qualitative comparison with the results of Green et al for n = 2−3

is good but there are some differences. The avoided crossing mentioned above occurs at

R = 20 a.u. rather than at R = 18 a.u. in our work, and we also see that the energy

separation at the avoided crossing between the third and fourth state (internuclear

distance of about 8 a.u.) is larger in our calculation.
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Figure 6. Adiabatic PEC of the n = 2 − 4 1Π states. In black, states dissociating
into He(1snl 1L) + H+. In red, states dissociating into He+(1s) + H(nl).

Finally, the PEC for the ∆ states are presented in figure 8. They seem to be almost

independent of the spin multiplicity. In the work of Green et al , the two n = 4 PEC

present an avoided crossing, which is not the case in this work.

It should be noted that the calculation of the ∆ states is more difficult than for the

other symmetries. This is due to the fact that MOLPRO can only use abelian groups,

and the C2v subgroup of C∞v is used for the diatomic molecules. In this group, the

Σ+ and ∆ states are calculated within the same CI matrix diagonalization and it is

sometimes difficult to separate the states of those symmetries. The same is true for the

Φ states, which correspond to the same irreducible representations as the Π states in

C2v.



14

-2.15

-2.1

-2.05

-2

-1.95

-1.9

-1.85

0 10 20 30 40 50

n=2

n=3

n=4

E (Eh)

R (a0)

Figure 7. Adiabatic PEC of the n = 2 − 4 3Π states. In black, states dissociating
into He(1snl 3L) + H+. In red, states dissociating into He+(1s) + H(nl).
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Figure 8. Adiabatic PEC of the n = 3 − 4 1∆ and of the n = 3 3∆ states (full and
dashed lines, respectively). In black, states dissociating into He(1snl 1,3L) + H+. In
red, states dissociating into He+(1s) + H(nl).

4. Non-adiabatic corrections

We write the total hamiltonian as the sum of an electronic part, Hel, and a nuclear

kinetic part, TN which itself can be developed into a radial (Hrad) and a rotational
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(Hrot) part:

H = TN +Hel

= Hrad +Hrot +Hel

In the electronic hamiltonian, the mass polarization term has been neglected. Using the

electronic wavefunctions ζi,Λ, solutions of the electronic Schrödinger equation

Helζi,Λ(r;R) = Ui(R)ζi,Λ(r;R) ,

the total wavefunction is expressed as a product of an electronic and a nuclear

wavefunction: Ψ(R, r) =
∑

i,Λ ζi,Λ(r;R)ψi,Λ(R), where r and R stands for the electron

and nuclear coordinates, respectively. Λ is the quantum number associated to Lz, the

projection of the electronic orbital angular momentum L onto the z axis.

As the nuclear hamiltonian is separable, the nuclear wavefunction is given by the

product ψi(R) = ψi(R) |KΛ〉, where |KΛ〉 is an eigenfunction of the operators K2 and

Kz, K being the total angular momentum.

Using this development, the Schrödinger equation can be expressed as
∑

j,Λ′

〈ζi,Λ|Hrad +Hrot|ζj,Λ′〉ψj,Λ′ + (Ui − E)ψi,Λ = 0 ,

where

Hrad = − 1

2µ
∂2

R

and

Hrot =
1

2µR2
N2 =

1

2µR2

[
K2 + L2 − 2KzLz −K+L− −K−L+

]
(3)

where N is the nuclear angular momentum.

4.1. Radial couplings

Using the orthonormality of the electronic wavefunctions, the matrix elements of the

radial hamiltonian are given by

〈ζi,Λ| −
1

2µ
∂2

R|ζj,Λ′〉 = − 1

2µ

[
∂2

Rδji + 2〈ζi,Λ|∂R|ζj,Λ′〉∂R + 〈ζi,Λ|∂2
R|ζj,Λ′〉

]
δΛ′Λ

= − 1

2µ

[
∂2

Rδji + 2FiΛ,jΛ′∂R +GiΛ,jΛ′

]
δΛ′Λ

Since it can be shown that in matrix form G = F2 + ∂RF (Baer 2006), we only need

to calculate the elements of F, which is block-diagonal in Λ. These couplings were

calculated using a three points central difference method implemented in the DDR

program of MOLPRO with a displacement parameter dR = 0.01 a.u.

For the analysis of the radial couplings, we will focus on the n = 2 states since

all the k(k − 1)/2 couplings (where k is the number of states for a given Λ) cannot be

shown here. We notice that the dominant couplings are systematically those connecting

two adjacent states (i.e. the couplings Fi,i±1), as shown in figure 9 for the n = 2 states.
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This implies that states of different values of n can interact at the exception of the

two n = 1 states which are isolated in energy. The dominant couplings are narrow

and their maxima correspond to the positions of the avoided crossings given in Table

8 for the Σ states and in Table 9 for the Π states. The PEC will cross at those points

upon diabatization. These couplings are known as “Landau-Zener couplings” (Zener

1932). The radial couplings presented in figure 9 are of this type. On other hand, some

couplings are wider and do not correspond to clear avoided crossings; instead, the PEC

are parallel in the coupling region. These couplings arise mainly at large internuclear

distances. The dynamics around these couplings is described by the Rosen-Zener theory

(Rosen and Zener 1932). Both types of couplings will give rise to very different dynamical

behaviors. As an example, we will consider the case of the coupling F34 (shown in figure

10), which can be separated in a Landau-Zener coupling (centered around R ∼ 4 a.u.)

and a Rosen-Zener coupling, centered at R ∼ 17 a.u. The position and the shape of the

long-range coupling are invariant under changes in the level of electron correlation or in

the atomic basis set used in the calculation, as illustrated in figure 10.
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F35
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F56

Figure 9. Radial non-adiabatic coupling matrix elements between the n = 2 1Σ+

states. The numbers in subscript refer to the value of m as defined in table 1.

We observed that some of the radial couplings tend asymptotically to a constant

which differs from zero. This behaviour is expected for the couplings between two

molecular states of same symmetry degenerated at infinity when the calculations of the

couplings is done using an origin of the electronic coordinates at the center of the nuclear

mass (Belyaev 2001).

As the final goal of this work is the study of non-adiabatic dynamics involving those

couplings, we should note here that a number of authors demonstrated the importance

of electron translation factors at high and intermediate energies and proposed different

methods to take them into account (Thorson and Delos 1978, Errea et al 1994). It was

also established that these factors are linked to the choice of the origin of the electronic

coordinates (Bransden and McDowell 1992). As we noticed the quasi invariance of the
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radial couplings under a translation of the origin of the electronic coordinates along the

internuclear axis (see figure 11), it appears that the inclusion of translation factors in

dynamical simulations will not be necessary.
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Figure 10. Radial non-adiabatic coupling F34 calculated with different active spaces
(AS), as well as with the basis from van Hemert and Peyerimhoff (1990).
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Figure 11. Radial non-adiabatic coupling F45 calculated using an origin of the
coordinates at the center of mass, on H or on He.

4.2. Rotational coupling

From equation (3), we can obtain the matrix elements of the rotational hamiltonian

between the electronic and rotational nuclear functions. They are given by

HiΛK,jΛ′K′ = 〈KΛ|〈ζi,Λ|Hrot|ζj,Λ′〉|K ′Λ′〉
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Table 8. Location of the principal non-adiabatic radial couplings for the n = 1 − 3
Σ+ states.
1Σ+ states R(a0) 3Σ+ states R(a0)

3-4 3.9 2-3 3.6
4-5 3.11 3-4 2.9
5-6 12.7 4-5 10.6
6-7 7.0 5-6 3.5, 6.8
7-8 2.9, 5.2 6-7 5.5
8-9 4.1 7-8 4.5
9-10 12.0 8-9 10.8, 12.3, 28.0
9-11 12.2 9-10 3.6, 12.1, 26.0
10-11 4.0, 6.6, 12.2 10-11 5.7, 8.8
11-12 2.7, 5.4, 8.8, 25.0

Table 9. Location of the principal non-adiabatic radial couplings for the n = 1− 3 Π
states.
1Π states R(a0) 3Π states R(a0)

3-4 7.5 3-4 7.6
4-5 3.5, 18.8 4-5 4.5, 18.8
5-6 18.1 5-6 18.3

=
1

2µR2

{[
(K(K + 1) − Λ2)δij + 〈ζi,Λ|L2

x + L2
y|ζj,Λ′〉

]
δΛΛ′

+ 2[K(K + 1) − Λ(Λ − 1)]1/2〈ζi,Λ|iLy|ζj,Λ′〉δΛ′,Λ+1 (4)

− 2[K(K + 1) − Λ(Λ + 1)]1/2〈ζi,Λ|iLy|ζj,Λ′〉δΛ′,Λ−1

}
δKK′

We see from the formula above that L2
x +L2

y is an interaction between states of the

same Λ value. In particular, the diagonal part (L2
x + L2

y)ii modifies the energies of the

states. This contribution can be evaluated using MOLPRO at the CASSCF level, but

we will not report it here since it was shown by Bishop and Cheung (1979) that for the

ground state it is of the same order of magnitude as the effect of the mass polarization

term, which we have neglected. The same conclusion was reached by Bunker (1968)

for H2. We only mention the fact that asymptotically, these matrix elements behave

as R2, so that the correction to the energies are constants (see equation (4)) when the

internuclear distance is large.

The operator iLy, on the other hand, connects states with ∆Λ = ±1 and cannot

be neglected. Note that the calculation of the matrix elements of iLy necessitates

the simultaneous determination of electronic states of different value of Λ in the same

calculation.

The rotational couplings between the n = 2 1Π and 1Σ+ states are presented

in figure 12. Asymptotically, the couplings between states that dissociate into the

same atomic species and into the same n manifold are constant. Some rotational
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couplings between states dissociating into different n manifolds make an exception and

behave asymptotically as R, as indicated by Belyaev et al (2001). All the couplings

between states dissociating into different atomic species tend to zero at large internuclear

distances.
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Figure 12. Adiabatic rotational couplings between the n = 2 1Σ+ and 1Π states. The
numbers in subscript refer to the value of m as defined in table 1.

5. Adiabatic dipole moments

There are k(k + 1)/2 (where k is the number of states) dipole matrix elements and we

will again restrict our discussion to the 1Σ+ states. The permanent adiabatic dipole

moments of the n = 1, 2 states are represented in figure 13, while the transition dipole

moments of the n = 2 states are represented in figure 14.

In a given Λ subspace, the dipole interaction occurs only through the z component.

As there is no ambiguity, we will thus write the dipole moment between two states i

and j as µij instead of µz,ij.

The behavior of the dipole moments is consistent with the calculation of the radial

couplings, illustrating the relation between the two operators (Macias and Riera 1978)

which allows the use of the dipole moment rather than the radial couplings to find a

diabatic representation. For example, the crossing between the dipoles µ55 and µ66 at

R = 12.75 a.u. correspond to the sharp radial coupling seen in figure 9 at the same

internuclear distance, and is reflected on the transition dipole moment between the two

states, µ56, which presents a sharp peak in the crossing region. Conversely, when two

permanent dipole have a peak of opposite value, as do µ44 and µ55 at R = 3.1 a.u., the

sign of the transition dipole µ45 changes abruptly. Again, this is linked to an avoided

crossing between the fourth and fifth states at the same internuclear distance.

As can be seen from figure 13, all the permanent dipole moments µii behave

asymptotically as R, since the origin of the coordinates is at the nuclear center of

mass and not on one of the atoms. As the reduced mass of 4HeH+ is µ = 0.805 a.m.u.,
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the helium and the hydrogen nuclei are situated approximatively at −0.2R and 0.8R

of the origin, respectively. The permanent dipole moment can then be divided into a

nuclear and an electronic part. The nuclear contribution is of 0.4R and is identical for

all states, while the electronic contribution is 0.4R for the He(1snl 1L) + H+ states

and of −0.6R for the He+(1s) + H(nl) states. For the latter, there is an additional

contribution from the interaction between the helium 1s electron and the hydrogen nl

electron which explains that the permanent dipole moments for these states do not tend

to the same asymptotic value.
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Figure 13. Permanent dipole moments for the n = 1, 2 1Σ+ states.
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Figure 14. Transition dipole moments between the n = 2 1Σ+ states.
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6. Diabatic representation of the Rydberg states

The diabatic representation is defined so as to cancel the F matrix, which is the case if

the adiabatic-to-diabatic transformation matrix D satisfies the matrix equation

∂RD + F · D = 0 (5)

The diabatic potential energy curves are then given as the diagonal elements of the

transformed matrix Ud = D−1 · U · D. We solve equation (5) by continuity using a grid

of 2000 points, starting from R = 60 a.u. where we require that the adiabatic and

diabatic representations are identical (so that D = I). It should also be noted that, as

we calculate the non-adiabatic radial coupling at the CASSCF level, we also use the

CASSCF energies, which differ slightly from the CI energies presented in section 3.

In our diabatization procedure, we will not consider the complete F matrix, keeping

only the couplings Fi,i+1 and putting all the other couplings to zero. This approximation,

which amounts to a succession of two-states cases, is used for various reasons. The first

one is that, as was shown in section 4.1, those couplings are systematically the most

important ones. Secondly, it has been shown by Zhu and Nakamura (1997) that this

approximation gives correct results in dynamical calculations even for low energies,

which is confirmed by our calculations of the electron-transfer cross sections in the

n = 2 manifold (Loreau et al 2010). Thirdly, some of the couplings which we neglect

remain non-zero at large internuclear distance. This phenomenon is known and has been

discussed in detail by Belyaev et al (2001), but raises a problem in our diabatization

method. Indeed, our procedure is based on the fact that the adiabatic and diabatic

representation coincide at R = ∞, which is not the case if the couplings do not vanish.

As a consequence, these residual couplings, although small, influence the diabatic PEC

at large R, a feature which is of course undesirable.

We will consider the 1Σ+ states as an example of the diabatization procedure. The

result of the diabatization for these states up to n = 3 is given as an example in figure

15.

It is clear that the diabatization alters considerably the shape of the ground state.

From figure 16, we see that this is essentially due to the coupling F12 since the same

behaviour is observed when the n = 1 states are diabatized independently. The first

excited state also changes dramatically, crossing the entire n = 2 manifold in the

diabatic representation, which is due to the coupling F23 (see figure 16). However,

one must remember that the non-adiabatic coupling between the two first 1Σ+ states is

of the Rosen-Zener type, and that therefore the diabatic representation of those states

has little physical significance. Likewise, the influence of the two first 1Σ+ states on

the diabatic representation of the n = 2 states is very important but has little effect

on the non-adiabatic dynamics in the n = 2 manifold, as has been observed in the

calculation of charge exchange cross section between He+ and H at low energies (Loreau

et al 2010). To our knowledge, the only other work on the diabatic representation

of the PEC of the HeH+ ion has been done by Klüner et al (1999) using the quasi-

diabatization procedure proposed by Pacher et al (1988). These authors compare a
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Figure 15. Diabatic PEC of the n = 1 − 3 1Σ+ states.

3-states (the three lowest n = 2 states) and a 4-states (adding the second n = 1 state)

diabatization in a small interval of internuclear distances (0.8 a.u. ≤ R ≤ 5.4 a.u.). It

is concluded that the inclusion of the n = 1 state does not modify the diabatic PEC

of the n = 2 manifold, and this state is therefore neglected in wavepacket simulations

of charge exchange processes involving n = 2 states. Although we arrive at the same

conclusion regarding the dynamics, our method gives significantly different diagonal

as well as non-diagonal matrix elements of the electronic hamiltonian in the diabatic

representation.

On the other hand, the effect of the interaction between the n = 2 and n = 3

manifolds through the F67 matrix element is relatively small, as shown in figure 17.

Finally, the description of the diabatic n = 3 states necessitates to take some

higher-lying states into account, since the highest diabatic state undergoes an avoided

crossing around R = 20 (as can be seen in figure 2) with the first n = 4 state. The

inclusion of the first two n = 4 states in the diabatization, while leaving the first five

n = 3 states unaltered, clearly influence the sixth state by shifting the position of the

avoided crossing to smaller values of R, as illustrated in figure 18. Therefore, a more

correct description of the last n = 3 diabatic state should include more n = 4 states,

even though we are only considering the couplings between adjacent states.

7. Conclusions

We present an accurate description of 66 low lying adiabatic states of HeH+. Using

the MOLPRO package and a large adapted basis set, the potential energy curves of
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Figure 16. Comparison of the diabatic PEC of the n = 1 and n = 2 1Σ+ states
diabatized independently (black lines) or as a whole (red lines).
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Figure 17. Comparison of the diabatic PEC of the n = 2 and n = 3 1Σ+ states
diabatized independently (black lines) or as a whole (red lines).

the n = 1 − 3 as well as most of the n = 4 states of the molecular ion have been

obtained and compared to previous theoretical works. The radial and rotational non-

adiabatic coupling matrix elements, as well as the dipole matrix elements, have been

calculated for all the n = 1 − 3 states. The radial couplings allow to switch to the

diabatic representation which is used to treat dynamical processes involving the ion.

This material has been used to calculate the cross section of the photodissociation of

the ion (Sodoga et al 2009) and the cross sections for the charge transfer processes

He+(1s) + H(nl) −→ He(1sn′l′ 1,3L) + H+ at low energy (Loreau et al 2010).
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Figure 18. Effect of the n = 4 states on the six n = 3 states. In black, the fifth
and sixth n = 3 diabatic states. In red, the same states, but diabatized with the first
n = 4 state. The fifth n = 3 state is left unaltered, but the avoided crossing of the
sixth n = 3 state is shifted from R = 20 au to R = 17 au. In blue, the sixth n = 3
state diabatized with the first and second n = 4 state (dashed grey line). The avoided
crossing is further shifted to R = 16 au.
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Appendix A. Basis set

Table A1. Additional basis functions for hydrogen.

Coefficient Exponent Coefficient Exponent

2s 0.000144 19.907407 3p 0.024590 0.986107
-0.005010 8.988620 0.260387 0.181062
-0.059868 0.645915 0.903505 0.051409
-0.123387 0.071221 -1.874014 0.007783
0.891720 0.024689 -0.287389 0.003281

3s 0.017083 1.000840 4p 0.015689 1.015267
0.120859 0.272819 0.170182 0.186800
0.381641 0.093336 0.625077 0.053622
0.782727 0.023846 -2.040089 0.009383
-2.036422 0.019287 2.535609 0.002477
1.594513 0.004250

3d 0.050502 0.199534
4s 0.013653 11.939994 0.495617 0.051732

0.167164 1.060859 1.609201 0.018241
0.662095 0.188361 1.213582 0.007264
-3.032473 0.029081
4.828012 0.007375 4d 0.077845 0.083401
-4.362099 0.001197 0.454482 0.021517

-0.894944 0.003285
2p 0.005698 3.101143

0.067894 0.567270 4f 0.026401 0.033813
0.407521 0.158596 0.169866 0.010591
1.082414 0.052537 0.204085 0.004109
0.800233 0.02001
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Table A2. Additional basis functions for the singlet states of helium.

Coefficient Exponent Coefficient Exponent

2s 0.002760 99.181545 3p 0.002929 4.673075
0.030509 10.536516 0.037026 0.848515
0.196191 1.905592 0.244477 0.227656
0.775469 0.424822 0.806379 0.070757
-3.722470 0.029920 -2.050784 0.007911

3s -0.001952 99.838262 4p 0.002547 4.629236
0.012286 49.068205 0.076795 0.396874
0.151694 2.653277 0.488599 0.081760
0.516699 0.309173 3.304293 0.017020
-3.156883 0.038398 -4.848362 0.013667
4.383564 0.006064 2.305369 0.002285

4s -0.004235 99.861298 3d 0.062634 0.102716
0.011613 49.188130 0.430990 0.026362
0.316811 0.732304 0.551594 0.008950
-2.495917 0.035479
4.534324 0.009221 4d 0.077839 0.082347
4.267928 0.001472 0.454447 0.021503

-0.894818 0.003283
2p 0.000152 19.984152

0.002135 4.719990 4f 0.026447 0.033780
0.025319 1.021806 0.170021 0.010582
0.160069 0.292204 0.204038 0.004106
0.592704 0.101345
1.066547 0.039590
0.527114 0.016351
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