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Abstract. A quantum-reflection model is employed to calculate the rate coefficient
for the Penning Ionization of Rubidium by cold metastable Helium atoms in
unpolarized collisions. Various results for the p-wave transmission coefficient on a
1/R6 long-range potential are discussed. The dispersion coefficient for the interaction
of these atoms is estimated as 3540 atomic units. The calculated value of the rate
coefficient is about four times lower than the recently measured value (Byron et al.,
Phys. Rev. A 81 01405 2010) for this process when both atoms are held in magneto-
optical traps.
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1. Introduction

It was realised by Orzel et al. (1999) that Penning ionization (PI) in cold collisions can

be studied using a simple model where every collision reaching the short-range region

can be assumed to lead to ionization. Access to the short-range region is limited by

quantum reflection on the long-range potential. For collisions of cold metastable Xe

atoms, (Xe∗) Orzel et al. (1999) obtained good agreement between their calculations

using this model and their measurements. This quantum-reflection model was also used

successfully by Stas et al. (2006, 2007) and McNamara et al. (2007) for the possible

collisions between the stable isotopes of metastable Helium (He 2 3S1, He*) at mK

temperatures. Here it was assumed that ionization occurred only on collisions following

the 1Σ+
g and 3Σ+

u He2 molecular potentials.

Dickinson (2007) combined this model with the analytic near-threshold results by

Friedrich’s group (Friedrich and Trost, 2004, 2007) for quantum reflection on long-range

inverse-power potentials. This provided a simple, closed-form expression, using only

the C6 dispersion coefficient and the reduced mass, for the ionization rate coefficient

and reproduced the work of Stas et al. (2006, 2007) and McNamara et al. (2007) for

He∗. This model can also be shown to agree with the Xe∗ calculations of Orzel et al.
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(1999). Dickinson (2007) employed a unitarized approximation from Friedrich and Trost

(2004) for s-wave collisions. Recent work by Dashevskaya et al. (2009) has shown that

this approximation differed from an accurate numerical solution for s-wave quantum

reflection by less than 3%.

Stimulated by the recent measurement of Byron, Dall and Truscott (2010) of

Penning Ionization of Rb by He∗ at a temperature of about 1 mK we have employed

the quantum-reflection model for this system. Since the experiment involved both the

He∗ and the Rb held in Magneto-Optical Traps (MOTs) our calculated values cannot

be compared directly with the result of this experiment. We have also investigated

some recent results (Dashevskaya et al., 2009; Quéméner and Bohn, 2010) for p-wave

quantum reflection. For the He∗–Rb system when this work started we were unaware

of any published calculations of the C6 dispersion coefficient and consequently a simple

estimate of the value of this coefficient was made. Fortunately the dominant s-wave

contribution to the PI rate coefficient is sensitive primarily to C
1/4
6 (Dickinson, 2007),

reducing the importance of uncertainties in the value of C6.

Atomic units are used unless stated otherwise.

2. Theory

2.1. Transmission probability for p-waves on 1/R6 potential.

Previously (Dickinson, 2007) we used the low-temperature limit (Friedrich and Trost,

2004) of the p-wave contribution. More recently Dashevskaya et al. (2009) have solved

the Schrödinger equation numerically for the p-wave transmission coefficient, Pp(k), k

being the wavenumber, and provided an analytic fit to their results. While they don’t

compare their fit explicitly to their numerical values, the corresponding results for the

1/R4 potential suggest the error should be no more than a few percent. We have used

this fit to determine the rate coefficient numerically.

Very recently, in the context of cold reactive p-wave collisions of identical fermions,

Quéméner and Bohn (2010) have used an alternative model. They assumed that the

transmission coefficient behaves as k3, its threshold behaviour, until the energy reaches

the height of the p-wave centrifugal barrier, Vb where the probability is assumed to be

unity and also for all higher energies. We have used this probability to determine the

p-wave cross section, σp and integrated this p-wave cross section analytically to find the

p-wave contribution to the rate coefficient:

kQB
p (T ) =

β~
µ

πT

T ∗

(
317/4

219/4

) [
erf(

√
x0) − 2

√
x0/π exp(−x0)

]
, (1)

where β = (2µC6/~2)1/4, µ is the reduced mass, x0 = Vb/(kBT ) = 2(2/3)3/2(T ∗/T ) ≈
1.089(T ∗/T ), T ∗ = ~2/(2µβ2kB) and kB is Boltzmann’s constant. Note that

the scaled temperature T0 introduced in Dickinson (2007) is related to T ∗ by

T0 = 16
π2 [Γ(5/4)]4 T ∗ ≈ 1.094 T ∗. The low-temperature limit of (1) agrees with

the expression of Quéméner and Bohn (2010).
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Guided by this temperature dependence we have attempted to fit our numerical

result based on the transmission probability of Dashevskaya et al. (2009):

Kp(T ) ≈ β~
µ

5.73 T

T ∗

[
erf(

√
x1) − 2

√
x1/π exp(−x1)

]
, (2)

where x1 = 1.826(T ∗/T ). This fit agrees with the low- and high-temperature limits

of the Dashevskaya et al. (2009) expressions. Note that the low-temperature limit of

their expression differs by about 13% from the analytic result of Friedrich and Trost

(2004). As Dashevskaya et al. (2009) note ’tolerating an incorrect behavior of the small

probability in the limit k → 0 allows one to achieve a better approximation in the region

where the probability is noticeable.’

However at intermediate temperatures the value of Kp(T ) can deviate by up to

about 35% from the numerical values, kDLNT
p (T ) based on the transmission probability

results of Dashevskaya et al. (2009). Accordingly we have introduced a correction, based

on the behaviour of the Morse potential function:

Corr(x) =1 − 0.4 {exp[−2.4 ln 2(x − 1.1)]

−2 exp[−1.2 ln 2(x − 1.1)]} ,
(3)

kDLNT
p (T ) = Kp(T )/Corr(x1). (4)

The value of kDLNT
p /(β~/µ) peaks at about 3.8 at T ∗ ≈ 4. Deviations from the numerical

results for T ∗ ≤ 3 range between +5% at T ∗ ≈ 1 and -11% at T ∗ = 3.

The transmission probability, the p-wave cross section, σp(κ), where κ = kβ and

the p-wave rate coefficient, in units of (β~/µ), are compared in Figure 1. It can be seen

that the threshold analytic result of Friedrich and Trost (2004) for the transmission

probability is significantly smaller than the approximation of Quéméner and Bohn (2010)

below their unitarity limit, which is reached at κ ≈ 1. Above about κ = 1.25 their cross-

section expression is superior to the threshold result, converging to that of Dashevskaya

et al. (2009) by about κ = 2.5. Consistent with this behaviour, their rate-coefficient

values lie significantly below those of Quéméner and Bohn (2010). The fit, (4), can

be seen to be in satisfactory agreement with the numerical results. However, because

the low-energy cross section contributes relatively little to the rate coefficient, the low-

temperature limit of the rate coefficient differs from the numerical result by more than

20% for T ∗ > 0.25.

2.2. Estimation of the C6 coefficient

We employ the expression for the C6 coefficient between species 1 and 2 in terms of

dipole oscillator strengths (Hirschfelder et al., 1964):

C
(1,2)
6 =

3

2
S′

sS
′
t

f
(1)
s f

(2)
t

ω
(1)
s ω

(2)
t

(
ω

(1)
s + ω

(2)
t

) , (5)
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Figure 1. (a): The p-wave transmission coefficient, Pp(κ); (b): cross section, σp(κ);
(c): rate coefficient kp(T ∗) using the results of Dashevskaya et al. (2009), denoted
DLNT(2009); Friedrich and Trost (2004) and Quéméner and Bohn (2010).

where S′ denotes a sum over discrete states, omitting the initial state, and an integral

over the continuum states, f
(i)
n and ~ω

(i)
n are the dipole oscillator strength and the

transition energy, respectively, between state n and the initial state of species i.

Since the resonance transition of Rb (species 2) provides almost all the contributions

to the the Thomas-Reiche-Kuhn dipole oscillator strength sum rule, it is convenient to

approximate the sum over t in (5) by its leading term yielding

C
(1,2)
6 ≈ 3

2

f
(2)
1

ω
(2)
1

S′
s

f
(1)
s

ω
(1)
s

(
ω

(1)
s + ω

(2)
1

) . (6)

Taking the Rb oscillator strength as 1.029 (Zhang and Mitroy, 2007) and using this

single-term approximation for the Rb–Rb C6 coefficient yields a value about 15% below

that obtained in the full calculation of Derevianko et al. (2001).

Employing all the available He∗ oscillator strengths and transition energies from
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Wiese and Fuhr (2009a,b) we obtain, summing over He levels up to 10 3P , C
(1,2)
6 = 3540.

To estimate the uncertainty in this value of C6 we assumed that He* could be treated as a

one-electron system and that the oscillator strength for the transition to 11 3P provided

the remainder (0.342) of the oscillator-strength sum rule. This gave an additional

contribution of 230, an approximately 7% correction. We note that this value lies

between that for He∗–He∗, 3277 (Yan and Babb, 1998) and Rb–Rb, 4691 (Derevianko

et al., 2001) and about 10% below the geometric mean of the two pure-species C6

coefficients, a general approximation suggested by Hirschfelder et al. (1964).

Peach (2010) has recently calculated a value of 3685 a.u. for the He∗-Rb C6

coefficient, using a method based on atomic model-potentials. This value differs by

less than 5% from that obtained here and is consistent with the additional estimated

contribution from the 11 3P He* level giving an upper bound. Given the low sensitivity

of the rate coefficient to the value of the C6 coefficient, we assumed simply 3540.

2.3. Penning Ionization Rate Coefficient

In the reaction of interest

He(2 3S1) + Rb(5s 2S1/2) → He(1 1S0) + Rb+(1S0) + e−,

the reactants can collide at short range along the 4Σ+ and 2Σ+ molecular potentials.

Neglecting the spin-orbit interaction, by spin conservation only the 2Σ+ interaction can

lead to Penning Ionization. We need to examine the possible effect of the Rb hyperfine

structure since in the experiment of Byron, Dall and Truscott (2010) the 87Rb atoms

were prepared in the f = 2 level, f denoting the total angular momentum of the system,

including the nuclear contribution. This is the upper of the two 87Rb electronic ground

state levels. At long range, for collisions between atoms in their S-states where one atom,

denoted 1, has no nuclear spin, the colliding states are best described by a representation

|s1(s2i2)f2FMF 〉. Here s1(= 1) and s2(= 1/2) are the electron spins of the He∗ and of

the Rb, respectively, i2(= 3/2) is the nuclear spin of the 87Rb, f2 = s2 + i2 is the Rb

total angular momentum, F = f2 + s1 is the total angular momentum of the system,

apart from the angular momentum of relative motion and MF is the z-component of F.

At short range the system is best described in a representation |(s1s2)Si2FMF 〉, where

S = s1 + s2 is the total electron spin and now F = S + i2.

Following McNamara et al. (2007) in their discussion of 4He∗ – 3He∗ collisions, we

neglect the coupling of the relative motion and the internal motion and assume that the

transition between the states at long-range, best described as products of atomic states,

and the short-range molecular states (2Σ+ and 4Σ+), is well described as diabatic. Hence

we simply expand the long-range atomic product states on to the short-range molecular

states and add their contributions.
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Using standard angular momentum theory we have

|f2FMF 〉 =(−1)s1+s2+F+i2(2f2 + 1)1/2

×
∑

S

(2S + 1)1/2

{
s1 s2 S

i2 F f2

}
|SFMF 〉,

(7)

where the fixed angular momenta s1, s2 and i2 have been omitted from the state vectors

for brevity and

{
. . .

. . .

}
denotes a 6-j coefficient. Recognising that rate coefficients

will be independent of MF we have

K̄(f2) = (2f2 + 1)−1(2s1 + 1)−1
∑

F

(2F + 1)K(f2F ),

where K̄(f2) is the rate coefficient from Rb level f2 and K(f2F ) is the rate coefficient

from level f2 when the composite system has angular momentum F . Then, using the

weights from (7),

K̄(f2) = (2f2 + 1)−1(2s1 + 1)−1
∑

F

(2F + 1)

∑

S

(2f2 + 1)(2S + 1)

{
s1 s2 S

i2 F f2

}2

κ(S), (8)

where κ(S) is the rate coefficient for atoms colliding on the short-range (2S+1)Σ+

potential, since at short range the hyperfine structure can be ignored. Performing the

sum over F in (8) we obtain

K̄(f2) = (2s1 + 1)−1(2s2 + 1)−1
∑

S

(2S + 1)κ(S). (9)

We note that K̄(f2) is independent of the value of f2 so, in effect, consideration of the

hyperfine structure was unnecessary. This result, (9) is consistent with the weightings

employed by McNamara et al. (2007) in their study of collisions between 3He∗ and 4He∗.

Hence the maximum probability of ionization in a close He∗–Rb collision is 1/3.

Using the s-wave model described fully in Dickinson (2007) and the p-wave model

based on the fit of Dashevskaya et al. (2009) to the p-wave quantum-reflection probability

described in Section 2.1 the results obtained are shown in Figure 2. Here the s-, p- and

d-wave contributions have been included, although the d-wave contribution is negligible

in the temperature range shown.

In the experiment of Byron, Dall and Truscott (2010) the temperatures of the

He∗ and Rb atoms were 1 mK and 100 µK, respectively. Assuming that the MOTs

maintained the gas clouds at these temperatures and no significant temperature

equilibration occurred the temperature, Trel of the relative motion is given by (Viehland

and Mason, 1975, eq.(A26))
Trel

µ
=

THe

mHe
+

TRb

mRb
, (10)
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Figure 2. Penning Ionization rate coefficients for cold He∗-Rb collisions. The
measured value (Byron, Dall and Truscott, 2010) is not directly comparable - see
text.

where µ is the reduced mass, THe and TRb are temperatures of the He and Rb

atoms, respectively, and mHe and mRb are the corresponding masses. Using (10),

Trel = 0.96 mK. The value of the reduced temperature, T ∗ is about 3.2 mK.

The measured value, also shown in Figure 2, involves collisions in MOTs of both He

2 3S and He 2 3P with Rb(5s) and Rb(5p), where none of the sub-level populations are

known so direct comparison cannot be made with this calculated value for equilibrium

sub-level populations of He∗ and Rb(5s).

3. Conclusion

Given the insensitivity of the the PI rate coefficient to the value of the C6 coefficient,

the calculated value of the rate coefficient appears rather low compared to experiment.

However, the upper levels of the optical transitions in the MOTs will almost certainly

have stronger long-range interactions, enhancing the rate coefficient. Also the leading

long-range interaction between He 2 3P and Rb 5p 2P will behave as 1/R5.

The assumption of 100% ionization probability on transmision to the inner 2Σ+

potential curve clearly gives an upper bound to its contribution but a three-fold

enhancement of the PI rate coefficient could arise if ionization occurs from the 4Σ+

entrance channel. While the spin-orbit interaction is undoubtedly larger in Rb than in

He∗, it appears unlikely to be important in the ground S level and the electron spin-

spin He∗–Rb interaction looks too weak to cause significant 4Σ
+ − 2Σ

+
mixing. In
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addition, the measurements of Byron, Dall, Wu Rugway and Truscott (2010), using

spin-polarization of both atoms, show a suppression of the ionization rate coefficient by

at least a factor of ≈ 100, confirming that the ionization probability on the 4Σ+ channel

is indeed small.

The weak He∗ electron-spin – 87Rb nuclear-spin (s1 ·i2) interaction could in principle

lead at long range to a transition to the lower f = 1 level of Rb with an energy release

equivalent to 0.32 K. If the atoms, particularly the He∗, which gains almost all the

energy released, remained bound in the trap, from (9) the f = 1 level has the same

probability as the f = 2 level of following the doublet and quartet molecular potentials

at short range. However the value of the rate coefficient would be somewhat larger for

the higher-energy collision.

Clearly it would be of interest to have a direct measurement of the ground-state PI

rate coefficient.
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