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Abstract. In this work the method of quantitative determination of two-body contributions to the fine and the
hyperfine structure, resulting from the excitations from electronic closed shells to open shells and from open
shells to empty shells, is described. On the basis of experimental data, both own and available in the literature,
the configuration (5d+6s)3 in the lanthanum atom was analyzed. Our investigations indicate that the operator
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describes the partition of the observed hyperfine splittings into the contributions of ranks K=1,2 and 3 within the
experimental accuracy, while the operator
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does not fully account for the partition of the interactions of rank K=1 into contributionsκk = 01,12 and 10.
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1. Introduction

On the basis of our earlier works, both experimental and theoretical [1–6], as well as work of another
author [7], we feel qualified to submit a proposition, that the existing theories (e.g. [8–12]), which provide
a semi-empirical description of the hyperfine interactions in the structure of a complex atom, are not
sufficiently precise to yield a correct description and interpretation of the measured hyperfine splittings
within the up-to-date experimental accuracy. Also the results ofab initio calculations for the hyperfine
structure (hfs) parameters, such as magnetic dipole interaction constantA and electric quadrupole interaction
constantB, usually differ, in some cases substantially, from their experimental counterparts [13, 14].

The main aim of this work is, among other things, an attempt to answer the following questions:
1. Is it possible to theoretically describe the hyperfine interactions within an atom with an accuracy

comparable to the accuracy achieved in experiment?
2. What is the main reason of the observed discrepancies between the experiment and the theory: the

applied approximations in the analysis of the atomic structure or incorrect experimental data?
3. Are the commonly applied assumptions concerning the mechanism of interaction between the

nucleus and the electron shells (e.g. regarding the nucleus as a point magnetic dipole and the assumption
that the quantum numberI , which describes the angular momentum of the nucleus, is a "good" quantum
number) correct?

It was proved [15–19] that the main source of discrepancies mentioned are difficulties with a precise
description of the interactions of configurations system investigated with distant electron configurations
originating from excitations of one or more electrons from open to empty shells or from closed to open shells.
Moreover, Fenuille and Armstrong [20] showed, that correlation and relativistic effects in atomic hyperfine
structure are of additive nature, and that effects of configurations interaction (contributions of the second
order perturbation theory) can be treated within effective operator approximation, and thus they proved
their SL-dependence. Thus one may expect, that a precise definition and development of a mathematical
formalism, which yielded a complete description of these effects, should explain the observed discrepancies.

Another problem may be insufficient precision of determination of eigenvectors amplitudes describing
particular electron states. The wavefunctions are determined on the basis of the atomic fine structure (fs)
investigations. In this case availability of verified experimental data concerning energies of electronic levels
combined with a correct assignment ofJ quantum number is a crucial point. Scarcity of experimental data
has to be considered a severe shortcoming, if the structure of an atom is regarded in multiconfiguration
approximation and all important theoretically predicted interactions are to be included. A serious problem
constitute the erroneous data concerning energy values of electronic levels – sometimes energies of non-
existing levels are given in literature (e.g. [21]), or incorrectJ values are assigned to correct energy values
(a critical analysis of some data of this kind was performed by Windholz [22]).

Another factor to be blamed for existing discrepancies is in some cases the method of determination
of the hyperfine structure constantsA, B, C and D from the measured hyperfine intervals –
a simplified description of "repulsion" effect for the hyperfine structure sublevels with the same
values of quantum numberF yields a substantial distortion of the information concerning quadrupole
and higher order interactions. This was first noticed by Casimir [23], who referred to them as
"pseudoquadrupole" or "pseudooctupole" interactions. Therefore, in order to guarantee the correctness
of determination of the hyperfine structure constantsA, B, C andD in our approach, described below,
a segment called "diagonalization of the hyperfine structure energy matrix" within the basis of states
Ψ(configuration, vSLJF ) was introduced. In this way we eliminate one of the possible sources of
discrepancies.

In our group a procedure (schematically outlined below, Figure 1) of analysis of experimental
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data concerning the structure of complex atoms was developed. In the updated procedure the segment
"parametrization of one- and two-body hyperfine interactions" was improved with respect to the earlier
applied method [2, 24, 25]. Now we include all one- and two-body contributions tohfs constantsA and
B which exhibit a dependence on the quantum numbersSL as well as onN (the number of equivalent
electrons in an open shell) and which originate from the excitations "open shell - empty shell" or "closed
shell - open shell". Our earlier method [24] was developed for the system (3d+4s)N , and thus excitations of
the kind "closed n0d shell - open nd shell" are not occur.

In the lanthanum atom the configurations system (5d+6s)N is well separated from the excited
configurations. The closest excited configuration 4f6s6p begins at ca. 29000 cm−1. Configurations
originating as a result of "closed shell - open shell" excitations (core-excitations) certainly lie much above
100000 cm−1 and have not been observed in lanthanum yet. Thus in the case of the lanthanum atom it
can be assumed that the configurations system considered (3d+4s)N is well isolated from any disturbing
configurations and the conditions for application of the perturbation theory are fulfilled. It yields an excellent
possibility of an alternative analysis of the contributions mentioned within the second order perturbation
theory according to the excitation model either "open shell - empty shell" or "closed shell - open shell". A
simultaneous application of both models is not possible because of the fact that in both models implicit
linear dependence between angular coefficients corresponding to the certain radial parameters have to
occur, which make the solution of a redundant set of linear equations impossible and thus hinder the
determination of the respective radial parameters. It provides an excellent test confirming the correctness
of the complex formulae derived, which in the case of consideration of e.g. configurations with three open
shells require re-coupling of five or more angular momenta and strict observance of the electron permutation
rules, in particular for interconfiguration matrix elements. When both the fine and the hyperfine structure
are considered independently within the frame of both excitation models, two independent sets of radial
parameters describing the atomic structure are obtained. On the basis of the theoretically predicted relations
between the radial parameters originating from both models one can prove the correctness of the obtained
description of the atomic structure, as well as precisely define the information provided by the radial
parameters determined from the experimental data. In Section 5 the relations are given, which allow to
recalculate the parameters obtained for the model space (5d+6s)3 within both excitation models: "closed
shell - open shell" (c-o) and "open shell - empty shell" (o-e) into the radial parameters characteristic of the
individual configurations 5d3, 5d26s and 5d6s2.

In this analysis we apply experimental data available in the literature, in particular those obtained with
Rabi method [26] and the method of double laser-rf resonance [13], as well as the results obtained within this
work. In our experimental investigations it was not possible either to confirm the existence of the electronic
level with the energy 25414.63 cm−1 and the value of quantum numberJ = 5/2 or to measure its hyperfine
splitting; we also did not manage to find the level with the energy ca. 25752 cm−1 and the value of quantum
numberJ = 3/2. For the model space (5d+6s)3 the information concerning the hyperfine structure of the
levels 5d3 2D with J = 3/2 andJ = 5/2 is still missing; however, in spite of the lack of these data we managed
to describe quantitatively the one- and the two-body interactions in the fine and the hyperfine structure of
the electronic levels which form this system.

2. Experimental details

Measurement of the hyperfine structure constants for electron levels belonging to the configuration 5d3

of the lanthanum atom is a difficult task, first of all because of the lack of strong spectral lines involving
those levels. In the commonly available tables of spectral lines [27] in the visible and near infrared regions
no such lines can be found. Transitions to the levels belonging to configuration 5d3, which could be
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conveniently excited with commonly available tunable lasers, involve odd-parity levels with energy values
within the range 32000-40000 cm−1. However, most such levels belong to configurations differing from the
configuration 5d3 with states of two electrons. Because of selection rules electric dipole transitions in such a
system of configurations can only occur as a result of "mixing" of the configurations in question with other
configurations, for which electric dipole transitions to configuration 5d3 are allowed. Since the admixtures
of such configurations are usually minor, the resulting spectral lines are, as a consequence, very weak. In
this situation the only chance of successful application of the experimental method based on laser induced
fluorescence or optogalvanic spectroscopy consists in recording of the hyperfine structure for possibly great
number of the strongest among the weak spectral lines and the reduction of experimental errors through
statistical evaluation of the results.

In our two experimental works, which have recently appeared in J.Phys.B [28,29], we presented results
of the measurements of the hyperfine structure constants for several hundreds electronic levels of both
parities in the lanthanum atom. In those works also results of the measurements of constantsA for 13 levels
belonging to the configurations analyzed in the present work were included; these results were obtained for
the first time. Since in the work [28] the values of constantsA for several hundreds odd parity levels with
energies above 33000 cm−1 were also presented, it was possible to extend the investigations for the 13 levels
mentioned, belonging to the model space, through the measurements of a greater number of spectral lines
including them. Such an extension was performed within experimental investigations in the present work.

With the use of laser induced fluoresecence or optogalvanic method the hyperfine structure of 71
spectral lines involving the levels investigated was recorded. In the case of 27 of the recorded lines both
the signal to noise ratio and the observed hyperfine splitting enabled determination of the constantsA with
experimental uncertainty below 7 MHz. A compilation of those lines is presented in Table 1. In the case of
the odd parity level with the energy E=33799.23 cm−1, which iis the upper level of the investigated spectral
line with the wavelengthλ = 594.797 nm, it proved necessary to change the assigned quantum number
J from the value of 5/2 to 3/2, since both the calculations of the hyperfine structure (including also the
observed number of components) and the presence of such a line (the lower level hasJ=1/2) indicate, that
the valueJ=5/2 encountered in the tables [30] cannot be correct. This question was already discussed in the
work [28].

An additional verification of the results obtained was recording of the remaining 44 spectral lines,
which were too weak for precise determination of the constantsA, but their profiles allowed us to confirm
the earlier determined values and in particular to eliminate the doubts concerned with the fact that for equal
J values for both the lower and the upper level the change of the signs of both constantsA along with the
interchange of their values yields the identical pattern of the hyperfine structure of the line.

In the measurements an experimental setup described in the previous works [31–34] was used. This
setup was earlier successfully applied in our lab in investigations of praseodymium [35–37] and lanthanum
[38]. The source of the exciting radiation was a ring dye laser - a modified version of Coherent model
CR 699-21. Because of the spectral regions applied the laser was operated in turn with several sets of
optical elements with the use of the following dyes: Rhodamine 6G (565-615 nm) and DCM (615-650 nm).
According to the width of the spectral line investigated, the dye laser frequency was precisely tuned over
the range covered with the line’s hyperfine structure, 5-40 GHz. Several elements were used for dye laser
frequency control: a wavemeter (Burleigh, model WA-1500), an iodine cell and a mode analyzer. Along
with LIF signal a transmission of a frequency marker (a Fabry-Perot interferometer with FSR=1497 MHz)
was recorded.

The source of lanthanum ions was a discharge in a hollow cathode lamp. Fluorescence light from
the discharge was collected and focused with the mirrors and lenses systems onto the entrance slit of a
monochromator (SPM-2). Behind the exit slit a photomultiplier with a preamplifier was placed. Electric
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signal from the photomultiplier was fed to a lock-in amplifier. As a reference signal for phase-sensitive
detection a signal from a mechanical chopper, placed in the laser beam, was used. Exit signal from the
lock-in amplifier was A/D converted and recorded by the computer. Determination of the frequency scale
on the basis of frequency marker signal and calculation of the values ofA andB constants for the levels
involved in the transition investigated were performed with the use of a program Fitter, which was earlier
used for such purposes both in our laboratory and elsewhere.

As a result of the investigations the values of the constantsA presented in the works [28, 29] were
confirmed for all 13 levels belonging to the model space. in the case of two levels 5d3 4P1/2 with the energy
16617.30 cm−1 and 5d3 2D3/2 with the energy 18037.64 cm−1 the experimental uncertainties were reduced.

3. Diagonalization inSLJF basis and determination of the constantsA, B andC

The analysis of thehfsof the even configurations of La atom was performed in the basis of 3 configurations,
taking into account all possible interactions predicted by many-body fine structure theory. In order
to include theJ-off-diagonal effects in the hyperfine structure, direct diagonalization of the matrix
containingJ-diagonal as well asJ-off-diagonal elements has to be performed (in the basis of states
Ψ(configuration, vSLJF )). The effect of "repulsion" of the hyperfine structure sublevels with the same
values of quantum numberF , first noticed by Casismir, yields a distortion of the obtained values of the
hyperfine structure constants of quadrupole and higher order interactions. Diagonalization of the hyperfine
structure energy matrix within the basis of statesΨ(configuration, vSLJF ) takes the effect referred by
Casimir to as "pseudoqudrupole" interaction into account. It requires precision up to 16 significant digits.
The diagonal part of this matrix consists of coefficients corresponding to the particular components of the
energy of a hyperfine structure sublevel EF : the center of gravity of thehfsenergy WJ and the experimental
hfsconstantsA,B, C andD. These parameters can be treated as free in the iterative fitting procedure of the
experimental and the calculatedhfsenergies. The differences between EF and EF±1 values are equal to the
experimentally determined hyperfine structure intervals. Values ofJ-off-diagonalhfs matrix elements are
fixed.

As a result, we obtain improved values of the hyperfine structure constants, which in turn can be used
to determine the radialhfsparameters. The final values are usually obtained after several iterations.

The accuracy of the experimental hyperfine structure intervals [13, 26] allows to determine onlyA,
B andC constants. If we treat these constants as free parameters, we obtain the agreement between the
observed and the calculated interval values within the experimental error (see Table 2). The above result
confirms, that the operator

Hhfs =
3∑

K=1

T (κk)K
e · T (K)

n , (1)

whereT (κk)K
e and T (K)

n denotes the electron and the nuclear operator, respectively, yields a complete
description of the observed hyperfine structure splittings, and the constantsA, B andC obtained in this
procedure are the "true" values, describing the interactions with ranksK =1, 2 and 3.

In Table 3 a considerable "repulsion" effect can be observed for the levels2G7/2 and2G9/2, for which
the constantsB were changed as a result of diagonalization by44.05 MHz and74.40 MHz, respectively.

4. Parametrization of the configurations interaction effects

The fine structure energy matrix was constructed in the way analogous to the one described e.g. by Cowan
[39]. Moreover, our energy matrix is extended by the elements taking into account electrostatic coupling



Critical analysis of the methods 6

and electrostatically correlated spin-orbit coupling between the configurations of the system considered and
the distant configurations. Generally, for the configurations containing up to three open electronic shells,
these matrix elements origin from the second order perturbation theory and can be schematically expressed
as follows:

−
∑

ψ1 6=ψ,ψ′

[〈ψ|G|ψ1〉 × 〈ψ1|G|ψ′〉] /∆E = − (angular part) × (radial part) , (2)

where:

ψ = (n0l0)4l0+2 1S, (n1l1)N1S1L1,
(
(n2l2)N2S2L2, (n3l3)N3S3L3

)
S4L4;SL

ψ1 = (n0l0)4l0+1 2L0, (n1l1)N1+1S′′
1L

′′
1 ,

(
(n2l2)N2S′′

2L
′′
2 , (n3l3)N3S′′

3L
′′
3

)
S′′

4L
′′
4 ;SL

ψ′ = (n0l0)4l0+2 1S, (n1l1)N1S′
1L

′
1,

(
(n2l2)N2S′

2L
′
2, (n3l3)N3S′

3L
′
3

)
S′

4L
′
4;SL (3)

for „closed shell – open shell” excitations, and

ψ = (n1l1)N1S1L1,
(
(n2l2)N2S2L2, (n3l3)N3S3L3

)
S4L4;SL

ψ1 = ((n1l1)N1−1S′′
0L

′′
0 , n

′l′), S′′
1L

′′
1

(
(n2l2)N2S′′

2L
′′
2 , (n3l3)N3S′′

3L
′′
3

)
S′′

4L
′′
4 ;SL

ψ′ = (n1l1)N1S′
1L

′
1,

(
(n2l2)N2S′

2L
′
2, (n3l3)N3S′

3L
′
3

)
S′

4L
′
4;SL (4)

for "open shell – empty shell" excitations.
The angular coefficients result from the coupling of angular momenta of the operatorG. Radial

parameters have denotations which code the interacting configurations and specify the interactions.
Denotations of particular radial parameters take the form:P t (nilinj lj , n0l0nili)P t

′
(nilinjlj , n0l0nili).

In order to specify particular interactions more precisely the symbolP t (where t stands for the order)
is replaced respectively byDt in the case of direct interactions,Et for exchange interactions, orRt for
interactions involving two equivalent electrons. In our procedure excitations of one or two electrons from a
closed shell to all open shells are considered, under the following conditions:

|li − l0| = 0, 2 and N1 +N2 +N3 = N ′
1 +N ′

2 +N ′
2 (5)

Contributions from the second order perturbation theory for electrostatically correlated spin-orbit
interactions (CSO) as well as for electrostatically correlated hyperfine interactions (CHFS), are defined as
follows:

−
∑

ψ1 6=ψ,ψ′

[
〈ψ|G|ψ1〉 × 〈ψ1|T(κk)K |ψ′〉 + 〈ψ|T(κk)K |ψ1〉 × 〈ψ1|G|ψ′〉

]
/∆E =

= − (angular part) × (radial part) , (6)

where:

ψ = (n0l0)4l0+2 1S, (n1l1)N1S1L1,
(
(n2l2)N2S2L2, (n3l3)N3S3L3

)
S4L4;SLJ

ψ1 = (n0l0)4l0+1 2L0, (n1l1)N1+1S′′
1L

′′
1 ,

(
(n2l2)N2S′′

2L
′′
2 , (n3l3)N3S′′

3L
′′
3

)
S′′

4L
′′
4 ;S′′L′′J

ψ′ = (n0l0)4l0+2 1S, (n1l1)N1S′
1L

′
1,

(
(n2l2)N2S′

2L
′
2, (n3l3)N3S′

3L
′
3

)
S′

4L
′
4;S

′L′J (7)
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for "closed shell – open shell" excitations, and

ψ = (n1l1)N1S1L1,
(
(n2l2)N2S2L2, (n3l3)N3S3L3

)
S4L4;SLJ

ψ1 = ((n1l1)N1−1S′′
0L

′′
0 , n

′l′), S′′
1L

′′
1

(
(n2l2)N2S′′

2L
′′
2 , (n3l3)N3S′′

3L
′′
3

)
S′′

4L
′′
4 ;S′′L′′J

ψ′ = (n1l1)N1S′
1L

′
1,

(
(n2l2)N2S′

2L
′
2, (n3l3)N3S′

3L
′
3

)
S′

4L
′
4;S

′L′J (8)

for "open shell – empty shell" excitations.
In these cases also the angular coefficients result from the angular parts of the operators: a two-body

electrostatic interaction operatorG and a one-body operatorT(κk)K ; the latter may represent either spin-
orbit (Hso) interaction or a hyperfine (Hhfs) interaction.

The radial parametersP t (nilin0l0, nilin
′
il
′
i)P

κk (n0l0, nili) specify the coupling between configura-
tions. The radial integralP t (nilin0l0, nilin

′
il
′
i) describes electrostatic coupling of the configurations, i.e.

it specifies the electrons involved and the type of their interaction. In the actual description the symbol
P t is replaced, as above, withDt or Et, respectively.P κk is the radial part of a one-body operatorTκk,
which couples the electronsn0l0 andnili. In our procedure excitations of one electron from the closed shell
(n0l0)4l0+2 to each of three open shells(n1l1)N1 , (n2l2)N2 and(n3l3)N3 are considered. In the case of the
spin-orbit interaction the symbolP κk is replaced byζ.

The above description of the parameters follows is a simplified notation. The parameters are actually
defined as sums over all closed (or open) shells. For example, in the case of the lanthanum atom:

E2(n0s5d, 5d6s)P 10(n0s, 6s) = 4π
5∑

n0=1

Ψ6s(0)Ψn0s(0) E2(n0s5d, 5d6s)/∆E, (9)

where∆E is the energy difference between the relevant closed- and open-shell orbitals.
In the case of CSO the following condition has to be fulfilled:

|l0 − l1| = 0 and κk = 11,K = 0. (10)

The matrix elements determined from relations (2) and (6) under conditions (5) and (10) were included
in the fine structure energy matrix (Figure 1).

In the case of CHFS the following relations hold: for magnetic dipole interactionsK = 1:

|l0 − l1| = 0 if κk = 01, 10 and |l0 − l1| = 0, 2 if κk = 12 (11)

and for electric quadrupole interactionsK = 2:

|l0 − l1| = 0, 2 if κk = 02 and |l0 − l1| = 0 if κk = 11, 13. (12)

The matrix elements resulting from relation (6) and conditions (11) and (12) were calculated by our
computer code and included in the hyperfine structure energy matrix.

5. Determination of one- and two-body fine and hyperfine structure radial parameters

5.1. Interpretation of calculated A and B constants

Following our procedure presented in Figure 1, eachhfsA andB constant can be expressed as a linear
combination of one- and two-body contributions as:
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A(ψ) =
∑

κk,nl

ακknl (ψ) aκknl +
∑

κk,i

ακki (ψ) aκki , (13)

B(ψ) =
∑

κk,nl

βκknl (ψ) bκknl +
∑

κk,i

βκki (ψ) bκki , (14)

whereακknl , β
κk
nl andακki , βκki represent the angular coefficients at one- and two-bodyhfs operators

respectively, whileaκknl , b
κk
nl are the radial one-body parameters andaκki , bκki are the traditionally used radial

two-body parameters taken into account in the considered excitations. In our procedure the above parameters
receive a full description introduced in Section 4, e.g.:D2(5d5d,5dn′d)P 02(5d,n′d) denotes the contribution
from excitation from the open shell 5d to the empty shellsn′d, orD2(n0d5d,5d5d)P 02(n0d,5d) denotes the
contribution from excitation from the closed shell n0d to the open shell 5d.

5.2. One-body parameters

Sandars and Beck [10] have developed a theory which simplifies calculation and interpretation of relativistic
hfs effects in many electron atoms. This theory yields three effective radial integrals for each open shell
(l > 0) and for each multipole interaction, which should be handled as free adjustable parameters in order
to take into account relativistic and configuration interaction effects. Therefore the following definitions of
one-body radial parameters (ifaκknl , b

κk
nl are expressed in MHz) for the considered configurations have been

assumed :

aκknl =
2µB
h

gI [
〈
r−3

〉κk
nl

+ Iκkn0l0,n′l′ ] =
2µB
h

gI
〈
r−3

〉κk
nl eff

, κk = 01, 12, 10,

bκknl = =
e2

h
Q[

〈
r−3

〉κk
nl

+ Iκkn0l0,n′l′ ] =
e2

h
Q

〈
r−3

〉κk
nl eff

, κk = 02. (15)

In above definitions,
〈
r−3

〉κk
nl

are the relativistic HFS radial integrals, as was shown by Lindgren and
Rosen [12], which can be calculatedab-initio theoretically, andIκk

n0l0,n′l′
are radial parameters represented

configuration interaction effects which reduced to one-body [40], commonly named "core polarization
effects" [41].

The excitations of one electron from a closed shelln0l
4l0+2
0 to an empty shelln′l′ are two-bodyhfs

interactions which can be reduced to one-body interactions.
The radial parameterIκkn0l0,n′l′ has been defined [41] as follows:

Iκkn0l0,n′l′ = −
∑

n0l0,n′l′

〈
r−3

〉κk
n0l0,n′l′

2 tκkcoeff (n0l0, n
′l′)

tκkcoeff (nl, nl)

×
[
2δ(κ, 0)
2k + 1

(l0
∥∥Ck

∥∥ l′)(l
∥∥Ck

∥∥ l)Rk(n0l0nl, n
′l′nl)/∆E(n0l0, n

′l′)

+
∑

t

(−1)1+k+t
{

l k l
l0 t l′

}
(l

∥∥Ct
∥∥ l′)(l0

∥∥Ct
∥∥ l)

×Rt(n0l0nl, nln
′l′)/∆E(n0l0, n

′l′)
]
. (16)
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where tκkcoeff (nl, nl) is the angular part of thehfs operator tκk :
〈
nl

∥∥tκk
∥∥nl

〉
=

tκkcoeff (nl, nl)
〈
r−3

〉κk
nl

, ∆E is the (positive) energy difference between the relevant closed- and empty-
shell orbitals, andn′covers all empty shells including continuum.

The radial parameter determined from experimental data
〈
r−3

〉κk
nl eff

should be interpreted as the sum

of
〈
r−3

〉κk
nl

andIκkn0l0,n′l′ :

〈
r−3

〉κk
nl eff

=
〈
r−3

〉κk
nl

+ Iκkn0l0,n′l′ . (17)

The relations between the one-bodyhfsparameters and the radial effective integrals are as follows [12] :

aκk5d = 95.4128 gI
〈
r−3

〉κk
5d eff

κk = 01, 12,

a10
6s = 63.6086 gI

〈
r−3

〉10

6s eff
= 63.6086 gI

[
dP6s(r)
dr

]2

r=0

,

bκk5d = 234.9624Q 〈r−3〉κk5d eff κk = 02, 11, 13, (18)

wheregI is the nucleargI -factor expressed in nuclear magnetons (for the139La nucleusgI = +0.7931);

the values of the parameteraκk andbκk are given in MHz, and those of
〈
r−3

〉κk
eff

and
[
dP6s(r)
dr

]2

r=0
- in

atomic units.
〈
r−3

〉κk
eff

and
[
dP6s(r)
dr

]2

r=0
are the sums of relativistic and configuration interaction effects

contributions.

5.3. Two-body parameters

The effects of excitations of one electron from an open shell to an empty shell or from a closed shell to an
open shell, are referred to as two-bodyhfs interactions (see Section 4).

The values of one- and two-body fine structure and hyperfine structure parameters (predicted by theory
for the configuration system (5d+6s)3) determined in our procedure, and also values of the radial integrals,
are listed in Table 6. The ratio of the two-body parametersκk = 12 andκk = 01 was assumed to amount
to 1. For the parameters containing electrostatic integrals of the ordert = 4 the ratio with respect to the
correspondingt = 2 parameters was assumed to be equal to 0.65071 (from Hartree-Fock calculations). In
the case of parameters with relative errors exceeding 100%, their values were set to 0, which resulted in
improvement of the fit for thehfsconstants in the least squares method.

5.4. Recalculation to radial one-configuration parameters

Each set of parameters for the models, (c-o) or (o-e), given in the Table 6, were determined in a totally
independent way. In the constructed fine structure and hyperfine structure energy matrices the angular
coefficients in the matrix elements originating from the first order perturbation theory are identical. However,
the angular coefficients in the matrix elements originating from the second order perturbation theory are
different for both models considered, but they involve the angular coefficients of the first order elements and
form implicit linear dependencies. Thus a simultaneous use of the sets of parameters obtained in models (c-
o) and (o-e) has to be excluded. If a linear dependence between two-body parameters vanishes, it indicates
erroneous values of angular coefficients in the matrix elements; this was applied as a correctness test in
construction of the energy matrix. A confirmation of the correctness of the model of description of atomic
structure can also be provided by the values of two-bodyfs andhfsparameters, which should differ only by
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their signs. Thus the values of two-body parameters, given in Table 6 , should be understood as algebraic
sums of contributions from excitations of the type "closed shell - open shell" or the type "open shell - empty
shell".

The respective one-bodyfs andhfs radial parameters obtained within both models are different, since
in each model they effectively "include" a different combination of the contributions from one and two-body
interactions.

The relations allowing elimination of those contributions and determination of the radial one-body
parameters characteristic of the individual configurations 5d3, 5d26s and 5d6s2, forming the model space
(5d+6s)3, are as follows:

for excitations "closed shell – open shell"(c-o):
electrostatically correlated spin-orbit interaction:

ζ(ndNn′sN
′
) = ζ(c− o) + 2N ×D0(n0d5d, 5d5d)ζn0d,5d

+
2
7
×D2(n0d5d, 5d5d)ζn0d,5d

− 8
21

×D4(n0d5d, 5d5d)ζn0d,5d

− 2
5
×E2(5d6s, 6sn0d)ζn0d,5dδ(N

′, 2), (19)

electrostatically correlatedhfs interactions:

a01
5d(nd

Nn′sN
′
) = a01

5d(c− o) + 2N ×D0(n0d5d, 5d5d)P 01(n0d, 5d)

+
2
7
×D2(n0d5d, 5d5d)P 01(n0d, 5d)

− 8
25

×D4(n0d5d, 5d5d)P 01(n0d, 5d)

− 2
5
×E2(n0d6s, 6s5d)P 01(n0d, 5d)δ(N ′, 2), (20)

a12
5d(nd

Nn′sN
′
) = a12

5d(c− o) + 2N ×D0(n0d5d, 5d5d)P 12(n0d, 5d)

− 6
49

×D2(n0d5d, 5d5d)P 12(n0d, 5d)

+
8
49

×D4(n0d5d, 5d5d)P 12(n0d, 5d)

− 2
5
×E2(n0d6s, 6s5d)P 12(n0d, 5d)δ(N ′, 2), (21)

a10
6s(nd

Nn′s) = a10
6s(c− o) − 2N ×D0(n0s5d, 5d6s)P 10(n0s, 6s), (22)

b025d(nd
Nn′sN

′
) = b025d(c− o) + 2N ×D0(n0d5d, 5d5d)P 02(n0d, 5d)

−
62
49

×D2(n0d5d, 5d5d)P 02(n0d, 5d)
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+
8
49

×D4(n0d5d, 5d5d)P 02(n0d, 5d)

−
2
5
×E2(n0d6s, 6s5d)P 02(n0d, 5d)δ(N ′, 2), (23)

for excitations "open shell – empty shell"(o-e):
electrostatically correlated spin-orbit interaction:

ζ(ndNn′sN
′
) = ζ(o− e) − 2(N − 1) ×D0(5d5d, 5dn′d)ζ5d,n′d

+
2
5
×E2(5d6s, 6sn′d)ζ5d,n′dδ(N ′, 2), (24)

electrostatically correlatedhfs interactions:

a01
5d(nd

Nn′sN
′
) = a01

5d(o− e) − 2(N − 1) ×D0(5d5d, 5dn′d)P 01(5d, n′d)

+
2
5
×E2(5d6s, 6sn′d)P 01(5d, n′d)δ(N ′, 2), (25)

a12
5d(nd

Nn′sN
′
) = a12

5d(o− e) − 2(N − 1) ×D0(5d5d, 5dn′d)P 12(5d, n′d)

+
2
5
×E2(5d6s, 6sn′d)P 12(5d, n′d)δ(N ′, 2), (26)

a10
6s(nd

Nn′s) = a10
6s(o− e) + 2N ×D0(5d6s, 5dn′s)P 10(6s, n′s), (27)

b025d(nd
Nn′sN

′
) = b025d(o− e) − 2(N − 1) ×D0(5d5d, 5dn′d)P 02(5d, n′d)

+
2
5
×E2(5d6s, 6sn′d)P 02(5d, n′d)δ(N ′, 2). (28)

The values of one-configuration parameters, obtained for both excitation models with the use of the
above relations, are compiled in Table 7. The hyperfine structure parametersaκk andbκk given in this table
for individual configurations are thehfsparameters obtained with the use of Sandars and Beck theory [10].
It can be seen that the respective values of the parameters obtained within two excitation models are equal
up to third decimal place. It can serve as another test of correctness of the model of description of atomic
structure.

6. Discussion of configuration interaction effects on the hyperfine structure

The influence of an excitation of an electron from a closed shell to an empty shell (a second-order effect)
on the hyperfine structure is referred to as "hfs core-polarization effect". This term referees to both n0s
and n0p, n0d or n0f electrons [41] which fill the closed shells in the atom. According to Lindgren and
Morrison [40], the operators representing this effect are "pseudo-two-body operators" which can be reduced
to the structure of one-body operators, and thus the corresponding radial parameters cause the effects of
"screening or antiscreening" of the parameters of the first order perturbation theory in Sandars and Beck
approach [10]. The most often discussed and analyzed effect is the one first described by Bauche and Judd,
concerning the excitation of electrons from the closed shells n0s to the empty shells n′s. In Sandars and
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Beck theory the operators and the radial parametera10
nl (wherel > 0) represent relativistic effects in the

hyperfine structure. Thus, according to e.g. Feneuille and Armstrong [20], Armstrong [41] and Lindgren
and Morrisson [40], the above mentioned effects are inseparable and cannot be independently determined in
the least-squares procedure. Therefore in our methoda10

nl = 0 for l > 0 is assumed, while the effects ofns
core polarization, which are different in each of the configurations 5d3, 5d26s and 5d6s2, are described as
follows:

- in configuration n0s25d3 closed shells are n0 = 1,2,. . .,5 and empty shells are n′ = 6,7,. . .,

- in configuration n0s25d26s closed shells are the same as above, but empty shells begin with n′ = 7, and
the shell 6s is an open shell,

- in configuration n0s25d6s2 closed shells are from 1 to 6, an empty shells begin with 7s.

Thus in the considered space (5d+6s)3 the core polarization effect should be described as follows:

- in configuration 5d3: with the use of parameter
E2(n0s5d,5d6s) P10(n0s,6s) +E2(n0s5d,5dn′s)P 10 (n0s,n′s), (n0 =1,2,. . .,5, n′ =7,8,. . .),

- in configuration 5d26s: with the use of parameterE2(n0s5d,5d6s) P10(n0s,6s) (n0 =1,2,. . .,5)
representing the excitation from the closed shells n0s to the open shell 6s, as well as parameter
E2(n0s5d,5dn′s)P 10 (n0s,n′s) representing the excitations from the five closed shells n0s to the empty
shells n′s (n′ =7,8,. . .)

- in configuration 5d6s2: with the use of parameterE2(n0s5d,5dn′s) P 10 (n0s,n′s), (n0 =1,2,. . .,6,
n′ =7,8,. . .).

The determined values of those parameters are given in Table 6. With the use of relation
P10 = 63.6086 gI E2(n0s5d,5dn′s)P 10 (n0s,n′s)
we can determine the radial integrals representing the electronic part of these interactions, which amount to:

- for excitations "closed shell n0s - empty shell n′s"
E2(n0s5d,5dn′s)P 10 (n0s,n′s) = 4(3) au, (n0 =1,2,. . .,6, n′ =7,8,. . .)
E2(n0s5d,5dn′s)P 10 (n0s,n′s) = -23(3) au, (n0 =1,2,. . .,5, n′ =7,8,. . .)

- for excitations "closed shell n0s - open shell 6s"E2(n0s5d,5d6s) P10(n0s,6s) = -19(2) au,
(n0 =1,2,. . .,5)

From the above we can conclude, that excitations from the closed shells n0s to an open or an empty shell 6s
plays a dominant role. For instance it can be seen that in the case of configuration 5d3 the contribution of the
core polarization effect (resulting from the second order of perturbation theory) to the observed hyperfine
splittings is comparable to the contribution of the electrons 5d, and in some cases the former even exceeds the
latter. Moreover, one can see that in configuration 5d6s2, where the shell 6s is closed and thus the excitation
considered is excluded, only a small core polarization effect is observed. A negative-valued contribution
from the excitations 1s,2s,. . .,5s to 7s,8s,. . . is compensated by a positive contribution from the excitations
of 6s electron to empty shells. This resembles the picture resulting from theoretical calculations performed
by Ron and Kelly [43] for configurations 3d64s2 in a Fe atom, where also the contributions of the excitations
of the electrons 1s, 2s, 3s to 5s shell and the succeeding ones are negative, while the contributions of the
excitations of the electron 4s are positive.

As already mentioned above, it is not possible to determine the value of the relativistic parametera10
5d in

the least squares procedure. We examined the behaviour of the values of the remaining hyperfine structure
parameters in dependence on the value of the relativistic effecta10

5d. As expected, changes of the values
concerned only the parameters
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E2(n0s5d,5dn′s)P 10 (n0 =1,2,. . .,6, n′ =7,8,. . . andE2(n0s5d,5dn′s)P 10 (n0 =1,2,. . .,5, n′ =7,8,. . .,
according to the linear dependence:

E2(n0s5d, 5dn′s)P 10(n0s, n
′s) = −2.5a10

5d + 181.310 n0 = 1, . . . , 6;n′ = 7, 8, . . .
E2(n0s5d, 5dn′s)P 10(n0s, n

′s) = −2.5a10
5d − 190.270 n0 = 1, . . . , 5;n′ = 7, 8, . . . ,(29)

where, for the parametera10
5d we can assume the values fromab initio theoretical calculations, performed

with the use of differential methods [12].
Moreover, assumption of different values of parametera10

5d had no influence on the value of residuum.
From the relations (22) and (27), as well as Table 7 the following information about configuration

interaction can be obtained:
a10
6s(c-o) - a106s(o-e) = 4D0(n0s5d,6s5d)P 10(n0s,6s) +D0(5d6s,5dn′s)P 10(6s,n′s)= 149 MHz

Thus we can determine the value of the contribution described in the second order perturbation theory
as:

D0(n0s5d,6s5d)P 10(n0s,6s) +D0(5d6s,5dn′s)P 10(6s,n′s) = 37 MHz
It results from Table 7, that in all the cases considereda12

5d < a01
5d. This result differs from the one

expected on the basis of the relativistic theory of the hyperfine structure [12,42], where the expected relation
for the 5d elements should be amounts toa12/a01 > 1.25.

We can explain the results obtained within this work only if we assume, that the core polarization effects
concerned with the excitations n0s→ n′d, n0p → n′p,n′f and n0d → n′s,n′d,n′g are different, dependent on
κk = 01, 12 or 02, which specify the parametersaκk of the hyperfine structure. In order to explain such an
effect of core polarization the full definitions of one-body radial parameters given below are very helpful:

〈
r−3

〉01

5d eff
=

〈
5d

∣∣r−3
∣∣ 5d

〉01
+

5∑

n0=2

∑

n′

1
∆E

〈
n′p

∣∣r−3
∣∣n0p

〉01

×
[
2
5
R1(n0p5d, 5dn′p) − 6

35
R3(n0p5d, 5dn′p)

]

+
4∑

n0=3

∑

n′

1
∆E

〈
n′d

∣∣r−3
∣∣ 5d

〉01
[
2R0(n0d5d, 5dn′d)

+
2
7
R2(n0d5d, 5dn′d) − 8

21
R4(n0d5d, 5dn′d)

]
(30)

〈
r−3

〉12

5d eff
=

〈
5d

∣∣r−3
∣∣ 5d

〉12
+

5∑

n0=1

∑

n′

1
∆E

〈
n′d

∣∣r−3
∣∣n0s

〉12 2
5
R2(n0s5d, 5dn′d)

+
5∑

n0=2

∑

n′

1
∆E

〈
n′p

∣∣r−3
∣∣n0p

〉12
[
14
25
R1(n0p5d, 5dn′p) +

18
175

R3(n0p5d, 5dn′p)
]

+
5∑

n0=2

∑

n′

1
∆E

〈
n′f

∣∣r−3
∣∣n0p

〉12
[

6
25
R1(n0p5d, 5dn′f) +

72
175

R3(n0p5d, 5dn′f)
]

+
4∑

n0=3

∑

n′

1
∆E

〈
n′d

∣∣r−3
∣∣ 5d

〉12
[
2R0(n0d5d, 5dn′d) − 6

49
R2(n0d5d, 5dn′d)
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+
8
49
R4(n0d5d, 5dn′d)

]

+
4∑

n0=3

∑

n′

1
∆E

〈
n′g

∣∣r−3
∣∣ 5d

〉12
[

72
245

R2(n0d5d, 5dn′g) +
20
49
R4(n0d5d, 5dn′g)

]

(31)

〈
r−3

〉02

5d eff
=

〈
5d

∣∣r−3
∣∣ 5d

〉02

+
5∑

n0=1

∑

n′

1
∆E

〈
n′d

∣∣r−3
∣∣n0s

〉02
[
− 4

5
R2(n0s5d, n′d5d) +

2
5
R2(n0s5d, 5dn′d)

]

+
5∑

n0=2

∑

n′

1
∆E

〈
n′p

∣∣r−3
∣∣n0p

〉02
[
− 24

25
R2(n0p5d, n′p5d) +

14
25
R1(n0p5d, 5dn′p)

+
18
175

R3(n0p5d, 5dn′p)
]

+
5∑

n0=2

∑

n′

1
∆E

〈
n′f

∣∣r−3
∣∣n0p

〉02
[
− 36

25
R2(n0p5d, n′f5d) +

6
25
R1(n0p5d, 5dn′f)

+
72
175

R3(n0p5d, 5dn′f)
]

+
4∑

n0=3

∑

n′

1
∆E

〈
n′′′d

∣∣r−3
∣∣ 5d

〉02
[
−

8
7
R2(n0d5d, n′d5d) + 2R0(n0d5d, 5dn′d)

−
6
49
R2(n0d5d, 5dn′d) +

8
49
R4(n0d5d, 5dn′d)

]

+
4∑

n0=3

∑

n′

1
∆E

〈
n′g

∣∣r−3
∣∣ 5d

〉02
[
− 72

35
R2(n0d5d, n′g5d) +

72
245

R2(n0d5d, 5dn′g)

+
20
49
R4(n0d5d, 5dn′g)

]
. (32)

When analyzing the above relations, we may assume, that in the caseκk = 12 a larger compensation of
the relativistic effects by polarization effects is possible than in the caseκk = 01, which might explain
the least squares fit results, where the following ratio was obtained:a12/a01 ≈ 0.8. The authors of
the papers [12, 42] noticed, that the experimental values for these ratios are reversed with respect to the
theoretical ones. This is due to the influence of configurations interaction effects

One of the aims of our work was a precise definition of the radial integrals determined on the basis of the
experimental data, which makes the determination of their contributions to the constantsA andB possible.
Comparison of such contributions, estimated from the experiment, with their counterparts calculatedab-
initio theoretically would be definitely more interesting than the comparison given in Table 3, which is
currently possible.

If the formalism describing the interaction between the electronic shell and the atomic nucleus were
strictly correct, the ratios of two-bodyhfs radial parameters should be identical. On the basis of the data
from Table 6 we obtain:
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D0(5d5d, 5dnd)P 01(5d, nd)/D0(5d5d, 5dnd)P 02(5d, nd) = 0.94,
D2(5d5d, 5dnd)P 01(5d, nd)/D2(5d5d, 5dnd)P 02(5d, nd) = 0.24,
E2(5d5d, 5dnd)P 01(5d, nd)/E2(5d5d, 5dnd)P 02(5d, nd) = 0.46,
D2(5dnd, 5d6s)P 01(5d, nd)/D2(5dnd, 5d6s)P 02(5d, nd) = 0.77,
E2(5dnd, 6s5d)P 01(5d, nd)/E2(5dnd, 6s5d)P 02(5d, nd) = 0.92. (33)

This indicates that the description of the configurations interaction within the frame of magnetic dipole
or electric quadrupole interactions in the hyperfine structure is not fully correct.

7. Conclusions

On the basis of the analytical content of the tables in this work we tried to address the problems stated in
Introduction. As can be seen from Table 2, application of the method of energy matrix diagonalization in
the basisSLJFallows to describe the observed hyperfine splitting intervals with the use of the constantsA,
B andC within the accuracy of the measurements performed with the double resonance method (ABMR-
LIRF), which is of the order of a few kHz. Thus, on the basis of the precise experimental data it can be stated
that the operator of the form given in Equation (1) correctly describes the partition of the observed hyperfine
splitting into the interactions of the ranksK = 1, 2, 3.

In Table 3 all the data concerning the constantsA andB, available in the literature, were compiled;
this concerns both the experimentally determined and the ab initio theoretically calculated values. From
the comparison of the columns 4 and 5, or 7 and 8, one can rather speak of severe discrepancies and a
few accidental coincidences between the experimental and theab initio theoretical values. For instance, for
the level at 13238 cm−1 three different values of the constant A were predicted: 86, -18 and 102 MHz,
while the experimental value amounts to -19 MHz, and for the level at 9910 cm−1 the theoretical values
are as follows 431, 471 and 333 MHz, in severe discrepancy with the experimental result of 559 MHz. It
indicates a limited usefulness of the theoreticalab initio calculations for the understanding of the mechanism
of interaction between the electronic shells and the atomic nucleus.

According to Sandars and Beck theory the magnetic dipole interactions (rankK = 1) may be divided
into the subordersκk = 01, 12, 01, describing the interaction of the electronic shell with the magnetic dipole
moment of the nucleus. In a similar way the interactions of the rankK = 2 can be divided into interactions
of subordersκk = 02, 13, 11 with the electric quadrupole moment of the nucleus. As evident from Table
5, for the electrostatic quadrupole interaction the agreement betweenBcorr andBcalc is of the order of
the accuracy of their determination (differences betweenBexp,corr [13] andBcorr (this work) reach even
5.7 MHz). Thus we can assume that the operator

T (κk)2
e · T (2)

n =
e

4πε0

N∑

i=1

[
−Ĉ2

i

〈
r−3

〉02
+

√
3
10

(
Û

(13)2
i

〈
r−3

〉13
+ Û

(11)2
i

〈
r−3

〉11
)]

· T (2)
n ,

(34)

rather correctly describes the interaction between the electronic shells and the electric quadrupole moment
of the nucleus. It should be stressed, that in our analysis 19 constantsB determined with high precision
from ABMR-LIRF experiments were applied. In the fit procedure 9 free parameters were used and the rms
error amounted to 0.47 MHz. A drastically different picture emerges when we try to divide the interactions
of the rankK = 1 into the contributions grouped according to the operators subranksκk = 01, 12, 01.
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It can be seen in Table 5, that the differences betweenAcorr andAcalc reach even 20 MHz in some
cases; this results e.g. in the difference between the total observed hyperfine splitting of the level4F9/2

and its calculated counterpart of≈700 MHz. Such differences are very large and they can be detected even
with the classical optical methods. In the case of the analysis of magnetic dipole interactions we had at
our disposal altogether 35 constants, among them 21 very precise ones (obtained with the ABMR-LIRF
method) and 14 of an accuracy 1-4 MHz, from the LIF method. The number of free parameters amounted
to 13 and the rms error amounted to ca. 12.1 MHz. Use of all one- and two-body parameters predicted by
the theory (also of those given in Table 6 with the values set to 0) did not remove the dicrepancies between
the constantsA, and it solely increased the rms error. Therefore for the parameters determined with an error
considerably exceeding 100% in the final procedure the values 0 were assumed. The reason of the observed
discrepancies could be the inaccurate eigenvectors’ amplitudes, determined on the basis of the fine structure
analysis. The source of such errors, as already mentioned in Introduction, might be e.g. assignment of an
incorrectJ value to the correct energy value. Thus in this work any doubts of this kind were removed due
to investigations of the hyperfine structure with LIF method. Lack of data concerning the levels 5d3 2

1D
J = 3/2, as well as of the confirmation of the energy of the levelJ = 5/2, had no considerable influence on
the accuracy of the obtained values of the eigenvectors’amplitudes. Their quality is proved by the excellent
agreement between the experimental and the calculated values ofgJ factors, as clearly visible in Table 5.
We also supposed, that the reason of the discrepancies may be perturbation of the hyperfine structure by
spin orbit coupling with distant configurations. This assumption was also examined in detail in the way
analogous to the case described in Section 4; the electrostatic interaction operatorG in equation (6) was
replaced by the spin-orbit interaction operators·l. The parameters describing the above coupling proved to
exhibit linear dependence with the relativistic parameters resulting from Sandars and Beck theory [10]. It
applies to both magnetic dipole and electric quadrupole hyperfine interactions. Thus we proved, in a different
way, the theoretical considerations of Feneuille and Armstrong [20] about the impossibility of differentiation
between the relativistic contributions and the contributions of configurations interactions solely on the basis
of experimental data. In the case of the interactionsK = 1 κk = 01, 12 andK = 2 κk = 02 relativistic
and configurations interaction contributions are added to the nonrelativistic contribution. In the casesK = 1
κk = 10 andK = 2 κk = 13, 11, where the nonrelativistic contribution amounts to 0, both the effects: the
relativistic effect and the configurations interaction effect contribute to the non-zero value of the effective
parameter. In our procedure of the analysis of atomic structure we critically analyzed all the available
experimental data. In the theoretical description of the atomic structure all possible contributions originating
from the second order perturbation theory were taken unto account. They were independently described in
the excitation models: (c-o) and (o-e). The consistency of the results obtained, as seen in Table 6, proves
the correctness of the procedure and the formulae applied in construction of the energy matrix. Thus, on the
basis of the results of this work, we may state, that the operator in the form

T (κk)1
e · T (1)

n =
µ0µB
2π

N∑

i=1

[
l̂i

〈
r−3

〉01 −
√

10
(
ŝiĈ

2
i

)(1) 〈
r−3

〉12
+ ŝi

〈
r−3

〉10
]
· T (1)

n ,

(35)

does not fully describe the observed magnetic dipole interactionK = 1 in the atomic hyperfine structure, i.e.
its partition into the contributionsκk = 01, 12 i 10. In the near future we plan to undertake investigations
of the model of magnetic dipole and magnetic octupole interactions in an atom, where a more complex
structure of the nucleus is assumed than in hitherto existing models. For the full verification of the new
model more precise measurements of the hyperfine splittings would be required, where the constants of
magnetic octupole interaction could be determined with the relative accuracy of the order of 10%. The
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present accuracy of the determinedC constants (see Table 4) does not allow to put any hypothesis concerning
this interaction.

Acknowledgments

This work has been supported by Polish Ministry of Science and Higher Education under the project
N519 033 32/4065.

8. References
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Table 1. Compilation of spectral lines used for measurement of the hyperfine structure constants of levels
belonging to even parity configurations in lanthanum atom, performed with the method of LIF in a hollow
cathode discharge. Spectroscopic description of the levels belonging to odd-parity configurations on the basis
of [33]. Value of J quantum number for the level with energy E=33799.23[cm−1 ], that was changed from 5/2 to
3/2 on the basis of the investigations performed, has been marked with asterisk

No Line Lower level Upper Level
λair[nm] kvac[cm−1] Designation Energy[cm−1] J Designation Energy[cm−1] J

1 602.724 16586.75 5d3 4P 16617.30 1/2 4f 5d6s (1D) 2P 33204.05 3/2
2 594.797 16807.81 5d2(1S)6s2S 16991.42 1/2 4f 6s6d (3D) 2P 33799.23 *3/2
3 587.231 17024.34 5d2(1S)6s2S 16991.42 1/2 5d2(3F)7p4F 34015.76 3/2
4 662.503 15090.10 5d3 2P 20392.60 1/2 5d 6s7p (3P)4P 35482.70 1/2
5 607.036 16468.91 5d3 4P 16735.14 3/2 4f 5d6s (1D) 2P 33204.05 3/2
6 569.189 17563.97 5d3 4P 16735.14 3/2 5d2(3F)7p2D 34299.11 3/2
7 633.431 15782.67 5d3 2D 18037.64 3/2 4f 6s6d (3D) 2P 33820.31 1/2
8 573.069 17445.06 5d3 2D 18037.64 3/2 5d 6s7p (3P)4P 35482.70 1/2
9 630.369 15859.33 5d3 2P 21037.30 3/2 6s2(1S)7p2P 36896.63 1/2
10 597.412 16734.23 5d3 2P 21037.30 3/2 4f 5d2 (3F) 4D 37771.53 5/2
11 587.234 17024.27 5d3 2P 21037.30 3/2 4f 5d2 (1D) 2D 38061.57 3/2
12 656.023 15239.14 5d3 2D 18776.62 5/2 5d2(3F)7p4F 34015.76 3/2
13 654.440 15276.02 5d3 2F 21969.32 5/2 5d 6s7p (3P)2F 37245.34 5/2
14 634.251 15762.27 5d3 2F 21969.32 5/2 4f 5d2 (3F) 4F 37731.59 5/2
15 632.027 15817.72 5d3 2F 21969.32 5/2 4f 5d2 (3F) 4P 37787.04 3/2
16 629.808 15873.45 5d3 2F 21969.32 5/2 4f 5d2 (3F) 4D 37842.77 7/2
17 625.139 15992.02 5d3 2F 21969.32 5/2 4f 5d2 (3F) 4F 37961.34 5/2
18 624.306 16013.36 5d3 2F 21969.32 5/2 4f 5d2 (1D) 2G 37982.68 7/2
20 580.683 17216.31 5d3 2G 17023.36 7/2 4f 6s6d (3D) 2H 34239.61 9/2
21 653.348 15301.54 5d3 2F 21943.80 7/2 5d 6s7p (3P)2F 37245.34 5/2
22 633.226 15787.79 5d3 2F 21943.80 7/2 4f 5d2 (3F) 4F 37731.59 5/2
23 623.312 16038.88 5d3 2F 21943.80 7/2 4f 5d2 (1D) 2G 37982.68 7/2
24 580.043 17235.31 5d3 2F 21943.80 7/2 4f 5d2 (1D) 2F 39179.11 5/2
25 584.677 17098.71 5d3 2G 17140.90 9/2 4f 6s6d (3D) 2H 34239.61 9/2
26 584.491 17104.15 5d3 2G 17140.90 9/2 4f 6s6d (3D) 2H 34245.05 11/2
27 627.820 15923.73 5d3 2H 18315.88 9/2 4f 6s6d (3D) 2H 34239.61 9/2
28 627.605 15929.17 5d3 2H 18315.88 9/2 4f 6s6d (3D) 2H 34245.05 11/2
29 590.252 15937.22 5d3 2H 18315.88 9/2 5d2(3F)7p2F 35253.10 7/2
30 583.453 17134.59 5d3 2H 18315.88 9/2 5d2(3F)7p4F 35450.47 9/2
31 627.410 15934.13 5d3 2H 18310.92 11/2 4f 6s6d (3D) 2H 34245.05 11/2
32 583.284 17139.55 5d3 2H 18310.92 11/2 5d2(3F)7p4F 35450.47 9/2

[44] Ting Y 1957Phys. Rev.108295
[45] Beck D R 1997Int. J. Quant. Chem.65555
[46] Karacoban B and Özdemir L 2009Acta Phys. Pol. A115864

Table 2: Comparison of the experimental and calculated hyperfine structure intervals

interval [MHz]
Energy J F ↔ F ′

[cm−1] observed calculated obs.− calc.

0.00 3/2 3 ↔ 2 391.603(10) [44] 391.601 0.002



Critical analysis of the methods 19

Table 2: (continued)

interval [MHz]
Energy J F ↔ F ′

[cm−1] observed calculated obs.− calc.

4 ↔ 3 551.987(5) [44] 551.989 −0.002
5 ↔ 4 737.967(15) [44] 737.966 0.001

1053.16 5/2 3 ↔ 2 529.090(10) [44] 529.088 0.002
4 ↔ 3 716.288(3) [44] 716.292 −0.004
5 ↔ 4 912.793(5) [44] 912.789 0.004
6 ↔ 5 1120.902(5) [44] 1120.904 −0.002

2668.19 3/2 3 ↔ 2 −1451.728(20) [13] −1451.727 −0.001
4 ↔ 3 −1925.506(20) [13] −1925.507 0.001
5 ↔ 4 −2390.615(20) [13] −2390.614 −0.001

3010.00 5/2 4 ↔ 3 1199.787(15) [26] 1199.792 −0.005
5 ↔ 4 1503.210(18) [26] 1503.204 0.006
6 ↔ 5 1808.936(12) [26] 1808.939 −0.003

3494.53 7/2 4 ↔ 3 1847.837(12) [26] 1847.836 0.001
5 ↔ 4 2312.531(20) [26] 2312.531 0.000
6 ↔ 5 2779.047(7) [26] 2779.047 0.000
7 ↔ 6 3247.744(6) [26] 3247.744 0.000

4121.57 9/2 4 ↔ 3 1952.018(20) [26] 1952.017 0.001
5 ↔ 4 2442.885(22) [26] 2442.885 0.000
6 ↔ 5 2935.669(10) [26] 2935.669 0.000
7 ↔ 6 3430.754(13) [26] 3430.755 −0.001
8 ↔ 7 3928.536(27) [26] 3928.536 0.000

7011.91 5/2 4 ↔ 3 1211.072(15) [26] 1211.076 −0.004
5 ↔ 4 1522.871(15) [26] 1522.866 0.005
6 ↔ 5 1840.665(15) [26] 1840.667 −0.002

7231.41 1/2 4 ↔ 3 9840.644(40) [13] 9840.647 −0.003

7490.52 3/2 3 ↔ 2 2762.278(20) [13] 2762.279 −0.001
4 ↔ 3 3707.825(20) [13] 3707.824 0.001
5 ↔ 4 4674.682(20) [13] 4674.682 0.000

7679.94 5/2 2 ↔ 1 1614.096(20) [13] 1614.100 −0.004
3 ↔ 2 2417.501(20) [13] 2417.500 0.001
4 ↔ 3 3216.524(20) [26] 3216.519 0.005
5 ↔ 4 4009.667(20) [13] 4009.673 −0.006
6 ↔ 5 4795.439(20) [13] 4795.436 0.003

8052.16 7/2 3 ↔ 2 −600.341(20) [13] −600.341 0.000
4 ↔ 3 −796.573(20) [13] −796.573 0.000
5 ↔ 4 −989.476(20) [13] −989.477 0.001
6 ↔ 5 −1178.223(20) [13] −1178.222 −0.001
7 ↔ 6 −1361.981(20) [13] −1361.982 0.001

8446.04 3/2 3 ↔ 2 −1262.378(20) [13] −1262.382 0.004
4 ↔ 3 −1687.663(20) [13] −1687.659 −0.004
5 ↔ 4 −2116.822(20) [13] −2116.824 0.002

9044.21 1/2 4 ↔ 3 907.569(20) [13] 907.572 −0.003

9183.80 5/2 2 ↔ 1 1753.431(20) [13] 1753.413 0.018
3 ↔ 2 2629.855(20) [13] 2629.863 −0.008
4 ↔ 3 3505.908(20) [13] 3505.924 −0.016
5 ↔ 4 4381.492(20) [13] 4381.471 0.021
6 ↔ 5 5256.493(40) [13] 5256.503 −0.010
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Table 2: (continued)

interval [MHz]
Energy J F ↔ F ′

[cm−1] observed calculated obs.− calc.

9719.44 3/2 3 ↔ 2 −1941.658(20) [13] −1941.655 −0.003
4 ↔ 3 −2611.058(20) [13] −2611.062 0.004
5 ↔ 4 −3299.435(20) [13] −3299.433 −0.002

9919.82 9/2 4 ↔ 3 2200.726(20) [13] 2200.717 0.009
5 ↔ 4 2768.920(20) [13] 2768.920 0.000
6 ↔ 5 3349.169(20) [13] 3349.178 −0.009
7 ↔ 6 3943.948(20) [13] 3943.940 0.008
8 ↔ 7 4555.752(20) [13] 4555.755 −0.003

9960.90 7/2 1 ↔ 0 −299.185(20) [13] −299.174 −0.011
2 ↔ 1 −596.977(20) [13] −596.982 0.005
3 ↔ 2 −891.992(20) [13] −891.998 0.006
4 ↔ 3 −1182.851(20) [13] −1182.845 −0.006
5 ↔ 4 −1468.190(20) [13] −1468.190 0.000
6 ↔ 5 −1746.699(20) [13] −1746.701 0.002
7 ↔ 6 −2016.965(20) [13] −2016.964 −0.001

12430.61 3/2 4 ↔ 3 1784.934(20) [13] 1784.929 0.005
5 ↔ 4 2213.952(20) [13] 2213.955 −0.003

12787.40 5/2 3 ↔ 2 297.843(20) [13] 297.843 0.000
4 ↔ 3 393.815(20) [13] 393.815 0.000
5 ↔ 4 486.956(20) [13] 486.956 0.000
6 ↔ 5 576.565(20) [13] 576.565 0.000

13238.32 7/2 5 ↔ 4 −93.382(20) [13] −93.383 0.001
6 ↔ 5 −116.751(20) [13] −116.751 0.000
7 ↔ 6 −142.677(20) [13] −142.676 −0.001

13747.28 9/2 4 ↔ 3 −250.101(20) [13] −250.101 0.000
5 ↔ 4 −315.071(20) [13] −315.071 0.000
6 ↔ 5 −381.671(20) [13] −381.671 0.000
7 ↔ 6 −450.228(20) [13] −450.228 0.000
8 ↔ 7 −521.066(20) [13] −521.066 0.000
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Table 4. Corrected values of thehfsC constant [kHz] for the even parity energy levels of lanthanum atom.

Energy Designation Ccorr Ccorr Ref.
[cm−1] (Ref.) (this work)

0.00 5d6s2 2D3/2 0.15(44) 0.2(1.3) [44]
1053.16 5d6s2 2D5/2 −0.6(1.0) −0.2(3.0) [44]
3010.00 5d26s4F5/2 2(3) −0.9(2.1) [26]
3494.53 5d26s4F7/2 −2(2) −2.8(2.4) [26]
4121.57 5d26s4F9/2 3(4) 2.5(2.9) [26]
7011.91 5d26s2F5/2 −2(3) −2.8(2.1) [26]
7679.94 5d26s4P5/2 −0.7(2.1)
8052.16 5d26s2F7/2 −0.5(2.4)
9919.82 5d26s2G9/2 6.8(2.9)
9960.90 5d26s2G7/2 −0.2(2.4)

12787.40 5d3 4F5/2 0.3(1.1)
13238.32 5d3 4F7/2 −0.5(2.4)
13747.28 5d3 4F9/2 −0.1(2.9)
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Fine structure radial parameters

Diagonalization of the fine structure matrix

Angular coefficients of the fs parameters
(first- and second-order perturbation theory)

Hyperfine structure parametrization
 

A = Σακkaκk+Σαiai 
B = Σβκkbκk+Σβibi 

 

Angular coefficients of the hfs 
one- and two-body parameters 

Fine structure eigenvectors 
 

Values of hfs radial parameters 
 aκk, ai, b

κk, bi 
 

 

Diagonalization of the hfs matrix 
 

WJ, A, B, C, D – fitted parameters 
aκk, ai, b

κk, bi – fixed parameters 
 

Atomic states basis : Ψ(conf,vSLJF) 

Corrected values of the hyperfine structure 
constants  A, B, C and  D  

 

 

Angular coefficients of the hfs 
matrix 

 

for SLJ=S’L’J’ : WJ, A, B, C, D 
for J ≠ J’ : aκk, ai, b

κk, bi 
 

 

Figure 1. Scheme of the atomic structure calculations
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Table 6. One- and two-body radial parameters [MHz] for the model space (5d + 6s)3 (n0 denote electrons of
closed shells,n′ denote electrons excited to empty shells)

closed shells→ open shells open shells→ empty shells

Spin-orbit and electrostatically correlated spin-orbit interactions

ζ5d 596.425 (30.) ζ5d 525.024 (20.)

D0(n0d5d, 5d5d)ζn0d,5d -36.770 (5.4) D0(5d5d, 5dn′d)ζ5d,n′d 36.771 (5.4)

D2(n0d5d, 5d5d)ζn0d,5d 56.410 (28.) D2(5d5d, 5dn′d)ζ5d,n′d -56.414 (28.)

D4(n0d5d, 5d5d)ζn0d,5d 36.707 D4(5d5d, 5dn′d)ζ5d,n′d -36.710

E2(5d6s, 6sn0d)ζn0d,5d 86.837 (28.) E2(5d6s, 6sn′d)ζ5d,n′d -86.844 (28.)

D2(5d6s, 5dn0d)ζn0d,5d -137.127 (63.) D2(5d6s, 5dn′d)ζ5d,n′d 137.141 (63.)

E2(5d6s, n0d5d)ζn0d,5d -125.740 (61.) E2(5d6s, n′d5d)ζ5d,n′d 125.729 (61.)

D2(5d5d, n0d6s)ζn0d,5d -79.676 (63.) D2(5d5d, n′d6s)ζ5d,n′d 79.691 (63.)

D2(n0d5d, 6s6s)ζn0d,5d 0 D2(5dn′d, 6s6s)ζ5d,n′d 0

Magnetic-dipolehfs interactions

a01
5d 218.970 (20.) a01

5d 182.791 (12.)

a12
5d 175.074 (22.) a12

5d 139.040 (17.)

a10
6s 3897.652 (45.) a10

6s 3749.025 (74.)

D0(n0d5d, 5d5d)P 01(n0d, 5d) -18.039 (4.0) D0(5d5d, 5dn′d)P 01(5d, n′d) 18.039 (4.0)

D2(n0d5d, 5d5d)P 01(n0d, 5d) -2.717 (12.) D2(5d5d, 5dn′d)P 01(5d, n′d) 2.717 (12.)

D4(n0d5d, 5d5d)P 01(n0d, 5d) -1.807 D4(5d5d, 5dn′d)P 01(5d, n′d) 1.807

E2(n0s5d, 5d6s)P 10(n0s, 6s) -918.597 (76.)

E2(n0s5d, 5dn′s)P 10(n0s, n′s) -190.249 (70.) E2(n0s5d, 5dn′s)P 10(n0s, n′s) -1108.850 (16.)

E2(n0d6s, 6s5d)P 01(n0d, 5d) 34.275 (17.) E2(5d6s, 6sn′d)P 01(5d, n′d) -34.279 (17.)

D2(n0s5d, 5d5d)P 12(n0s, 5d) 0 D2(5d5d, 5dn′s)P 12(5d, n′s) 0

a12
5d,6s 123.967 (36.) a12

5d,6s 65.497 (36.)

D2(n0d5d, 5d6s)P 01(n0d, 5d) -204.689 (66.) D2(5dn′d, 5d6s)P 01(5d, n′d) 204.683 (66.)

E2(n0d5d, 6s5d)P 01(n0d, 5d) -52.146 (84.) E2(5dn′d, 6s5d)P 01(5d, n′d) 52.146 (84.)

D2(n0s5d, 5d5d)P 10(n0s, 6s) 1936.122 (130.) D2(5d5d, 5dn′s)P 10(6s, n′s) -1936.118 (130.)

D2(n0s5d, 6s6s)P 01(n0d, 5d) 0 D2(5dn′s, 6s6s)P 01(5d, n′d) 0

Electric-quadrupolehfs interactions

b025d 231.511 (4.1) b025d 180.111 (1.7)

b135d 32.039 (3.1) b135d 32.039 (3.1)

b115d -4.061 (1.6) b115d -4.061 (1.6)

D0(n0d5d, 5d5d)P 02(n0d, 5d) -19.206 (7.1) D0(5d5d, 5dn′d)P 02(5d, n′d) 19.206 (7.1)

D2(n0d5d, 5d5d)P 02(n0d, 5d) 11.207 (3.5) D2(5d5d, 5dn′d)P 02(5d, n′d) -11.206 (3.5)

D4(n0d5d, 5d5d)P 02(n0d, 5d) 7.292 D4(5d5d, 5dn′d)P 02(5d, n′d) -7.292

E2(n0d6s, 6s5d)P 02(n0d, 5d) 73.450 (2.1) E2(5d6s, 6sn′d)P 02(5d, n′d) -73.449 (2.1)

D2(n0s5d, 5d5d)P 02(n0s, 5d) 0 D2(5d5d, 5dn′s)P 02(5d, n′s) 0

b025d,6s -2.874 (8.5) b125d,6s -35.858 (1.3)

D2(n0d5d, 5d6s)P 02(n0d, 5d) -2.674 (12.) D2(5dn′d, 5d6s)P 02(5d, n′d) 2.670 (12.)

E2(n0d5d, 6s5d)P 02(n0d, 5d) 56.384 (18.) E2(5dn′d, 6s5d)P 02(5d, n′d) -56.388 (18.)

D2(n0s5d, 6s6s)P 02(n0d, 5d) 0 D2(5dn′s, 6s6s)P 02(5d, n′d) 0
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Table 7. Values of the one-body hyperfine structure parameters [MHz] and effective radial integrals [a.u.]
obtained from the experimental data

Configurations

Parameter (5d+6s)3 5d 6s2 5d26s 5d3

spin-orbit :

ζ5d (c-o) 596.425 490.260 451.455 377.915

(o-e) 525.024 490.260 451.482 377.940

magnetic-dipole :

a01
5d (c-o) 218.970 168.971 146.604 110.526

(o-e) 182.791 169.079 146.713 110.635

a12
5d (c-o) 175.074 122.432 99.716 65.446

(o-e) 139.040 122.435 99.721 65.451

a10
6s (c-o) 3897.652 3897.652

(o-e) 3749.025 3749.025
˙
r−3

¸01

5d eff
2.226 1.932 1.456

˙
r−3

¸12

5d eff
1.614 1.316 0.865

˙
r−3

¸10

6s eff
77.060

electric-quadrupole :

b025d (c-o) 231.511 150.730 141.697 103.285

(o-e) 180.111 150.731 141.699 103.287
˙
r−3

¸02

5d eff
3.208 3.015 2.198
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