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Abstract. We report on the control of the slow and fast light propagation
velocity of two light beams (at 1550 nm and 980 nm) through an erbium doped
fiber amplifier by means of coherent population oscillations. We modulate the
amplitude of both beams with the same frequency so that the relative phase
between both modulations allows us to control their group velocities. The same
group velocity, in absolute value, is achieved when beams are modulated in phase
or phase opposition. The experimental results are explained by a rate equation
model.
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1. Introduction

Slow light has recently become a subject of intense research due to its potential
applications for tunable delay lines which can be used for data synchronization [1].
Thus, much research has been focused on the control of the speed of light in optical
fibers since these devices would be compatible with fiber-optic communication systems
(see review about slow light in optical fibers [2]). Song et al. [3] and Okawachi
et al. [4] demonstrated slow and fast light in optical fibers for the first time. The
underlying mechanism used on those works, stimulated Brillouin scattering, consists
in the interaction of two propagating waves, a pump wave and a Stokes wave, which
generates an acoustic wave at the frequency difference of the pump and the Stokes
fields. The slow light resonance can be placed at the desired wavelength by changing
the frequency of the pump field. A related process, stimulated Raman scattering, has
also been used in optical fibers to demonstrate an ultrafast all-optical controllable
delay [5]. Electromagnetically induced transparency (EIT), a pioneering technique
to produce slow light propagation, has been recently demonstrated experimentally in
hollow-core photonic-bandgap fibers filled with acetylene [6]. This technique creates
a very deep transparency window in an atomic absorption profile with almost null
absorption. However, EIT medium should preserve quantum coherence, therefore
dephasing processes limit this technique.

Coherent population oscillations (CPO) have been shown to be another physical
mechanism which allows for the variation of group velocity in optical fibers at room
temperature. The periodic modulation of the ground-state population at the beat
frequency between a control and a probe field sharing a common atomic transition
produces scattered light from the control field into the probe field leading to a
decrease in the absorption of the probe field. This give rise to a narrow hole in the
absorption profile for the probe field leading to slow light propagation [7]. The hole
linewidth is proportional to the inverse of the relaxation lifetime of the excited level
[8]. Note that this technique is not affected by dephasing processes, in contrast to EIT.
However, the transparency depth achieved in CPO is smaller than the one obtained
with EIT. Therefore, CPO could be affected by the residual absorption. By means
of an additional pump to populate upper levels, the CPO induces a dip in the gain
spectrum, leading to anomalous dispersion and fast light (group velocities greater than
c or even negative). A modification of group velocity by CPO in an erbium doped fiber
(EDF) was reported for the first time by Schweinsberg et al [9], where an amplitude-
modulated 1550 nm signal co-propagates with a 980 nm pump beam. They observed
a change from sub- to superluminal propagation upon increasing pump power. The
delay or advancement achieved saturates with both pump and signal powers, being
this a limit in the delays and advancements obtained. Larger delays/advancements
have been obtained for ultra-highly EDFs [10, 11, 12]. By using the same experimental
system, fast light pulse propagation has been studied in more detail in [13, 14, 15].
Furthermore, a change from superluminal to subluminal propagation solely based
upon increasing the beat frequency between the weak and the control field sharing a
common atomic transition has been reported [16, 17]. This peculiar behavior is due to
the interplay between pump absorption and pump-power broadening of the spectral
hole induced by CPO.

Recently, Arrieta-Yáñez et al have developed a novel mechanism for enhancing
the fractional delay and advancement obtained in EDFs by one order of magnitude
[18]. They force the population oscillations by modulating with the same frequency
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and simultaneously both, the 980 nm pump beam and the 1550 nm signal beam. The
population oscillations are amplified by the pump modulation. Relative phase between
both modulations was used as a knob for changing the propagation regime from
ultraslow velocities to fast- or negative-velocities. The same physical mechanism was
previously used by Stepanov et al [19] to control the phase shift of a modulated signal
beam by modulating an additional beam simultaneously and with the same frequency.
These two beams have different carrier frequencies, both within the fundamental
absorption spectrum 1470-1570 nm of Er3+ ions.

Our aim in this work is to study the coupling of two light beams through the
population oscillations and its effect in the propagation velocity of both beams. To
this end, we induce a beat in both beams with the same frequency and analyze
simultaneously the group velocity of both modulated beams. We use an EDF and
the two light beams correspond to the usual signal (at 1550 nm) and pump (at 980
nm) beams. This method allows us to control the group velocity of both beams by
means of the relative phase between both beats. We analyze under which conditions
the coupling between the two beams makes that both propagate with the same group
velocity, that is, the conditions that lead to a group velocity synchronization-like
phenomenon.

The paper is organized as follows. The theoretical model used to study the
propagation of two amplitude periodically-modulated beams through an EDF using
CPO is described in section 2. The experimental setup is described in section 3. The
experimental results and simulations are presented in section 4. The final conclusions
are summarized in section 5.

2. Propagation equations
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Figure 1. Three-level system for Er3+ ions. Wavelengths for the signal and
pump beams.

The propagation of an amplitude periodically-modulated signal through an EDF
has been modeled in previous works on CPO by using both semiclassical and rate
equation procedures [7, 9]. We consider the erbium ions as three-level atomic systems
interacting with a power-modulated 1536 nm signal which couples the transition
4I15/2 −→ 4I13/2 and a 977 nm pump laser which pump the ions onto the upper
state 4I11/2 (see figure 1). We also assume a fast decay from the upper state 4I11/2 to
the metastable state (4I13/2). We obtain the rate equation for N1 (the population of
the ground state normalized to the total ion density ρ):

∂N1

∂t
=

1
τ

[
1 − N1 +

βs

1 + βs
Ps(1 − N1) −

1
1 + βs

PsN1 − PpN1

]
, (1)
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where the four terms on the right hand side of the equation stand for the spontaneous
emission from the metastable state, the stimulated emission from the metastable
state, the absorption to the metastable state, and the absorption to the upper level,
respectively. Here t is the time variable. Ps is the signal power normalized to the
signal saturation power P sat

s ≡ h̄ωsAs/(τ(σ21 + σ12)), where τ is the lifetime of the
metastable state, σ21 is the emission cross section at the signal frequency ωs, σ12 is
the absorption cross section at the signal frequency ωs, and As is the signal mode
area. The ratio between the signal cross sections is βs ≡ σ21/σ12. Pp is the pump
power normalized to the pump saturation power P sat

p ≡ h̄ωpAp/(τσ13), where σ13 is
the absorption cross section at the pump frequency ωp, and Ap is the pump mode
area. ηs ≡ Ac/As is the ratio between the fiber core area and the signal mode area,
and ηp ≡ Ac/Ap is the ratio between the fiber core area and the pump mode area.

The behavior of the signal and pump powers along the fiber can be described by
the following propagation equations:

∂Ps

∂z
+

ngs

c

∂Ps

∂t
= σ12ρ [βs − (1 + βs)N1] ηsPs , (2)

∂Pp

∂z
+

ngp

c

∂Pp

∂t
= − σ13ρN1ηpPp , (3)

where z is the distance along the fiber. Here ngs and ngp are the group indexes of the
signal and pump in the fiber glass, respectively.

The signal is modulated as follows: Ps = Ps0 + Psm cos(2πfmt), where Ps0

is the average signal power, Psm is the modulation amplitude (modulation depth
Psm/Ps0), and fm is the modulation frequency. Due to this modulation, a periodic
coherent oscillation of the population of the ground state occurs at this frequency
(N1 = N1st+N1c cos(2πfmt)+N1s sin(2πfmt)) which produces a hole in the absorption
spectrum for the modulated part of the signal. Thus, a slow light propagation of Psm

takes place. The presence of the pump beam allows to turn the delay into advancement
(fast light), depending on the value of the pump power. However, the magnitude of
the advancement obtained remains nearly constant when certain pump level has been
achieved [7, 9, 10, 16, 20].

Here, we also modulate the pump beam with the same frequency as the signal
beam, being the pump power made up of an average pump power Pp0, and a sinusoidal
part with amplitude Ppm varying at frequency fm, i.e., Pp = Pp0+Ppm cos(2πfmt−ϕ).
Note that the pump beam could be out of phase with the signal beam by a magnitude
ϕ. Thus, the stationary part (N1st) and the oscillating parts (N1c and N1s) of the
population of the ground state will be given by:

N1st =
1
wc

(
1 +

βs

1 + βs
Ps0

)
, (4)

N1c =
wcPsm

w2
c + w2

m

(
βs

1 + βs
− N1st

)
− N1stPpm

w2
c + w2

m

(wc cosϕ − wm sin ϕ) , (5)

N1s =
wmPsm

w2
c + w2

m

(
βs

1 + βs
− N1st

)
− N1stPpm

w2
c + w2

m

(wm cosϕ + wc sin ϕ) , (6)

where wm ≡ 2πfmτ is the dimensionless modulation frequency and wc ≡ 1+Ps0 +Pp0

is a dimensionless frequency which determines the width of the transparency hole
created in the absorption or gain spectrum by means of CPO. This magnitude roughly
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measures the maximum modulation bandwidth that can experience the full slow
or fast light effect [21] and it can be increased with the signal and pump powers.
The expression obtained for the out of phase part of the population oscillation N1s

presents two terms: the first one, which is proportional to Psm, is responsible of the
delay/advancement experienced by the modulated part of the signal. The second
term, which is proportional to Ppm, arises from the modulation imposed to the pump
beam and incorporates explicitly the phase delay ϕ. We will show that by adjusting
the value of ϕ, the delay and advancement experienced by the modulated part of the
signal can be controlled.

Finally, we can obtain the propagation equations for the average powers and the
amplitudes of the modulation of the signal and pump beams, and for the phase shift
experienced by the periodic part of the signal and pump beams due to CPO:

dPs0

dz′
= αsPs0 [βs − (1 + βs)N1st] , (7)

dPp0

dz′
= − αpPp0N1st , (8)

dPsm

dz′
= − αs(1 + βs)Ps0N1c + αs [βs − (1 + βs)N1st] Psm , (9)

dPpm

dz′
= − αpPp0 (N1c cosϕ + N1s sinϕ) − αpPpmN1st , (10)

dφs

dz′
= αs(1 + βs)

Ps0

Psm
N1s , (11)

dφp

dz′
= αp

Pp0

Ppm
(N1s cosϕ − N1c sin ϕ) , (12)

where the distance has been normalized to the fiber length L such that z′ ≡ z/L.
αs ≡ Lσ12ρηs is the dimensionless signal absorption coefficient and αp ≡ Lσ13ρηp is
the dimensionless pump absorption coefficient. We neglect the term with the temporal
derivative in equations (2) and (3). This term leads to a small delay (delay due to
the fiber glass refractive index dispersion) compared to the delay due to CPO. The
fractional delay of the signal (time delay normalized to the time duration of the signal)
at the end of the fiber can be obtained from the signal phase shift at z = L, i.e.,
Fs ≡ φs(z = L)/(2π). While for the pump it will be Fp ≡ φp(z = L)/(2π).

3. Experimental setup

The experimental setup is depicted in figure 2 and consists of an EDF in the forward-
pumped configuration. The signal beam comes from a pigtailed distributed feedback
laser diode operating at 1536 nm provided with a current and temperature controller
which allows us to operate the laser at room temperature. This laser beam couples
the transition between the erbium ground state 4I15/2 and the metastable state 4I13/2

(see figure 1). The signal beam is split into two beams: one part of the beam (1%)
is sent directly to a switchable-gain amplified InGaAs photodetector, which is used as
reference. The other part of the beam (99%) goes through the EDF under study and
then to an identical photodetector. The EDF is pumped by a co-propagating beam
coming from a pigtailed laser diode operating at 977 nm provided also with a current
and temperature controller. This laser beam couples the erbium ground state with
the fast decay upper pump level (4I11/2) (see figure 1). The pump beam is also split
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Figure 2. Experimental setup scheme. LD TEC: laser diode and temperature
controller; FG: function generator; ϕ: relative phase between the pump
modulation and the signal modulation; DFB LD: distributed feedback laser
diode; WDM: wavelength division multiplexer; EDF: erbium doped fiber; PD:
photodetector; DAQ: data acquisition card; PC: personal computer.

into two beams: one part of the beam (1%) is sent directly to a photodetector, which
is used as reference. The other part of the beam (99%) goes through the EDF and
then to an identical photodetector. The signal and pump beams are injected into the
EDF through a wavelength division multiplexer. The pump and the signal beams at
the output of the EDF are separated by means of an identical wavelength division
multiplexer. Both laser powers are sinusoidally modulated with the same modulation
frequency fm by using two synchronized function generators which allow us to control
the relative phase ϕ between both laser powers at the input of the fiber. Four signals
(the reference signal, the signal propagated through the EDF, the reference pump,
and the pump propagated through the EDF) are recorded with a fast data acquisition
card and transferred to a computer for analysis. The experiment is controlled with
a LabView program. We compute the time delay or advancement of the signal tds

from the correlation of the reference signal and the signal propagated through the
EDF. Similarly, we compute the time delay or advancement of the pump tdp from
the correlation of the reference pump and the pump propagated through the EDF.
Then, the fractional delay/advancement of the signal is defined as Fs ≡ tdsfm, while
the fractional delay/advancement of the pump is defined as Fp ≡ tdpfm. We used a
0.1 m-long single mode Al2SiO5-glass-based fiber highly doped with Er3+ ions (ion
density ρ = 6.3 × 1025 m−3).

4. Experimental results and simulations

We have carried out two different set of experiments. In the first one, we analyze
the enhancement of the slow and fast light propagation effects produced when forcing
the population oscillations with a modulated pump. In the second one, we study the
coupling of both modulated beams.

In order to theoretically reproduce the experimental results, we numerically solve
the propagation equations (7)-(12). We have considered the following parameter values
which are consistent with values previously used in other works [9, 22]: the signal cross
section is σ12 = σ21 = 5×10−25 m2, the pump cross section is σ13 = 3×10−25 m2, the
signal mode area is As ' 33 µm2 (signal mode field diameter 6.5 µm), the pump mode
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area is Ap ' 20 µm2 (pump mode field diameter 5.0 µm), the fiber core area is Ac ' 14
µm2 (fiber core diameter 4.2 µm), the lifetime of the metastable state is τ ' 9 ms.
Using these parameters, the signal saturation power is P sat

s ' 0.5 mW and the pump
saturation power is P sat

p ' 1.5 mW. The dimensionless signal absorption coefficient is
αs ' 1.35, and the dimensionless pump absorption coefficient is αp ' 1.33. We used
the insertion losses in the EDF as fitting parameters to reproduce the experimental
curves. Thus, we considered an insertion losses of 0.8 for the signal beam and 0.65
for the pump beam. We are not considering changes in the refractive index due to
nonlinear effects such as Kerr type nonlinearity since we are not working in a high
power regimen.

4.1. Signal delay controlled by the modulated pump

Figure 3. Fractional advancement of the signal as a function of the relative phase
between the signal and pump modulated beams for three different modulation
frequencies. Experiments (symbols) and simulations (lines). Signal power = 0.14
mW (Ps0 = 0.24). Pump power = 10 mW (Pp0 = 4.3). Modulation depths
Psm/Ps0 = Ppm/Pp0 ' 0.5.

First of all, we have analyzed the viability of controlling the propagation regime
of the signal by means of the pump modulation. In figure 3 we show the dependence
of the signal fractional delay Fs with the relative phase between the signal and pump
modulated beams ϕ. We modulate the signal power (0.14 mW) and the pump power
(10 mW) with the same modulation depth (Psm/Ps0 = Ppm/Pp0 ' 0.5) and frequency.
Different curves correspond to different modulation frequencies. The experimental
results (symbols) have been plotted together with the simulated curves (lines) obtained
by numerically solving the system of equations (7)-(12). We obtain ultra slow group
velocities or very fast group velocities (even negatives) depending on the relative
phase ϕ. It can be seen that the value of ϕ that leads to the maximum fractional
delay or advancement shifts with the modulation frequency. For low frequencies, the
maximum delay takes place around π/2 while the maximum advancement takes place
around 3π/2. As the modulation frequency increases, the position of the maximum
delay shifts and tends to 0 while the position of the maximum advancement tends
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to π. This behavior can be analytically explained by neglecting the attenuation or
amplification of the signal and pump powers (undepleted solution) in equation (11). In
this case, the phase shift of the signal is obtained by assuming implicitly the absence
of z-dependence in the problem:

φs(z = L) ' αsPs0

(w2
c + w2

m) wc

[
wm (βsPp0 − 1) − Ppm

Psm
(1 + βs + βsPs0) sin [ϕ + ξm]

]
,(13)

where ξm ≡ arctan (wm/wc). By analyzing equation (13) we obtain that the maximum
fractional advancement/delay takes place at ϕ = (π/2) + nπ − ξm (with n = 0, 1).
Then, at low modulation frequencies (wm < wc), ξm ' 0, so the minimum and the
maximum take place around π/2 and 3π/2, respectively; whereas at high modulation
frequencies (wm > wc), ξm ' π/2, so the minimum and the maximum take place
around 0 and π, respectively, in agreement with the experimental results.

Figure 4. Phase between the signal and the pump beams as a function of the
modulation frequency. Experiment (symbols) and theory (line). Signal power =
0.1 mW (Ps0 = 0.17). Pump power = 1.5 mW (Pp0 = 0.66). Pump modulation
depth Ppm/Pp0 = 0.5.

With the aim of better understanding the above results, we are going to take into
account that the pump beam dominates the population oscillation since the pump
power is much higher than the signal power, so its modulation amplitude is higher
too. Thus, when only the pump beam is modulated, an oscillation will be induced
in the signal beam due to the population oscillations. It is easy to analytically show
that, in this particular case, the signal beam will oscillate with a phase shift of ξm

with respect to the pump beam. In fact, this phase shift is the phase difference of
the population oscillations with respect to the oscillation of the pump beam. In other
words, the signal beam will oscillate in phase with the population oscillations which are
induced by the modulated pump. In order to experimentally check this result, we have
measured the phase shift between the signal and the pump beams when modulating a
1.5 mW pump beam with a constant signal beam of 0.1 mW. In figure 4 we plot the
relative phase between the signal and pump beams as a function of the modulation
frequency. We observe that for low modulation frequencies, the signal oscillates in
phase with the pump beam, and for high modulation frequencies, the shift between
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the pump beam and the signal beam is π/2. As expected, the relative phase between
the signal and pump beams behaves as ξm, as can be seen in figure 4 (solid line).

So the oscillation that the pump induces in the signal has a phase shift of ξm

with respect to the pump oscillation. When we modulate both beams simultaneously,
as in figure 3, the signal oscillation will not affect to the population oscillations since
the signal power and, thus, the signal modulation amplitude are smaller than the
corresponding to the pump. Then, at low modulation frequencies (ξm ' 0), i.e.,
when the oscillations of the pump and the population are in phase, the maximum
delay/advancement takes place when signal and pump are initially out of phase.
However, at high modulation frequencies (ξm ' π/2), i.e., when the oscillations of
the pump and the population are dephased by π/2, the signal will have a maximum
delay or advancement when the signal oscillations are initially in phase with the pump
oscillations. Thus, the maximum fractional delay (or advancement) occurs when the
phase difference between the population and the signal beam is π/2 (or 3π/2) for all
modulation frequencies, i.e., ϕ + ξm = π/2 (or 3π/2).

Figure 5. Fractional advancement of the signal as a function of the relative
phase between the signal and pump modulated beams for three different pump
modulation depths. Experiments (symbols) and simulations (lines). fm = 20 Hz.
The rest of parameters are the same than the ones used in figure 3.

We have also analyzed the behavior of Fs with the amplitude of the pump
modulation Ppm. Figure 5 shows the experimental (symbols) and the simulated (lines)
fractional advancement of the signal Fs versus ϕ when we modulate the pump and the
signal powers at a low modulation frequency of fm = 20 Hz. The simulated curves
have been obtained by numerically solving the system of equations (7)-(12). Different
curves correspond to different modulation depths of the pump beam. The rest of
parameters are the same than the ones used in figure 3. We see how the maximum
advancement and maximum delay increase linearly with the modulation amplitude,
in agreement with the analytical expression (see equation (13)). Note that, for the
largest pump modulation depth, the shape of the curve developed by Fs(ϕ) slightly
deviates from a sinusoidal profile (see circles in figure 5), i.e., from the prediction given
by equation (13). This analytical expression was obtained by assuming implicitly the
absence of z-dependence in the problem. However, the phase shift of the signal is
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coupled to the amplitude of the signal modulation, in contrast to what occurs without
pump modulation. Therefore, even in the undepleted case, for large amplitudes of the
pump modulation we must take into account the spatial variation of the amplitude
of the modulated part of the signal in order to accurately explain the behavior of the
phase shift of the signal. In order to show this effect, let us consider that the spatial
variation of the amplitude of the signal modulation Psm is very small so that:

Psm (z) ' Psm(0) +
zαs

L
Ppm cosϕ

Ps0 (1 + βs + βsPs0)
w2

c

, (14)

where we have considered a low modulation frequency, i.e., wm < wc. By using this
expression we calculate the phase shift φs at the fiber output:

φs(z = L) ∝ − sinϕ

[
1 − Ppm cosϕ

αsPs0 (1 + βs + βsPs0)
2w2

cPsm(0)

]
, (15)

which shows a deviation from the sinusoidal profile. This correction leads to a shift
of the position of the maximum delay towards larger values of ϕ whereas leads to
a shift of the position of the maximum advancement in the opposite direction. The
magnitude of this shift increases as the amplitude of the pump modulation increases,
in agreement with the experimental results (see figure 5). This deviation of the Fs(ϕ)
curve from the sinusoidal profile is due to the coupling of the phase shift φs with the
amplitude of signal modulation Psm, which in fact, arises when modulating the pump.

Finally, we compare the magnitude of the signal fractional delay/advancement
obtained in the presence or absence of modulation of the pump beam. To this
aim, we have measured several curves of Fs versus fm in the absence and in the
presence of modulation of the pump beam. In the presence of modulation, we have
also varied the values of the relative phase between the signal and pump modulated
beams ϕ. These results are plotted in figure 6. When the pump is not modulated, the
maximum fractional delay or advancement that can be achieved within the undepleted
approximation is given by ±αs/(16π) which, for our experimental system, is close to
± 0.025. Note that when this approximation is not valid (high optical densities) a more
complex relation of the maximum fractional delay with the fiber length is obtained
[17]. These two optimum cases have been measured when we modulate the signal
with an amplitude of Psm = 0.3Ps0. Optimum delay is achieved without pump, at
the optimum modulation frequency wm ' wc, and an average signal power of 0.5 mW
close to the signal saturation power Ps0 ' 1 (see squares in figure 6 (a)). Maximum
advancement is achieved increasing the signal power to 2 mW and applying a high
pump power of 23 mW (see circles in figure 6 (a)). In order to analyze the effect of the
periodic modulation of the pump beam, we consider similar parameters to the ones
used without pump modulation while we periodically modulate the pump power such
that Ppm = 0.7Pp0. Different curves shown in figure 6 (b)-(d) correspond to different
values of the relative phase between the signal and pump modulated beams ϕ. The
simulated curves have also been plotted in figure 6 (lines). We observe that the delay
and advancement obtained when modulating the pump beam is around one order of
magnitude larger than the one obtained without pump modulation. Furthermore, the
behavior exhibited by the signal delay strongly depends on ϕ. We observe that for
values of ϕ around π/2, delay is achieved for all values of fm (see figure 6 (b)), whereas
for values of ϕ around 3π/2, advancement is achieved for all modulation frequencies
(see figure 6 (d)). Note that for intermediate values of ϕ, around π, an increase in the
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ϕ
ϕ

ϕ

Figure 6. Fractional advancement of the signal as a function of the modulation
frequency: (a) for the unmodulated pump case; and (b)-(d) when modulating
the pump beam and for different relative phases between the signal and pump
modulated beams ϕ. Experiments (symbols) and simulations (lines). (a)
Optimum delay (squares): Signal power = 0.5 mW (Ps0 = 0.9) with Psm =
0.3Ps0, and pump power Pp0 = 0 mW; Optimum advancement (circles): Signal
power = 2 mW (Ps0 = 3.4) with Psm = 0.3Ps0, and pump power = 23 mW (Pp0

= 10). (b)-(d) Signal power = 0.5 mW (Ps0 = 0.9) with Psm = 0.4Ps0, and pump
power = 10 mW (Pp0 = 4.4) with Ppm = 0.7Pp0.

modulation frequency switches from delay to advancement (see figure 6 (c)). These
results have been reproduced by the simulations.

The signal fractional advancement can be related with the refractive index of
the material at the probe field frequency which usually shows a dispersive-like profile.
However, curves in figure 6 show a dispersive- or absorptive-like shape depending on
the value of the relative phase between the signal and pump modulated beams. In
order to clarify this behavior, we analyze theoretically the evolution of the fractional
advancement and the modulation gain (the ratio of the output to input modulation
depths) for the signal and the pump as a function of the modulation frequency. In
figure 7 we plot that dependencies for four representative values of the relative phase
between the signal and pump modulated beams and for the same parameters used in
figure 6. As we said before, when the pump modulation amplitude is much higher
than the signal modulation amplitude, the population oscillations are mainly due to
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Figure 7. Simulated fractional advancement of the signal (solid line) and pump
(dashed line) as a function of the modulation frequency for different relative
phases between the signal and pump modulated beams: ϕ = 0 (a) ϕ = π (c),
ϕ = 3π/2 (e), and ϕ = π/2 (g). Simulated modulation gain for the signal
[(Psm/Ps0)out/(Psm/Ps0)in] (solid line) and pump (dashed line) as a function
of the modulation frequency for ϕ = 0 (b) ϕ = π (d), ϕ = 3π/2 (f), and ϕ = π/2
(h). Ps0 = 0.9 with Psm = 0.4Ps0, and Pp0 = 4.4 with Ppm = 0.7Pp0.

the pump beam. In that case, the dependence of the pump phase shift with the
modulation frequency is given by φp ∝ −ωm/(ω2

c + ω2
m) while the dependence of the

pump modulation amplitude with ωm is Ppm ∝ ωc/(ω2
c + ω2

m). That is, φp shows the
form of a dispersive-like curve while Ppm follows the form of an absorptive-like curve
which shows the hole produced by the population oscillations in the pump absorption
spectrum.
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Both, the dispersive and absorptive phenomena that characterize φp and Ppm,
contribute to the phase shift and also to the modulation amplitude of the signal beam
through the relative phase ϕ. Thus, for ϕ = 0 or ϕ = π, φs follows a dispersive-like
curve whereas Psm develops an absorptive-like curve similarly to the behavior of φp

and Ppm, respectively. In particular, for ϕ = 0, φs and Psm behaves in the same way
than φp and Ppm, respectively, as can be seen in figures 7 (a) and (b). As the signal
modulation gain measures the ratio of the transmittance of the modulated part of the
signal and the average signal power, we see in figure 7 (b) that the modulated part
of the signal Psm exhibits more gain than the average signal power Ps0. Thus, the
signal delay can be explained as an antihole in the gain spectrum (gain increase) for
Psm generated by the population oscillations governed by the pump. For ϕ = π, φs

and Psm behaves in a similar manner although with opposite sign (see figures 7(c)
and (d)). In this case, the signal advancement is due to the hole produced in the
gain spectrum by the population oscillations. More complex behaviors are obtained
for ϕ = π/2 or ϕ = 3π/2. In those particular cases, there is an interchange between
the roles of φs and Psm. That is, φs develops an absorptive-like curve following Ppm

whereas Psm develops a dispersive-like curve following φp. The case of ϕ = 3π/2 is
shown in figures 7 (e) and (f). We see that φs resembles the spectral hole obtained
for the pump whereas Psm looks like the dispersive-like curve developed for the pump
phase shift. In this case, the modulated part of the signal Psm exhibits more gain
than the average signal power Ps0 and this phenomenon occurs for frequencies around
ωc (see figures 7 (e) and (f)). This shifted gain peak could be seen as a hole in the
gain spectrum around ωm = 0, leading to signal advancement. For ϕ = π/2, a similar
result is obtained (see figures 7 (g) and (h)). In this case, the modulated part of the
signal Psm exhibits less gain than the average signal power Ps0 and this phenomenon
occurs again for frequencies around ωc (see figures 7 (g) and (h)). This shifted hole
peak in the gain spectrum could be see as an antihole around ωm = 0. Thus, the
signal delay could be explained in terms of this antihole. In summary, the behavior
of the signal described above can be explained in terms of the interaction between
the signal and the population oscillations generated by the pump. In some way, we
could say that the pump intensity profile is imprinted onto the signal one through the
population oscillations.

4.2. Signal and pump delay coupling

Now, let us analyze the interplay between the delay undergone by the signal beam
and the one experienced by the pump beam, i.e., we study simultaneously the group
velocity of both beams and the influence of the relative phase ϕ in those velocities.
We analyze under which conditions the coupling between the two beams makes that
both propagate with the same group velocity, that is, the conditions that lead to a
synchronization-like phenomenon. To this end, let us first analyze in more detail the
relation between the analytical expression of the signal phase shift derived in equation
(13) and the expression derived for the pump phase shift following the same approach:

φp(z = L) ' αpPp0

(w2
c + w2

m) wc(1 + βs)

[
−wm (1 + βs + βsPs0) +

Psm

Ppm
(βsPp0 − 1) sin [ϕ − ξm]

]
.(16)

We look for a condition which allows both beams to travel with the same group
velocity independently of the average pump or signal powers (Pp0 and Ps0). To this
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end, we consider the case where the two beams are modulated in phase or in opposite
phase, i.e., ϕ = nπ with n = 0, 1. Then, the signal and pump phase shifts remain:

φs(z = L) ' αsPs0wm

(w2
c + w2

m) wc

[
(βsPp0 − 1) − Ppm

Psm
(1 + βs + βsPs0) (−1)n

]
, (17)

φp(z = L) ' αpPp0wm

(w2
c + w2

m) wc(1 + βs)

[
Psm

Ppm
(βsPp0 − 1) (−1)n − (1 + βs + βsPs0)

]
.(18)

An inspection of equations (17)-(18) reveals that both beams suffer the same
delay (in absolute value) when the ratio of the modulation depths is:

Psm/Ps0

Ppm/Pp0
=

αs(1 + βs)
αp

, (19)

which for our experimental system is close to 2. Thus, φs = φp at ϕ = 0 and
φs = −φp at ϕ = π. To experimentally observe these predictions, we have measured
simultaneously Fs and Fp as a function of the modulation frequency fm for different
values of ϕ. We modulate the signal power (1.8 mW) with a modulation depth
of Psm/Ps0 ' 0.65 and the pump power (2.2 mW) with a modulation depth of
Ppm/Pp0 ' 0.3 in such a way that the ratio between the modulation depths is close to
the one given by equation (19). The experimental results (symbols) and the simulated
ones (lines) are shown in figure 8. Fs and Fp are almost equal when both beams
are modulated in phase, i.e., at ϕ = 0 (see figure 8 (a)), in agreement with the
theoretical prediction. In this situation, the coupling of both beams leads to similar
signal and pump group velocities for all modulation frequencies. That means that
both beams propagate in phase along the fiber. On the contrary, when we modulate
both beams in phase opposition, i.e., at ϕ = π, Fs and Fp take the same value but with
different sign, in agreement with the theoretical prediction, that is, while the signal
suffers advancement the pump suffers a delay of the same value being the optimum
modulation frequency around 100 Hz (see figure 8 (c)). More complex behaviors are
observed at other values of the phase difference between both modulations, as shown
in figure 8 (b) and (d). For example, at ϕ = π/2, the pump beam suffers a transition
from advancement to delay as the modulation frequency increases. Note that only
the case of exactly equal velocities (ϕ = 0) is stable under propagation. However, for
the other values of ϕ, within the undepleted approximation, the difference between
the signal and pump phase shifts will depend linearly with the fiber length although
this dependence is not relevant in our experiments due to the small values of Fs or Fp

obtained.
We have also experimentally corroborated that, when both beams are modulated

in phase (ϕ = 0) or in opposite-phase (ϕ = π), they propagate with the same group
velocity (in absolute value) independently of the average pump power. These results
are shown in figure 9 where we plot the fractional advancement of the signal and
pump as a function of the average pump power for these two relative phases ϕ and for
a modulation frequency of fm = 50 Hz. As in figure 8, we use again a signal power
of 1.8 mW with a modulation depth of 0.65, and a modulation depth for the pump
power of 0.3. We also plot the simulated fractional advancement of the signal (dashed
line) and pump (solid line). As expected, the values of Fs an Fp are quite similar
for each pump power when both beams are modulated in phase. Furthermore, when
we modulate both beams in phase opposition, the fractional delay of the pump shows
the same value than the fractional advancement of the signal and vice versa. As we
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Figure 8. Fractional advancement of the signal (circles) and pump (squares) as
a function of the modulation frequency for different relative phases between the
signal and pump modulated beams ϕ. Simulated fractional advancement of the
signal (dashed line) and pump (solid line). Signal power = 1.8 mW (Ps0 = 3)
with Psm = 0.65Ps0, and pump power = 2.2 mW (Pp0 = 0.9) with Ppm = 0.3Pp0.

have shown, the in-phase propagation of both beams is a general trend that does not
depend on the modulation frequency or the average pump power, so it could be used
for the propagation of pulses.

The group velocity synchronization-like phenomenon described in this work could
be applied to a more interesting situation where we use two amplitude-modulated
light beams, both with carrier frequencies within the optical communications C band
(approximately from 1530 to 1565 nm). In fact, as we mention in section 1, Stepanov
et al [19] controlled the phase shift of a 1526 nm probe beam in an EDF by using a
1568 nm saturating beam. Following the same analysis used in this section, we could
achieve the same group velocity for both beams when the ratio of the modulation
depths satisfy the following condition:

P
(1)
sm/P

(1)
s0

P
(2)
sm/P

(2)
s0

=
α

(1)
s

(
1 + β

(1)
s

)

α
(2)
s

(
1 + β

(2)
s

) , (20)

where the superscripts (1) and (2) correspond to the different wavelengths.
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ϕ πϕ

Figure 9. Fractional advancement of the signal (circles) and pump (squares) as
a function of the average pump power for two different relative phases between
the signal and pump modulated beams ϕ. Simulated fractional advancement of
the signal (dashed line) and pump (solid line). Signal power = 1.8 mW (Ps0 =
3) with Psm = 0.65Ps0, and Ppm = 0.3Pp0. fm = 50 Hz

5. Conclusions

In conclusion, we report the control of the slow and fast light propagation velocity of
two amplitude-modulated light beams by means of CPO. These light beams correspond
to the usual signal (at 1550 nm) and pump (at 980 nm) beams used in EDF amplifiers.
To this end, we induce a simultaneous beat in both beams with the same frequency so
that the relative phase between both beats allows us to control their group velocities.
This condition could make difficult the application of the proposed mechanism for
unpredictable signals, like a data stream. When the population oscillations are mainly
governed by the modulated pump, an enhancement of the delay or advancement of
the 1550 nm beam in one order of magnitude is observed. When the two modulated
beams contribute similarly to the population oscillations, a synchronized propagation
of both beams has been found. Thus, when both beams are modulated in phase,
they propagate with the same group velocity along the fiber for each modulation
frequency. This simultaneous propagation is obtained for all the average pump
powers. Furthermore, when we modulate both beams in phase opposition, while
signal suffers advancement, pump suffers delay, traveling both with the same absolute
value of the group velocity. These results could be used in semiconductors which are
good candidates for telecommunication applications due to their fast characteristic
relaxation time scale (GHz). In fact, Antón et al [23] have shown that by modulating
the injection current in a semiconductor optical amplifier to force the population
oscillations they control and enhance the delay of the optical signal. These predictions
have been experimentally proved in a very recent work [24].
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Carreño, J. M. Ezquerro, and E. Cabrera-Granado for fruitful discussions and scientific
support.

References

[1] Adamczyk O H, Cardakli M C , Cai. J-X, Hayee M I, Kim C and Willner A E 1999 IEEE
Photon. Technol. Lett. 11 1057

[2] Gehring G M, Boyd R W, Gaeta A L, Gauthier D J, Willner A E 2008 J. Lightwave Technol.
26 3752
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