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1Service des Photons, Atomes et Molcules, Commissariat l’Energie Atomique,
DSM/IRAMIS, CEA Saclay, 91191 Gif sur Yvette, France
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When an intense femtosecond laser pulse hits an optically-polished surface, it generates a dense
plasma that itself acts as a mirror, known as a plasma mirror. As this mirror reflects the high-
intensity laser field, its non-linear temporal response can lead to a periodic temporal distortion of
the reflected wave, associated to a train of attosecond light pulses, and, in the frequency domain,
to the generation of high-order harmonics of the laser. This paper presents detailed theoretical and
numerical analysis of the two dominant harmonic generation mechanisms identified so far, Coherent
Wake Emission and the Relativistic Oscillating Mirror. Parametric studies of the emission efficiency
are presented in these two regimes, and the phase properties of the corresponding harmonics are dis-
cussed. This theoretical study is complemented by a synthesis of recent experimental results, which
establishes that these two mechanisms indeed dominate harmonic generation on plasma mirrors.
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I. INTRODUCTION

High-order harmonic generation (HHG) through non-
linear interaction of intense laser beams with different
systems has been a subject of strong scientific interest
for more than three decades. One of the main moti-
vations that drive such studies is of course fundamen-
tal: this generation is generally the signature of a highly
non-linear interaction, on which the harmonic signal pro-
vides quite direct information. Another important one is
to exploit this phenomenon to obtain collimated beams
of coherent light at short wavelengths. Generating har-
monic orders of a few hundreds of ultrashort visible or
near-visible pulses could provide ultrashort light pulses
in the soft X-ray range -a goal to which considerable sci-
entific efforts are devoted, due to its huge potential for
probing the ultrafast dynamics of matter [1].

In the last decade or so, the interest of the scientific
community for HHG became even stronger, as it was re-
alized that this process could be used not only to extend
the spectral range of coherent light sources, but also to
reduce their pulse duration [2]. Indeed, if many harmon-
ics are generated, a very broad electromagnetic spectrum
-i.e. up tens or hundreds of eV wide- is obtained, which
can sustain light pulse durations down to the attosec-
ond range (1 as=10−18 s). Such pulses open the route to
directly resolving, in the time domain, the ultrafast dy-
namics of electrons in atoms, molecules or even solids [3].
Achieving such durations however requires the harmonics
to have an appropriate phase relationship.

Since 2001, many experiments have proved that such
an appropriate phase relationship can be achieved for
harmonics generated in atomic or molecular gases at laser
intensities of 1014 − 1015 W/cm2 in the near-infrared [3–
6]. The present state-of-the-art enables the generation of
single attosecond pulses of duration down to 80 as, with
photon and pulse energies in the 100 eV and nJ ranges,
respectively [7, 8]. This remarkable light source, which
basic physics is now very well-understood, has already
been used in a few pioneering time-resolved experiments
on the dynamics of electrons in atoms [9, 10] or solids [11].
However, this source is approaching its limits, be it in
terms of photon energy, pulse energy or duration, thus
hindering the developement of attosecond science.

All these limits on the performance of gas HHG sources
can eventually be traced back to the fact that this pro-
cess totally breaks down at intensities beyond a few 1015

W/cm2. This is mostly due to the strong ionization of
the generation medium that is induced by the laser field
at higher intensities, leading both to a depletion of the
individual dipoles responsible for the emission, and to
an extremely poor phase matching of these dipoles in
the macroscopic generation medium. To avoid this lim-
itation, the next generations of attosecond light sources
will either be based on other HHG processes, compati-
ble with the much higher laser intensities of up to 1022

W/cm2 now delivered by ultrashort lasers [12], or rely
on approaches totally different from HHG -e.g. free elec-

tron lasers [13], or relativistic flying mirrors [14–16]. In
the former case, the interaction leading to HHG will un-
avoidably involve ionized media, i.e. plasmas.

Interestingly, the very first experiments where HHG
of an intense laser beam was observed already involved
interactions with plasmas. After the observation of har-
monics orders up to 11 by Burnett et al. in 1977 [17],
Carman et al. observed harmonic orders up to 27 [18],
and then 49 in a second experiment [19], in the early
80’s. These pioneering experiments used intense nanosec-
ond CO2 lasers (λL = 10.6 µm) focused on initially solid
targets, which were turned into plasmas during the inter-
action. Although these early experiments arose a strong
interest in the scientific community because of the un-
precedently high generated harmonic orders, they were
only followed by a few theoretical studies [20, 21], and
to the best of our knowledge, no detailed experimental
study. The next significant experimental and theoretical
works came only almost 15 years later, and still at a fairly
low pace [22]. An important step in this period was pro-
vided by the first HHG experiments on solids using table-
top lasers delivering ultrashort (100 fs) pulses [23, 24]. In
the meantime though, the focus had switched to HHG in
gases, which corresponded to a more accessible interac-
tion regime with the laser technology of the time.

In the past few years, research activity on HHG in
plasmas has quickly increased both experimentally and
theoretically, thanks to progresses in laser performance
and numerical simulation tools, that have respectively
resulted in transitions from nanosecond to femtosec-
ond pulse durations for ultraintense lasers, and from
megaflops to multi-teraflops capabilities for computing
resources. This has led to very significant progresses in
the understanding of the basic mechanisms involved [25–
32], and to the first experimental evidence for the gener-
ation of attosecond pulses of light using plasmas [33].

The most common and successful way to generate har-
monics in plasmas so far consists in focusing intense
ultrashort -typically a few tens of femtoseconds- laser
pulses on initially-solid targets. This target is quickly
ionized by the laser field in the early part of the pulse.
In the femtosecond regime, plasma expansion can be very
limited during the interaction, and the laser pulse then
reflects on a dense plasma with a extremely steep inter-
face with vacuum. We shall refer to this system, which
characteristics will be defined more precisely in this pa-
per, as a ‘plasma mirror’.

Driving HHG on plasma mirrors typically requires
laser intensities beyond a few 1015 W/cm2 for an 800 nm
field [32], that is to say normalized vector potentials a0 =
eE/mωLc = [I(W/cm2)λ2

L(µm2)/(1.37 × 1018)]1/2 &
0.03. In this expression, e and m are respectively the
electron charge and mass, c the vacuum light velocity, E
the amplitude of the laser electric field and I the corre-
sponding laser intensity, ωL the laser frequency, and λL

its wavelength.
Two dominant generation mechanisms have now been

clearly identified for HHG on plasma mirrors in the case
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of ultrashort laser pulses: these are on the one hand,
Coherent Wake Emission (CWE) [32], and on the other
hand, the Relativistic Oscillating Mirror (ROM) process
[27]. As illustrated by the numerical results of Fig. 1,
these two mechanisms lead to very different distorsions of
the reflected field, and to very different harmonic spectra.

FIG. 1: (Color online) Particle-in-Cell simulations of HHG on
plasma mirrors. (a-b) Electric field E(t) of the light reflected
by a plasma mirror, in a case where CWE dominates harmonic
generation (panel (a), a0 = 0.2, ωmax

p = 10ωL), and in a case
where the ROM process dominates (panel (b), a0 = 5, ωmax

p =
15ωL). The corresponding spectra are respectively displayed
in panels (c) and (d). The incident laser field on the target
was perfectly sinusoidal. The red dashed curves in (a) and (b)
show the intensity profiles of the trains of attosecond pulses
obtained by filtering groups of harmonics in the spectra, using
the spectral filters shown in red dashed lines in (c) and (d).

CWE is a mechanism that qualitatively consists of
three main steps:

(i) Electrons at the plasma surface are pulled out in
vacuum by the laser field, and then pushed back
into the dense plasma after having gained energy
from the field.

(ii) These fast electrons propagating in the dense part
of the plasma form ultrashort bunches, which im-
pulsively excite plasma oscillations in their wake.

(iii) In the inhomogeneous part of the plasma formed
by the density gradient at the plasma vacuum in-
terface, these collective electron oscillations radiate
light at the different local plasma frequencies found
in this gradient.

Since this process occurs periodically once every laser op-
tical cycle, the spectrum of the associated light emission
consists in harmonics of the laser frequency. This har-
monic spectrum can extend up to the maximum plasma
frequency ωmax

p of the laser-induced plasma (Fig. 1(c)),
which typically corresponds to harmonics 15-30 of an

800 nm laser field. CWE generally totally dominates the
harmonic signal from plasma mirrors for a0 . 1.

At higher intensities, dense outgoing jets of electrons
at the plasma surface are accelerated by the laser field
up to relativistic velocities. These moving distribution
of charges induce a transient Doppler frequency upshift
on the laser field reflected by the dense plasma. Since
this Doppler effect again occurs periodically at the laser
frequency, this leads to a spectrum consisting of laser har-
monics (Fig. 1(d)). It turns out that ROM is the domi-
nant source of harmonic generation beyond ωmax

p , while
below this frequency, both CWE and ROM can con-
tribute to the harmonic signal, and their relative weight
depends on laser intensity.

The goal of this paper is to present detailed numerical
and theoretical analysis of these two generation mecha-
nisms. CWE has been identified only recently, and this
paper thus provides the first detailed analysis and para-
metric study of this process. Regarding the ROM mecha-
nism, the novelty brought by this paper is a new and sim-
ple way of analyzing the laser-induced electric currents
in the plasma responsible for harmonic emission. This
provides a new insight into the most essential feature of
this process, and can be used to diagnose the occurrence
of a Doppler effect in numerical simulations. In addition,
we present one of the most complete parametric study of
ROM so far, and confront the results to the most recent
analytical theory of this process.

The outline of the paper is the following. In Sec. II
we discuss the main physical features of plasma mirrors,
and the coupling mechanisms with the laser field. The
basic theoretical framework needed to analyze HHG in
plasmas is then presented in Sec. III. Section IV is a de-
tailed numerical and theoretical analysis of CWE, while
Sec. V is devoted to the study of ROM. Finally, Sec. VI
gathers several experimental observations which support
the existence of these two generation mechanisms.

II. PHYSICAL PROPERTIES OF PLASMA
MIRRORS AND COUPLING WITH THE LASER

FIELD

In this section, we discuss the main physical charac-
teristics of plasmas created by intense ultrashort laser
pulses interacting with initially-solid targets. We thus
define more precisely what is meant by the term ‘plasma
mirror’, and then point out the main coupling mechanism
of such plasmas with intense laser fields.

A. Physical properties: orders of magnitude

The most appropriate tools to simulate the transition
from the solid to the plasma states are hydrodynamic
codes, because these codes take into account collisional
absorption of the laser field -which plays a major role at
the moderate laser intensities where the plasma is created
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(1014 − 1016 W/cm2 )- as well as the ionization of the
target following the resulting energy deposition. Figure 2
shows the results of such an hydrodynamic simulation
performed with the code multi-fs [34, 35], for a 60 fs
laser pulse of 1017 W/cm2 intensity impinging a bulk
aluminum target (Zmax = 13) with a 45 o incidence angle
in p-polarization.

These results demonstrate that plasmas created on
solid targets by ultrashort laser pulses (with high enough
temporal contrasts, see Sec. VI) hardly have time to ex-
pand during the laser pulse (Fig. 2(a)). The laser-plasma
interaction thus involves a sharp density gradient at the
plasma-vacuum interface. In addition, they show that
even at the moderate intensity of this simulation, the
surface of this low-Z target is almost fully ionized before
the peak of the pulse (Fig. 2(b)).
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FIG. 2: (Color online) Hydrodynamic simulation using the
multi-fs code, in the case of aluminum for a 60 fs long Gaus-
sian laser pulse in p-polarization and a peak intensity of 1017

W/cm2 . The laser wavelength is 800 nm. The initial solid
target occupies the half space x ≥ 0, highlighted in gray.

As a result of the limited expansion and the almost
complete ionization, the electron density of the plasma
created during the rising edge of the pulse on a low-
Z target is of the order of the initial solid target total
electron density. Depending on the material used, this
leads to typical ion and electron densities in the 200nc

(plastic target) to 400nc (silica, aluminum) range, where
nc = mε0ω

2
L/e

2 ≈ 1.7 × 1021 cm−3 is the critical density
for an 800 nm laser field. In contrast, targets of high
Z, such as gold, are unlikely to be fully ionized even at
relativistic laser intensities. However, given the limited
expansion, the plasma density is still expected to be a sig-
nificant fraction of the solid target total electron density
in these cases.

Due to its highly over-critical density, this plasma ef-
ficiently reflects the incident laser field. Besides, thanks
to the very limited expansion during the laser pulse, the
density gradient scale length at the center and the edges

of the focal spot can only differ by a small fraction of the
laser wavelength, so that the plasma-vacuum interface
has a high flatness. This plasma thus has the ability to
efficiently reflect the incident laser pulse with a negligible
distortion of its wavefront. These characteristics define
what we call a plasma mirror (PM). At high enough in-
tensities, the non-linear temporal response of such a PM
to the incident field however leads to a periodic tempo-
ral distortion of the reflected waveform, resulting in the
harmonic generation analyzed in this paper.

B. Brunel vs. resonance absorption

The most efficient way to drive HHG on plasma mir-
rors is generally to use a laser field in oblique incidence
and p-polarization, i.e. with the electric field of the laser
that lies in the incidence plane, and has a component
Ex normal to the plasma surface. In these conditions,
the coupling with the laser field can involve different ki-
netic absorption processes, two of which have been well-
identified so far.

The first mechanism is the widely-documented reso-
nance absorption [36]. At low laser intensities, this is a
linear mode conversion process, by which a fraction of
the laser energy is converted into electrostatic energy, in
the form of plasma oscillations, excited at the point xAR

of the plasma density gradient where the local frequency
ωp(x) =

√
ne(x)e2/mε0 of these modes matches the laser

frequency ωL. For a given incidence angle θ, there is an
optimal gradient scale length Lo, independent of laser
intensity, that maximizes resonance absorption [37].

As the laser intensity increases, the excursion ampli-
tude d of the plasma electrons exposed to the laser field
becomes so large that it exceeds the gradient scale length
L. In this regime, Brunel stressed that resonance ab-
sorption is no longer relevant, even when the gradient
scale length matches the intensity-independent optimum
Lo for resonance absorption. He then analyzed a new
absorption mechanism, now often called Brunel absorp-
tion [38]. In this mechanism, electrons at the plasma
surface are first pulled out of the plasma by the laser
field, when Ex points inward, and then evolve under the
effect of this laser field and the electrostatic space charge
field. As the total electric field changes sign, the ma-
jority of these electrons are pushed back into the dense
plasma, where they escape the effect of the laser field
due to plasma screening. They thus carry away into the
target the energy they gained during their excursion into
vacuum, leading to absorption of laser energy.

Resonance and Brunel absorptions in fact correspond
to two extreme regimes of the laser-plasma coupling dy-
namic, which can be analyzed more generally in terms of
anharmonic resonance [39]. The coupling progressively
evolves from pure resonance absorption, for smooth den-
sity gradient and/or moderate laser intensities, to pure
Brunel absorption, for sharper gradients and/or higher
laser intensities. An essential question here is to know
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which of these two limiting regimes, if any, is more ap-
propriate in the case of HHG on plasma mirrors.

Brunel’s criterion is based on comparing the electron
excursion d and the gradient scale length L [38]. In a
crude approximation, one can use d ≈ vosc/ωL, with vosc

the typical quivering velocity of electrons in the field.
Further assuming that vosc ≈ eE/γmωL = a0c/γ, with
γ =

√
1 + a2

0 the electron Lorentz factor, we obtain an
estimation of the excursion

d

λL
' a0

2π
√

1 + a2
0

. (1)

Figure 3 shows as a black line in the (I, L) parameter
space (i.e. laser intensity and gradient scale length), the
locations where the excursion d given by Eq. (1) equals
the gradient scale length L. Brunel-like absorption is
expected in the lower area, while resonance absorption is
more relevant in the upper one.

By considering this graph and the results of hydrody-
namic simulations presented in Sec. II A, it appears that
HHG on plasma mirrors will in most cases occur in a
regime where the Brunel mechanism provides the most
appropriate description of the laser energy absorption.
This crude analysis is well supported by numerical sim-
ulations.
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FIG. 3: (Color online) Transition from resonance to Brunel
absorption as a function of laser intensity I and gradient scale
length L. The black line shows the locations where the typical
electron excursion d given by Eq. (1) equals L.

III. THEORETICAL FRAMEWORK OF HHG

In this section, we introduce the basic equations and
concepts required to analyze HHG from plasma mirrors,
and discuss how the currents driven by the laser field
in the plasma can generate high-order harmonics. We
consider a plasma mirror which occupies the half-space
x ≥ 0, and an observation point located in vacuum, in
front of this target.

x

θ

y
Plasma

kL

L

x’

y’

kM

vd=
-c sinθ

z z’

M

FIG. 4: (Color online) Transformation from the laboratory
frame L to the boosted frame M.

A. Conversion to the boosted frame

The interaction of a flat overdense plasma target with
an electromagnetic plane wave in oblique incidence is a
two dimensional (2D) problem in the laboratory frame.
However, it can be converted into a more tractable 1D
problem by using a Lorentz transformation to a reference
frame moving along the target surface [40]. This well-
known transformation to the so-called boosted frame is
widely used both in pic codes and analytical studies.

Let y be the unit vector defined by the intersection of
the incidence plane and the target surface, and θ the an-
gle of incidence of the laser field on the plasma (Fig. 4).
The boosted frame M moves with a velocity c sin θ y
along the target surface, corresponding to relativistic fac-
tors β = sin θ and Γ = 1/

√
1 − β2 = 1/ cosθ.

The vacuum angular frequency and wave vector of
the laser field in the laboratory frame L, ωL and kL =
(ωL cos θ/c, ωL sin θ/c, 0), transform to ωM = ωL cos θ
and kM = (ωL cos θ/c, 0, 0). In frame M, the laser field
thus impinges the plasma in normal incidence, and the
whole plasma has a drift velocity vd = −c sin θ y along
the surface.

The electron and ion densities of the plasma, nL
e (x) and

nL
i (x) in the laboratory frame change by a factor Γ when

going to the moving frame, i.e. nM
e (x) = nL

e (x)/ cos θ
and nM

i (x) = nL
i (x)/ cos θ.

B. Wave equation with sources in one-dimensional
problems

Using this Lorentz transformation to reduce the prob-
lem to one spatial dimension (the x axis), a simple ex-
pression of the field radiated by the plasma currents can
be obtained. We describe the electromagnetic field using
the scalar and vector potentials in the Coulomb jauge,
defined by the condition ∇.A = 0. In this gauge, radia-
tion fields are entirely determined by the vector potential
A, which satisfies the wave equation:

∇2A− 1
c2
∂2A
∂t2

= −µ0jt, (2)
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where jt is the transverse current, such that the total
current j = jl + jt with ∇ · jt = 0 and ∇× jl = 0.

The transverse current jt is in general a complex and
non-local function of j (see Eq. (6.28) in Ref. [41]).
However, its expression becomes very simple in one-
dimensional problems, where jt = (0, jy, jz). Using the
boosted frame to study HHG from plasma mirrors is thus
particularly convenient.

In one dimension, a Green’s function for the wave
equation Eq. (2) is simply G(x0 − x, t0 − t) =
Θ [t0 − t− |x0 − x| /c], where Θ is the Heaviside func-
tion (Θ(t) = 1 for t ≥ 0, and Θ(t) = 0 for t < 0). This
leads to the following general solution for the vector po-
tential Ar, induced at point x0, by a transverse current
distribution jt(x, t) located in the half space x > x0 (see
Fig. 5):

Ar(x0, t0) = −µ0

∫ +∞

x0

dx

∫ t0−(x−x0)/c

−∞
dtjt(x, t). (3)

We emphasize that this expression only corresponds to
the radiation by the plasma. It does not include the vec-
tor potential Ai of the incident laser field which is a so-
lution of the homogeneous differential equation obtained
by setting jt = 0 in Eq. (2).

In 1D, the transverse (or radiation) electric field is
Et = −∂A/∂t. Applying this last relationship to Eq. (3)
leads to the following expression for the transverse elec-
tric field:

Er(x0, t0) = µ0

∫ +∞

x0

dxjt [x, t0 − (x− x0)/c] . (4)

In this expression, tret = t0−(x−x0)/c is the retarded
time, which corresponds to the emission time of the signal
originating from location x and arriving at location x0 at
time t0. The field radiated by the plasma is thus simply
obtained by integrating the transverse current along a
line of slope c in the (x, t) space of the boosted frame,
i.e. along a 1D light ‘cone’, as illustrated in Fig. 5.

C. Conversion to the reciprocal space

What is generally measured experimentally is∣∣∣Êr
(x0, ω)

∣∣∣
2

for a position x0 in vacuum, where

Ê
r
(x0, ω) is the Fourier transform of Er(x0, t) with

respect to time. Since this spectrum is independent of
position in vacuum for a 1D system, we now note this

function S(ω) =
∣∣∣Êr

(x0, ω)
∣∣∣
2

. By Fourier-transforming
Eq. (4) with respect to time, the following expression is
obtained for S(ω):

S(ω) = µ2
0

∣∣∣∣
∫ +∞

x0

dxĵt(x, ω)e−iωx/c

∣∣∣∣
2

(5)

= µ2
0

∣∣∣̂̂jt(k = ω/c, ω)
∣∣∣
2

,
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FIG. 5: (Color online) Illustration of the calculation of the
electric field radiated on one side of an arbitrary 1D trans-
verse current distribution jt (red to blue color map) with the
retarded current integral. The electric field radiated at posi-
tion x0 and time t0 is proportional to the integral of jt along
the dashed line, of slope c in this (x, t) space. Red and blue
corresponds to different signs of jt.

where ĵt(x, ω) is the Fourier transform of jt(x, t) with re-

spect to time, and ˆ̂jt(k, ω) the Fourier transform of jt(x, t)
with respect to both time and space. This equation shows
that the emitted spectrum is simply given by a lineout

of
∣∣∣̂̂jt(k, ω)

∣∣∣
2

along an oblique line k = ω/c in the 2D
reciprocal space (k, ω).

To analyze the Doppler effect induced by moving cur-
rent distributions, which will be studied in Sec. V, it is
useful to introduce the mathematical concept of instanta-
neous field Ẽ(t), which is the field that would be radiated
by the same current distribution jt(x, t) in the absence
of retardation effects, i.e. by taking the limit c → ∞ in
Eq. (4):

Ẽ(t) = µ0

∫ +∞

x0

dxjt(x, t). (6)

The corresponding instantaneous spectrum S̃(ω), de-
fined as the intensity of the Fourier transform of Ẽ(t),
is given by

S̃(ω) = µ2
0

∣∣∣̂̂jt(k = 0, ω)
∣∣∣
2

. (7)

The instantaneous spectrum S̃(ω) thus corresponds to a

lineout of
∣∣∣̂̂jt(k, ω)

∣∣∣
2

, along the ω axis in the 2D reciprocal
space (k, ω).

In the following, we temporarily turn to a fluid model
of the plasma, to get a simple expression of the transverse
current. Then, we discuss the different possible origins
of harmonics generated from plasma mirrors.

D. Transverse current in a plasma mirror

It has been demonstrated in Ref. [27] that, in a fluid
model of the plasma, the transverse current jt in the
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boosted frame can be expressed analytically as a func-
tion of the total vector potential A and the fluid velocity
along the target normal. In this section, we discuss this
relationship to emphasize the physical origin of the dif-
ferent terms.

The response of the ions to the laser field is assumed to
be negligible. These ions, of charge Ze, nevertheless con-
tribute to the transverse current because of the plasma
drift along y at vd = −c sin θ y:

jit = −ZenM
i (x, t)c sin θ y (8)

= −ZenL
i (x, t)c tan θ y.

The electron contribution to the transverse current is
obtained by using the conservation of the component of
the generalized momentum in the target surface plane,
which results from the translational invariance of the sys-
tem in this plane:

pt − eA = const. = p0
t , (9)

where pt = mγvt is the transverse momentum of the
electron fluid, γ = (1−β2

x−β2
t )−1/2 is the Lorentz factor

of the electron fluid, and p0
t = −mc tan θ y is the value

of the momentum before the laser arrives (A = 0). The
electronic part of the transverse current is then given by
jet = −enM

e vt = −enL
e pt/mγ cos θ.

Using Eqs. (8) and (9) leads to the following expression
for the total transverse current jt = jet + jit:

jt(x, t) = −e
2nL

e (x, t)
m cos θ

A(x, t)
γ(x, t)

(10)

− ec tan θ
[
ZnL

i (x, t) − 1
cos θ

nL
e (x, t)
γ(x, t)

]
y,

with

γ(x, t) =

√
1 + (eA/mc− tan θy )2

1 − β2
x

. (11)

According to Eq. (10), two terms contribute to the
transverse current in the plasma, and hence to the re-
flected field. The first term of the right-hand side of
Eq. (10), proportional to A, is the current directly driven
by the total radiation field. In the following, it is re-
ferred to as the conduction current. The origin of the
second term is more complex. This current is induced
because of the drift of the plasma in the boosted frame
when θ 6= 0, and appears as soon as there is a difference
between the density distributions of ions and electrons.
This can occur either (i) because nL

i (x, t) 6= nL
e (x, t), i.e.

the electron fluid has moved or has been distorted com-
pared to the ion fluid, or (ii) because γ(x, t) 6= 1/ cos θ,
i.e. the electron fluid has been accelerated by the laser
field, thus leading to a change of its density by relativistic
compression.

The physical meaning of this second term becomes
clearer in the laboratory frame. Let us assume that the

incident laser field induces a perturbation of the elec-
tron density at a position y0 along the target surface at
time t0, resulting in a non-vanishing local total charge
density ρ(x, y0, t0). In oblique incidence, this perturba-
tion propagates with a phase velocity c/ sin θ along the
target surface, and will thus occur at a different time
t = t0+(y−y0) sin θ/c at a different point y of the surface.
The resulting moving charge density ρ(x, y, t− y sin θ/c)
leads to a current along the y axis, which physically cor-
responds to the second term on the right-hand side of
Eq. (10).

Since this term only occurs for θ 6= 0, we call it the
obliquity current. Note that this current is always along
the y axis. This means that even for an s-polarized inci-
dent field (E ‖ z), some p-polarized light can be radiated
by the plasma.

E. Sources of harmonic generation

We now discuss the different possible ways in which
harmonics of the incident laser frequency can be gener-
ated by the plasma, using the fluid model presented in
Sec. III D.

We first use a perturbative approach, by assuming that
the total vector potential A in Eq. (10) is perfectly sinu-
soidal, i.e. that the new frequencies introduced in A by
the plasma response correspond to small corrections and
can be neglected. Two effects can then lead to periodic
temporal modulations of jt compared to A, and hence to
the generation of harmonic frequencies in Er:

• γ(x, t) can modulate both the conduction and
obliquity currents. In the case of the conduction
current, this effect simply accounts for the sat-
uration of the electron velocity when |vt| → c.
This saturation obviously leads to a non-sinusoidal
transverse current in the plasma, and hence to the
generation of new frequencies. This has been called
the ‘sliding mirror’ effect [42].

• The electron density nL
e (x, t) can also introduce

new frequencies in jt. Temporal variations of
nL

e (x, t) directly modulate the conduction current,
and also leads to a non-vanishing obliquity current.
This second effect plays a crucial role in Coherent
Wake Emission, due to large electron density mod-
ulations induced by plasma oscillations (see sec-
tion IV).

This analysis highlights the factors that can generate
new frequencies in the local current jt(x, t), at a given
position x. This is however not enough to determine
the spectrum of the emitted light S(ω), which is related
to the whole spatio-temporal structure of jt(x, t) through
Eq. (5). In particular, we will see in Sec. V that for
relativistic motions of the plasma, new frequencies can
be induced in S(ω), due to a Doppler effect.

Finally, we have so far assumed that A is not signifi-
cantly distorted compared to the vector potential Ai of
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the incident laser. However, since A is the total vector
potential, it includes the distortion induced on the laser
field by the plasma response, and might thus not be si-
nusoidal. This directly introduces new frequencies in the
conduction current. To first order, these new frequen-
cies simply correspond to the linear conduction current
induced by harmonics as they propagate into the plasma
from their generation point to vacuum. To higher order,
these new terms can also be modulated by the same ef-
fects as discussed above (i.e. by the γ and nL

e terms),
leading to generation of harmonics of the harmonics.
This kind of cascaded harmonic generation is likely to
occur at very high laser intensities, where the distortion
of the total field compared to the incident field becomes
extremely strong, and a perturbative approach becomes
inappropriate.

The fluid approach provides a formal expression of the
transverse current jt, useful for a general analysis. But
this expression is most often useless to actually calculate
the emission spectrum, since jt depends on several com-
plex physical functions which are unknown, and which
can not be calculated within a fluid model [27]. To obtain
this current distribution, it is generally necessary to turn
to numerical simulations, in particular using Particle-in-
Cell codes.

F. Particle In Cell codes

In this section, we briefly present the codes we use to
simulate HHG on plasma mirrors, and specify the nu-
merical conditions in which these simulations have been
performed.

We use two relativistic collisionless Particle-In-Cell
(PIC) codes [43, 44], euterpe and calder:

• euterpe was developed in the 80’s by Guy Bon-
naud [45]. It is a relativistic 1D-3V PIC code, that
is to say that it only considers one spatial dimen-
sion but calculates the particle velocities in all three
spatial directions. To simulate the interaction of a
plasma mirror with a plane laser wave in oblique
incidence, euterpe uses the boosted frame trans-
formation described in Sec. III A.

• calder is a relativistic fully-parallelized 3D PIC
code, developed by E. Lefebvre in the late 90’s [46].
As 3D simulations of plasma mirrors in realistic
physical conditions are too time-consuming with
currently available computing resources, we typi-
cally use this code in 2D3V. Moreover, to reduce
the calculation time, we generally simulate the in-
teraction of the plasma with a plane wave, using
periodic transverse boundary conditions and a sim-
ulation box with a transverse width (along y) of
λL/ sin θ. These typical simulations are however
completed by some simulations where the focal spot
of the laser pulse is properly taken into account.

Unless otherwise stated, the incident laser pulse is p-
polarized, has a sin2 temporal intensity profile, and im-
pinges a plasma with fixed ions, under an incidence angle
of 45◦. We assume an exponential density gradient of
scale length L at the plasma surface, ne = nc exp(x/L),
followed by an homogeneous plasma up to the boundary
of the simulation box. Electrons reaching this bound-
ary are re-injected at the same locations with thermal
velocities, to simulate the return current in a massive
target. In 2D, periodic boundary conditions are used in
the transverse direction. Other typical parameters of the
simulations are indicated in Tab. I.

Code euterpe calder

Te0 (eV) 500 500

Ti0 (eV) 100 100

ωL∆x/c 1 × 10−2 7 × 10−3

ωL∆t 7 × 10−3 5 × 10−3

∆T/TL 20 35

TABLE I: Typical conditions of PIC simulations. Te0, Ti0 are
respectively the initial electron and ion temperatures, ∆x is
the cell width, ∆t the time step, and ∆T the full width of the
laser pulse.

IV. COHERENT WAKE EMISSION

At moderate laser intensities (a0 . 1), relativistic ef-
fects are generally weak, and according to the discussion
of Sec. III E, the main source of harmonic emission is
the temporal variation of ne(x, t). This type of effect
has actually been identified as a potential source of high
order harmonics of a laser pulse since 1979 [47]. More re-
cently, a model called Coherent Wake Emission has been
proposed to describe precisely the mechanism underlying
this emission, in the specific case where the laser interacts
with a plasma mirror [32].

This part of the paper provides a detailed descrip-
tion of this process. We first analyze the mechanism of
‘Brunel absorption’, which has already been introduced
in Sec. II B, and plays an essential role in CWE. We then
study the different steps of the CWE process, and finally
conclude this part by a parametric study and an investi-
gation of the phase properties of the emitted harmonics.

A. Brunel absorption

To analyze the principle of the Brunel mechanism, we
first consider the case of a p-polarized laser beam im-
pinging a plasma mirror with a perfectly sharp interface
(L = 0), which occupies the half-space x > 0, and we
use Brunel’s original analytical model of the process [38].
Figure 6 shows the temporal evolution of the positions
and velocities of a set of electrons, initially at the surface
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of the plasma and dragged out into vacuum at different
instants in a laser optical cycle.

For 0 < t < 0.25TL, the component Ex of the total
electric field along the target normal pulls electrons out of
the plasma. As soon as this electric field component de-
creases due to the laser field oscillation, the space charge
electrostatic component of Ex starts pushing a part of
these electrons back to the plasma (0.25 < t < 0.5TL).
At t = 0.5TL, the component of Ex corresponding to the
laser field changes sign and Ex pushes all electrons to-
ward x > 0. Most of them subsequently return to the
overcritical plasma (x > 0), where they no longer feel
the laser field and keep the velocity they have acquired
in vacuum. This process, which repeats itself identically
with the periodicity of the laser, can be responsible for a
significant absorption of the laser energy.
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FIG. 6: (Color online) Trajectories and velocities of Brunel
electrons calculated using the analytical model described in
Ref. [38]. (a) Positions x(t) of 7 electrons along the target
normal, as a function of time. The plasma occupies the half
space x > 0. The legend indicates the times ti/TL at which
each electron starts to be pulled out of the plasma. (b) Veloc-
ities of the same electrons, from ti up to their return time to
the plasma tr. The dashed line corresponds to the return ve-
locity vr(tr) of electrons as they reach the plasma boundary.
v0 = eE0/mωL is the quiver velocity of a free electron placed
in an oscillating electric field of amplitude E0 and frequency
ωL.

The dashed line in Fig. 6(b) corresponds to the velocity
vr(tr) of Brunel electrons as they return to the plasma,
at time t = tr. Within Brunel’s model, this velocity then
remains constant as they propagate in the plasma. The
first electrons which come back have been recalled just
after having been pulled out, and thus have a velocity
vr ≈ 0. On the contrary, electrons that return around
tr = tm ≈ TL have been accelerated by the electric field
during a long period, and get the maximum return veloc-

ity. Those which come back later have been slowed down
by the laser field, as it starts pulling electrons toward
vacuum again after t = TL.

The shape of the velocity distribution vr(tr), and more
specifically the fact that ∂vr/∂tr > 0 for tr < tm, has
a crucial consequence. For tr < tm, electrons that have
returned to the plasma later eventually catch up electrons
that have returned earlier. This leads to a process of
trajectory crossing, which is analyzed in the next section.

B. Crossings of trajectories and formation of a
peak of electron density

An essential question to address for the study of tra-
jectory crossing of Brunel electrons inside the plasma, is
whether or not their velocity can be considered constant
in this area. In his initial model, Brunel assumes that
the plasma is a perfect conductor, so that the electric
field is exactly 0 inside the plasma, and electrons there-
fore indeed propagate with a perfectly constant velocity
vr(tr). Without this assumption, Bonnaud et al. showed
analytically that for a solid-density plasma with a step-
like interface, the residual electric field inside the plasma
does not either significantly perturb the electron trajec-
tories [48]. But the case of a density gradient of finite
length is much more complex. We therefore turn to PIC
simulations to analyze this more realistic situation, using
the 1D3V code euterpe.

We consider a plasma with a gradient scale length L =
λL/60, and a maximum electron density nmax

e = 225nc,
illuminated by a 20TL-long laser pulse, with a normalized
vector potential a0 = 0.2. Figure 7 represents the evolu-
tion in time of the velocity along the target normal vx,
of eleven electrons, pulled out of the plasma around the
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FIG. 7: Velocities and directions of propagation of return-
ing Brunel electrons. The main panel shows the evolution
in time of the velocities vx(t) of eleven electrons. The trian-
gles correspond to the velocities vr(tr) of 100 electrons chosen
randomly, at the time tr when they cross the critical density
surface. The evolution in time of the propagation angles of
these electrons are plotted in the inset.
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maximum of the laser pulse. The triangles on the same
figure indicate the velocities of 100 electrons, measured
when they cross the critical density surface. From these
points, up to the extreme right of the figure, the veloci-
ties are almost constant. It is thus a safe assumption to
consider that Brunel electrons keep their return velocity
vr(tr) in the overcritical part of the plasma, where vr(tr)
is now their velocity when they cross the critical density
surface, at time tr.

The inset in Fig. 7 shows that Brunel electrons come
back to the plasma with a velocity almost parallel to the
target’s normal, with propagation angles −13◦ < θr <
22◦. We also observe that their directions of propagation
vary very weakly in the overdense plasma. As a conse-
quence, we can assume that electrons travel across the
plasma along its normal, and that the problem is one-
dimensional.

In order to describe the crossing of trajectories oc-
curring during one laser optical cycle, we approximate
the function vr(tr) for tr < tm by a linear function,
vr(tr) = α(tr− tr0), where tr0 is an adjustable parameter
used to fit the function vr(tr) provided by PIC simula-
tions. According to Fig. 7 this assumption is reasonable
as long as tr is not too close to tm. The trajectory in the
overdense plasma of a Brunel electron returning at tr is
given, as a function of time t by

x(tr , t) = α(tr − tr0)(t− tr). (12)

The electrons which trajectories cross at a given x = xc

are those that have returned the plasma around the time
tr such that

∂t

∂tr

∣∣∣∣
x=xc

= 1 − xc

α(tr − tr0)2
= 0. (13)

This leads to tr = tr0 +
√
xc/α. The position of the

crossing point xc as a function of time t is obtained by
using this value of tr in Eq. (12), resulting in

xc = α

√
xc

α

(
t− tr0 −

√
xc

α

)
⇔ xc =

α(t− tr0)2

4
.

(14)
From Eq. (14) we see that in this model, xc follows a uni-
formly accelerated motion. This is illustrated by Fig. 8,
on which we observe the trajectories of 60 electrons, ob-
tained from the code euterpe (a), or calculated using
the previous model, i.e. assuming constant velocities and
vr(tr) = α(tr−tr0) (b). The strong resemblance between
these two sets of curves shows that the model repro-
duces correctly the dynamics of Brunel electrons inside
the plasma. In particular, we observe that the calculated
function xc(t) fits almost perfectly the inner caustic of
the two panels.

These trajectory crossings lead to a moving peak in
the density of hot electrons. We clearly observe this
peak as it travels across the overdense plasma, by plot-
ting the density profile of hot electrons (Fig. 9). Within

the density gradient, this peak has a full-width at half-
maximum of ∆xpeak ≈ λL/100. The inset in Fig. 9 shows
that, as expected, the velocity of the peak, vp = dxc/dt,
increases linearly in time. Moreover, the straight line
on this inset proves that vp can be accurately fitted by
vp = α(t−tr0)/2, with the values of α and tr0 determined
from Fig. 7 (α = 1.3c/TL).

Figure 10 presents the influence of the laser amplitude
a0 on the properties of this density peak, obtained from
PIC simulations. We observe in the upper panel that
the density of the peak increases linearly with a0. Qual-
itatively, this is due to the fact that the number of elec-
trons which have to be pulled out of the plasma to screen
the laser field increases linearly with its amplitude. The
lower panel of Fig. 10 shows that the influence of a0 on
the peak velocity vp is much weaker, a result that can
be interpreted using our previous analytical description.
Assuming that, like in Brunel’s model, vr ∝ a0 [38] (i.e.
α = α0a0) leads to vp = α0a0(t − tr0)/2 =

√
α0a0xc.

This theoretical fit is compared to numerical results in
Fig. 10, showing that this simple formula provides a good
approximation of the variation of vp with a0.

All these results confirms that the model developed in
this section is predictive, and accurately describes the
trajectory crossing of Brunel electrons in the plasma, the
resulting formation of an electron density peak as well as
its propagation in the density gradient. We now study
the collective oscillations of the plasma thermal electrons
that are excited in the wake of this propagating density
peak.
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FIG. 8: Trajectories x(t) of Brunel electrons traveling across
the plasma. (a) PIC results. (b) Analytical trajectories. The
origin x = 0 corresponds to the position of the critical density
surface, and the dotted line to the top of the density gradient,
beyond which the plasma is homogeneous. The dashed line is
a plot of the function xc(t) = α(t − tr0)
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x = 0.06λL (b). The lines are theoretical fits.

C. Excitation of plasma oscillations

1. Analysis in the boosted frame

In the boosted frame, the excitation of plasma oscilla-
tions by Brunel electrons can be analyzed using a simple
1D model. Here, we make two assumptions. First, we
assume that the density peak resulting from the crossing
of Brunel electrons acts as a point charge, of magnitude
−Ne and velocity vp. This is justified by the fact that
this peak is significantly shorter than the plasma period:
∆xpeak/vp ≈ TL/30 < 2π/ωp, with ωp . 15 − 30 ωL in

a typical case. Note that when the plasma density gets
very high, the density peak can become too long to excite
efficiently plasma oscillations. This eventually limits the
highest harmonic order that can be generated by CWE.
For instance, in the case of Fig. 9, the highest frequency
which can be excited is about 30ωL. Second, in order
to reduce the problem to a single variable ξ = x − vpt,
we neglect the temporal variations of vp and consider a
spatially-homogeneous plasma. In these conditions, the
electron fluid equation of motion, and the continuity and
Maxwell-Gauss equations, linearized for a non-relativistic
cold electrons fluid are [49]:

−vp∂ξv1 = −eE1/m (15)
−vp∂ξn1 + n0∂ξv1 = 0 (16)

∂ξE1 = − e

ε0
[n1 +Nδ(ξ)] , (17)

whereE1 is the electric field along ex, v1 the fluid velocity
in the same direction and ne = n0 + n1 its total density,
with n0 the initial density and n1 � n0 the induced
density pertubation.

To solve for n1, we combine Eq. (17) with the derivative
of Eqs. (15) and (16) to obtain,

∂2
ξn1 + k2

pn1 = −k2
pNδ(ξ), (18)

where kp = ωp/vp. The solution of this equation is the
Green’s function of a harmonic oscillator,

n1 =

{
−Nkp sin [kpξ] for ξ < 0
0 for ξ > 0

. (19)

Then from Eqs. (15) and (16), we get the electric field
behind the peak (ξ < 0),

E1 = −
Ne

ε0
cos[kpξ] = −

Ne

ε0
cos[ωp(t− x/vp)]. (20)

The moving density peak thus excites in its wake plasma
oscillations of frequency ωp, with a delay x/vp due to its
propagation.

The case of a density peak crossing an exponential den-
sity gradient, more relevant for CWE, is more complex.
Nevertheless, if the gradient scale length L is sufficiently
large, we can assume that the plasma is locally homo-
geneous and describe the interaction using the previous
formula, now with a space-dependent plasma frequency:

E1 = (Ne/ε0) cos[ωp(x)(t − x/vp)]. (21)

This is reasonable as long as kp = ωp/vp is slowly
varying over a plasma wavelength, λp = 2π/kp �
(d ln kp/dx)−1 = 2L, leading to L � λL/80 for ωp =
10ωL and vp = c/4. Since the typical scale lengths
relevant to our study are about λL/10 – λL/100 (see
Sec. II A), we cannot use this approximation without fur-
ther investigation.

To test this model, we performed PIC simulations (eu-
terpe), without any laser field, but with a short bunch
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FIG. 11: (Color online) Excitation of plasma oscillations by
an injected electron bunch, crossing an exponential density
gradient followed by an homogeneous plasma. The lower
panel shows the contour plot of the electric field Ex for
L = λL/30. The top panels represent the profiles of Ex

around ne = 64nc, for different gradient scale length L (three
upper panels), as well as inside the homogeneous part of the
plasma for the case L = λL/100.

of electrons with a peak density of a few nc, initially
placed in vacuum, in front of a plasma with an exponen-
tial density gradient, and traveling toward this plasma
with an initial velocity vp = c/4. The contour plot of
Fig. 11 shows that for L = λL/30, plasma oscillations
are excited, all along the gradient, in the wake of this
charge bunch. The wavefronts of the plasma oscillations
are observed to progressively bend after the excitation.
This bending is due to the spatial dependence of ωp in
the density gradient, and is satisfactorily reproduced by
Eq. (21).

However, the observed damping of the collective oscil-
lations in the density gradient are not predicted by this
equation. This dumping effect, which gets stronger when
L decreases (see upper panels), is due to the spatial inho-
mogeneity of the plasma. Nevertheless, this effect is not
crucial for the modeling of CWE (as long as L & λL/100),
since, as we will see in Sec. IV D, only the first few cycles
of the plasma oscillations following the excitation con-
tribute to the harmonic emission.

Figure 12 shows the influence of the total charge of the
exciting bunch on the amplitude of the triggered plasma
oscillations, at a given point inside the density gradient.
According to this figure, E1 varies linearly with the den-
sity of the peak, which is in agreement with Eq. (20).
Note that the oscillations do not exactly vanish when no
electrons are sent into the plasma, because the plasma is
initially not at equilibrium.

We now turn back to the study of CWE, where the
density peak is formed by crossing of trajectories of laser-
accelerated electrons. In Fig. 13, we have plotted the tra-

0 4 8 12
0.0

0.1

0.2

Pl
as

m
a

w
av

es
am

pl
.(

a.
u.

)

Density of the exciting peak (in n
c
)

FIG. 12: Amplitude of the excited plasma waves around
100nc, as a function of total charge of the injected electron
bunch, for L = λL/60.

jectories of a bunch of Brunel electrons which are crossing
in the density gradient, and superimposed these curves
on a contour plot of the electric field Ex. We observe
that the density peak formed by the crossing of trajec-
tories excites plasma oscillations, just as the bunch of
electrons of Fig. 11. Moreover, Fig. 3 in [32] shows that
these plasma oscillation wavefronts are well-reproduced
by Eq. (20). This indicates that the physics is similar in
the two cases.
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FIG. 13: (Color online) Excitation of plasma oscillations by
Brunel electrons. The selected Brunel electrons, which tra-
jectories are shown by the yellow lines, cross in the density
gradient, and form a peak of electron density that travels
through the plasma and excites in its wake plasma oscilla-
tions. These oscillations can be observed on the contour color
map of Ex, on the right side of these trajectories. The oscilla-
tions observed at earlier time, are due to the Brunel electrons
from the previous laser period (not shown). The simulation
conditions are the same as for Figs. 7–9.
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2. Analysis in the laboratory frame

Although the analysis in the boosted frame is physi-
cally rigorous, it is instructive to also consider the ex-
citation of plasma oscillations in the laboratory frame.
Because the laser field has an oblique incidence in this
frame, one should not consider a simple peak of density
as in the previous 1D analysis, but rather a density front
(or a density ‘sheet’ in 3D).

Indeed, for an incident plane wave, any perturbation
induced by the laser at the point (x = 0, y = 0) at t = 0
reaches the point (0, y) at t = y sin θ/c, where θ is the
incidence angle. Hence, assuming a constant velocity
vpex, a Brunel density peak originating from (0, y) ar-
rives at the point (x, y) at the time t0 = y sin θ/c+x/vp.
Brunel electrons returning to the plasma thus form a den-
sity front, which sweeps along the target surface with
the same phase velocity as the laser, c/ sin θ. The an-
gle between this front and the plasma surface is θdf =
arctan(vp sin θ/c) leading to θdf ≈ 13◦ for vp = c/3 and
θ = 45◦.

Figure 14, which presents results from a 2D PIC sim-
ulation performed with the code calder, provides a di-
rect confirmation of these predictions. Indeed, we observe
that during each optical cycle of the laser, electrons with
velocities vx > 0.27c form a density front which extends
from the critical surface up to the homogeneous plasma,
and excites plasma oscillations in its wake. From the
mean angle θdf ≈ 13.5◦ measured in Fig. 14, we can infer
that the mean velocity of the peak is about 0.34c in this
case.
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FIG. 14: (Color online) Excitation of plasma oscillations in
the laboratory frame. The contour plot of Ex(x, y), in a sat-
urated blue/red color scale, reveals the plasma oscillations.
The density of fast electrons (vx > 0.27c) is represented in a
yellow color scale. These data were obtained from the PIC
code calder for a0 = 0.2, L = λL/20 and nmax

e = 225nc.

Like in the boosted frame, this density front is observed
to trigger plasma oscillations. To describe this excitation
analytically, we generalize the model of the previous sec-
tion, by simply setting ξ = x − vp(t − y sin θ/c). This

leads to

E1 = −(Ne/ε0) cos[ωp(t− x/vp − y sin θ/c)]
= −(Ne/ε0) cosφ(x, y, t). (22)

This equation satisfactorily reproduces the wavefronts of
Fig. 14.

D. Emission of attosecond XUV pulses

1. Observation in PIC simulations

We now study the final step of the CWE mechanism,
which is the emission of light by the excited plasma oscil-
lations. Such an emission can only occur in an inhomo-
geneous plasma. Indeed, in a homogeneous plasma, the
wavefronts of the electron plasma oscillations are par-
allel to the triggering density front. Since the excited
electrons oscillate perpendicularly to this front, the elec-
tron oscillations in such a plasma are purely longitudi-
nal (j × kpo = 0, where kpo is the wave vector of the
plasma oscillations). They can therefore not emit light
(see Sec. III D).

The situation is quite different in the density gradi-
ent at the plasma mirror surface. Indeed, Fig. 14 shows
that in this case, the wavefronts of the plasma oscillations
curve in time. Assuming that electrons keep their initial
direction of oscillation (as verified in Ref. [50]), i.e. per-
pendicular to the exciting density front, the plasma os-
cillations which are initially purely longitudinal, progres-
sively acquire a transverse component, and can therefore
radiate an electromagnetic wave.

Light emission by plasma oscillations is thus only ex-
pected in the density gradient. This is indeed what is
observed in Fig. 15(a), which shows the results of a 2D
calder simulation. Soon after the excitation of plasma
oscillations by the Brunel density front, the emission of
an attosecond pulse is observed. Such a pulse is emitted
during each optical cycle of the incident laser, resulting
in a train of attosecond pulses, associated in the spectral
domain to high order harmonics of the laser.

These harmonics are observed on the spatially resolved
spectrum of Fig. 15(b), which indicates that the har-
monic of order n comes from the area of the density gra-
dient where ωp(x) = nωL. This shows that CWE emis-
sion is due to a distribution of locally harmonic currents,
with a spatially-varying local frequency. Since the maxi-
mum frequency reached by this current distribution is the
maximum plasma frequency ωmax

p of the target, the har-
monic spectrum presents a sharp cut-off at ωmax

p . This
important feature of CWE clearly appears in Fig. 15(b),
and has been verified experimentally in 2007, by focus-
ing an intense femtosecond laser on materials of different
densities (see Refs. [51, 52] and Sec. VI B1).

An essential feature of Fig. 15(a) is the fact that light
emission by plasma oscillations is confined in time, to a
fraction of the laser optical cycle, leading to the emission
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of attosecond pulses. Although this effect could in princi-
ple be attributed to the damping of plasma oscillations in
the density gradient, described in Sec. IV C, this damp-
ing is too slow to provide a quantitative interpretation,
especially for the gradient scale length used in Fig. 15.

In references [32, 53, 54], this temporally-confined
emission is interpreted using phase matching arguments.
In these articles, the emission at ωp(x) is actually consid-
ered to occur when kPO matches the wave vector, around
its turning point, of an electromagnetic wave of frequency
ω = ωp(x), emerging from the density gradient with an
angle θ. This requires that kPO

x = 0, in other words,
the emission is expected to be confined around the time
when the wavefronts of the plasma oscillations are per-
pendicular to the plasma surface. This is indeed what is
qualitatively observed on Fig. 15(a).
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FIG. 15: (Color online) Emission of attosecond pulses and
high order harmonics. (a) Contour plot of the Bz field, fil-
tered between 4ωL and 14ωL (in purple), superposed on the
contour plots of Fig. 14. (b) Spatially resolved emission spec-
trum (contour plot) and plasma frequency profile (straight
line). A smooth spectral correction has been applied to bal-
ance the harmonic amplitudes and make them all clearly visi-
ble simultaneously on a linear scale. These results come from
a calder simulation performed for a0 = 0.2, nmax

e = 225nc

and L = λL/25.

Here, we provide a more detailed -although not yet to-
tally rigorous- analysis of the conditions required for the
emission to occur, by considering the transverse current
jt(x, t)ey associated to plasma oscillations in the boosted
frame, and by calculating the field radiated by this cur-
rent as described in Sec. III.

2. Analysis using the transverse current distribution

At first order, the current associated to plasma os-
cillations in the boosted frame is the obliquity current
jt = jy(x, t) = en1c sin θ. Using Eq. (19) for n1 leads to

jt(x, t) = −ωp(x)
Nec sin θ

vp
sinφ(x, t) (23)

with φ(x, t) = ωp(x) (t− x/vp).
Equation (23) shows that the transverse current is

non-zero in the boosted frame (as opposed to the lab-
oratory frame) as soon as n1 6= 0. But this does not
guarantee that light emission is efficient, as the emit-
ted field is an integral of jt (see Eq. (6)). According to
Eq. (5), the spectrum of the emission in vacuum is given

by S(ω) = µ2
0|

ˆ̂jt(k = ω/c, ω)|2. The function |ˆ̂jt(k, ω)|2 is
plotted in Fig. 16, for two different current distributions
(right panels) calculated using Eq. (23) for two consec-
utive laser optical periods. We consider first the case of
Fig. 16(a), where the exciting electron density peak trav-
els through the density gradient from the vacuum up to
the homogeneous plasma, which corresponds to the typi-
cal CWE case.

To understand the shape of this 2D Fourier-transform,
let us consider the local wave vector kpo

x (x, t) = −∂φ/∂x
of the electron oscillations, given in the case of an expo-
nential density gradient by:

kpo
x =

ωp(x)
c

(
c (t− x/vp)

2L
− c

vp

)
. (24)

This expression shows that kpo
x increases in time, from

ki
x = −ωp(x)/vp at the time t = x/vp when the

plasma oscillation is excited at point x, up to kf
x =

ωp(x)/c(λL/2L − c/vp) at t = x/vp + TL, the time at
which a new peak of density crosses the gradient and ex-
cites a new set of plasma oscillations. The wavevector
kpo

x sweeps across this interval as time evolve within a
laser optical period. This temporal evolution of the lo-
cal wavevector in direct space qualitatively explains the
shape of ˆ̂jt in reciprocal space: this function is bounded
between the two limiting lines ki

x and kf
x , leading to the

V shape observed in the left panel of Fig. 16(a).

Since the emitted spectrum is given by a lineout of |ˆ̂jt|2
along the line k = ω/c, a significant light emission occurs
only if this line is included in this cone. This occurs if

kf
x ≥ ω/c⇐⇒ 2L ≤ λLvp/(c+ vp). (25)

For vp = c/4, light emission is thus efficient for all L ≤
λL/10. For longer gradient, the temporal evolution of
kpo

x is too slow, so that it fails to reach ω/c within one
laser optical cycle.

Assuming a one-to-one mapping between the local
wavevector in direct space kpo

x and the wavevector in re-
ciprocal space, Eq. (24) provides an estimation of the
emission time te of harmonic nH (with respect to time
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t = 0 where the exciting bunch crosses x = 0, where
n = nc), for which kpo

x (te) = nHωL/c at xH = 2L lnnH :

te =
2L
c

[
1 +

c

vp
(1 + lnnH)

]
. (26)

It is instructive to also consider the case where the
exciting density front goes from the denser part of the
plasma toward the vacuum (case of Fig. 16(b)). This
typically corresponds to what occurs at the rear-side of
laser-irradiated thin foils [30, 31]. In this case, kx de-
creases in time, starting from ki

x = −ωp(x)/vp. As a
result, the line k = ω/c does not intersect the intense

part of ˆ̂j2t , because this distribution is not located in the
right quadrant of the (ω, k) space. In this case, plasma
oscillations cannot emit electromagnetic waves, even for
the shortest gradient scale lengths. This is the reason
why plasma oscillations excited at the rear surface of thin
targets in the wake of outgoing Brunel density peaks can
not radiate light, as demonstrated in Ref. [55].

We emphasize that this analysis leads to the same con-
clusion as the qualitative discussion of Sec. IV D 1, based
on phase matching, i.e. that the generation of high order
harmonics is possible only when plasma oscillations of in-
creasing frequencies are excited with an increasing delay.
These two descriptions however lead to slightly different
emission conditions on kPO

x , and hence to slightly differ-
ent times of emission. Using Eq. (24) leads to a difference
of 2L/c between these two times, i.e. TL/12.5 in the case
of Fig. 15 -shorter than the duration of the emitted at-
tosecond pulse.

This analysis of the emission process is still incom-
plete. Indeed, the expression used for the transverse cur-
rent totally neglects the polarization induced in the den-
sity gradient by the generated electromagnetic field, as it
propagates from the emission point to vacuum. In other
words, it omits the refraction of the harmonic field by
the plasma. The spectrum intersecting the line k = ω/c
on Fig. 16 thus corresponds to the one that would be
obtained if the emitted electromagnetic waves were trav-
eling only in a vacuum. Such an approximation is quite
crude, as each harmonic is emitted in an area where the
plasma is overdense precisely at this frequency. These
effects are likely to affect the exact shape of the emit-
ted spectrum S(ω), but the general conclusions of the
previous analysis should remain valid.

To go further and evaluate the actual generation effi-
ciency, an alternative is to use the linear mode conversion
theory already developed to study direct and inverse res-
onant absorption [37, 56, 57], in the simpler case where
plasma oscillations are excited at a single frequency ω in
the density gradient. These models describe the coupling
between plasma and electromagnetic waves in a gradient
with a linear density profile, in the case of an unmagne-
tized collisionless plasma. Hinkel-Lipsker et al. demon-
strated that the conversion efficiency η is a function of
m = (ωLω/c)2/3 sin2 θ, with Lω = (d lnne/dx)−1, which
admits a maximum for m ≈ 0.5 [57]. For the parametric
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FIG. 16: (Color online) Fourier transforms |ˆ̂jt(k, ω)|2 of the
transverse current in the boosted frame, with respect to both
time and space. The left panels are Fourier transforms of the
currents plotted on the right panels. (a) Case of an exciting
density front going from a low density to a high density region
of the plasma (ωmax

p = 11ωL). (b) Opposite case. On both
panels, L = λL/60 and vp = 0.26c. The blue dashed lines
show the boundaries ki

x(ω) and kf
x(ω), and the red dashed

line the ω = k/c lineout which gives the spectrum of the
emitted light.

study of the next session, we will use the approximate
expression of η established in [58]:

η = 2αm(2 + αm)−1 exp(−4m3/2/3), (27)

where α = 2.644.

Remark We note that CWE is sometimes confused with
earlier models developed in the 80’s [20, 21] to inter-
pret some of the first experiments on HHG on solid tar-
gets [18, 19], which suggested harmonic frequency cutoffs
around ωmax

p . In these models, the coupling of the laser
to resonant plasma oscillations leads to the production of
its second harmonic. Then, harmonic n+ 1 is produced
by the coupling between harmonic n and resonant plasma
oscillations of higher frequencies. HHG results from this
cascaded linear mode conversion process in the plasma.
This is very different from CWE, where all plasma oscil-
lations are excited by energetic electrons traveling across
the density gradient [59].

E. Parametric study

Sections IV A to IV D provide a complete description of
CWE, but mostly for fixed physical parameters. We now
present a parametric study of this process, and show how
the laser intensity, the density gradient and the incidence
angle influence the generation mechanism.
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1. Laser intensity

We first examine the effect of laser intensity on the har-
monic signal. We have demonstrated in Sec. IV B that
the amplitude of the exciting density front grows linearly
with the laser field amplitude, and in Sec. IV C that the
amplitude of the excited plasma oscillations is propor-
tional to this density. Since the conversion from plasma
oscillations to light is also a linear mechanism, the CWE
signal is thus expected to vary linearly with laser inten-
sity, i.e. to have a constant generation efficiency. This
prediction is supported by the PIC simulation results dis-
played in Fig. 17. In this intensity range, Coherent Wake
Emission is thus a linear mechanism of high-order har-
monic generation.
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FIG. 17: Influence of the laser field amplitude. Each point
corresponds to the amplitude of the harmonic signal, in-
tegrated between orders 4 to 10. These results were ob-
tained with the 2D3V code calder for L = λL/30 and
nmax

e = 110nc.

This linear behavior can however not be extrapolated
to arbitrary low laser intensities. As a0 goes down,
Brunel electrons cross nearer and nearer from the criti-
cal surface (according to Eq. 14, xc(t) = α0a0(t− tr0)2/4
with t ≤ tm). When xc(tm) eventually becomes smaller
than the distance between the critical density and the
point where the second harmonic is generated, Brunel
electrons can no more excite efficiently plasma oscilla-
tions at laser harmonic frequencies, and the CWE sig-
nal vanishes. If we assume that tm − tr0 ≈ 0.6TL

(see Secs. IV A and IV B), and use the value of α0

obtained from PIC simulations in Sec. IV B (α0 =
6.5c/TL), we find that the harmonic emission occurs
only if a0 > 8 ln 2Lα−1

0 (tm − tr0)−2 ≈ 3.4L/λL, that
is Iλ2 & 2 × 1015 W cm−2µm2 for L = λL/100. This is
in remarkable agreement with experimental observations
(see Sec. VI C 1)

2. Density gradient

a. Influence of the gradient scale length. We now
study the influence of the scale length L of the expo-
nential density gradient on the generation efficiency. Two

simulation spectra obtained for two different scale lengths
are plotted in Fig. 18(a). The strong differences between
these two curves reveal that the gradient scale length
plays a key role in CWE.

To explain this observation, we consider Fig. 18(b),
where the generation efficiencies of harmonics 3 (H3) and
8 (H8) have been plotted as a function of L. We first
note that no harmonic is produced when L = 0. This
is in agreement with Sec. IV D where we demonstrated
that CWE only occurs inside the inhomogeneous plasma
formed by the density gradient. In addition, we observe
that the harmonic signal first increases steeply with L,
before decreasing gently for ‘long’ gradients. This indi-
cates the existence of an optimum scale length [60]. This
optimum length decreases with harmonic order.
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FIG. 18: (Color online) Influence of the gradient scale length.
(a) Spectra obtained for L = λL/15 and L = λL/100. (b)
Variation with the scale length of the generation efficiency
of harmonics 3 and 8. The dashed lines correspond to the
function η calculated for each harmonic using Eq. (27). Sim-
ulations were performed with the code calder for a0 = 0.2
and nmax

e = 110nc.

To interpret these results, we analyze first the variation
with L of the conversion efficiency η of plasma oscillations
into light. To this end, we consider the exponential gra-
dient as locally linear, and use Eq. (27) to estimate η(x).
The two theoretical curves thus obtained for harmonics
3 and 8 are plotted in Fig. 18(b). Although these curves
reproduce the general behavior of the PIC results, their
variations are much gentler.

The reason for this discrepancy is that the amplitude
N of the electron density peak, which excites plasma os-
cillations, also varies with L. Figure 9 indeed shows that
N depends on the distance x to the plasma critical den-
sity surface. When L is increased, the function N(x)
hardly changes, but the point xH = 2L lnnH , where har-
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monic order nH is produced, moves away from the critical
surface. As a result, the amplitude of the emitting plasma
oscillations, which is proportional to N(xH), varies with
L, and so does the overall generation efficiency.

Our model is too simple to quantitatively predict the
shape of N(x). We can, however, roughly estimate its
variations. According to Fig. 9, the maximum of N(x)
is reached at xmax ≈ 0.065λL. The optimum gradient
scale length is thus of the order of λL/30 for the third
harmonic and λL/60 for the 8th. These values correspond
approximately to the positions of the maxima found in
Fig. 18. In addition, we observe in Fig. 9 that N(x) tends
to zero for x ≈ 0.2λL. A strong reduction of the harmonic
3 (resp. 8) signal when L tends to λL/10 (resp. λL/20)
can therefore be anticipated, and is indeed observed in
Fig. 18.

b. Influence of the shape of the density gradient. Ex-
perimentally, density gradients are generally not per-
fectly exponential, and recent results indicate that their
shape can actually strongly affects CWE harmonic spec-
tra [61]. This is confirmed by a comparison of the simu-
lated spectra of Figs. 19(a) and 19(b) which correspond
respectively to an exponential and a linear density gra-
dient. We observe that fewer harmonics are efficiently
generated in the case of a linear gradient.

This is partly explained by the fact that the linear
conversion efficiency η varies much more strongly with
harmonic order in this case. This clearly appears on
Fig. 19(d), which shows that a linear gradient acts as a
band-pass filter, the central frequency of which depends
on the slope of the density gradient.
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FIG. 19: (Color online) Harmonic spectra for different density
gradients. (a) Exponential density gradient with L = λL/60.
(b) Linear gradient, ne(x) = 225ncx/L with L = λL/11.
(c) Same exponential gradient as in (a), now truncated at
ne(x) = 13nc (see inset). These results come from euterpe
simulations performed for a0 = 0.2. (d) Linear conversion ef-
ficiency η calculated with Eq. (27) for the gradients of (a) and
(b), using Lω = (ω/ωmax

p )2L in this equation for the linear
density gradient, and Lω = L for the exponential gradient.

The variation of η are however not sufficient to totally
explain the influence of the gradient shape. This is illus-
trated in Fig. 19(c) which displays a spectrum obtained
for the same exponential gradient as before, now trun-
cated at ne(x) = 13nc. In this case, the conversion effi-
ciency η is the same as in (a) for harmonic orders nH ≥ 4.
The strong differences between the spectra of (a) and (c)
for 4 ≤ nH ≤ 8 can thus not be attributed to η.

This type of effects can be interpreted by taking into
account the additional influence ofN(x). The point xmax

where N(x) is maximal actually corresponds in (a) to the
position where the third harmonic is generated, while in
(c) it corresponds to the generation point of harmonic 9.
These values are in perfect agreement with the maxima of
the spectra (a) and (c), suggesting that N(x) is responsi-
ble for their differences. In (b), N(x) is also maximal for
harmonic 9, and this explains why this spectrum has a
shape similar to the one of Fig. 19(c). These two spectra
however differ by the fact that more harmonics are effi-
ciently generated with the truncated exponential, which
is due to the variations of η.

In summary, the dependence of the harmonic genera-
tion efficiency on both the shape and the characteristic
length of the density gradient can be interpreted semi-
quantitatively by the influence of η and N(x).

3. Incidence angle

To conclude this parametric study, we investigate the
influence of the incident angle θ on the harmonic sig-
nal, for a fixed laser power (i.e. a laser intensity that is
proportional to cos θ, like in an actual experiment). Fig-
ure 20 shows that the generation efficiency is maximum
for θ ≈ 55◦ and tends to 0 when θ tends to 0◦ (where
the Brunel mechanisms no longer occurs) or 90◦ (where
the laser intensity tends to 0). It also shows that the
optimum angle is slightly higher for the lower harmonics.
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FIG. 20: (Color online) Variation with the incidence angle
of the generation efficiency of harmonics 4 and 8 at a fixed
incident laser power. The points are provided by euterpe
simulations performed for L = λL/50, and a2

0 = 0.08 cos θ.
The straight lines correspond to theoretical fits.



18

These results can be interpreted by using the results
of Sec. IV E 2, which demonstrate that the power gener-
ation efficiency of CWE varies as ηN2. The η param-
eter is again provided by Eq. (27), and is a function
of m = (2πnHL/λL)2/3 sin2 θ. This immediately shows
that the optimum angle should increase when nH de-
creases, as observed in Fig. 20. The variation of N with θ
can also be evaluated, in a very simple way: at fixed laser
power, the laser intensity varies as cos θ and the electric
field E0 as

√
cos θ. Further, the density of Brunel elec-

trons depends only on the component of the electric field
along the plasma normal, Ex = E0 sin θ ∝ sin θ

√
cos θ

(see Sec. IV A). SinceN varies linearly with Ex, as shown
by Fig. 10(a), we finally get N2 ∝ sin2 θ cos θ.

Taking into account the variations of both η and N2

for nH = 4 and nH = 10 leads the two theoretical curves
plotted in Fig. 20. The agreement with the numerical
points is remarkably good, confirming that despite its
simplicity, our model provides a rather accurate descrip-
tion of the CWE mechanism.

F. Phase properties

In the previous sections, we have analyzed the influence
of different physical parameters on the amplitude of the
emitted harmonic field, but we have so far ignored their
influence on the phase properties of this field. Studying
these phase properties is however crucial, as they largely
determine some of the main features of the XUV light
source, such as the divergence of the beam, the duration
of the attosecond pulses, or the spectral width of indi-
vidual harmonics.

Many phenomena can, in principle, affect the phase
properties of the generated field. As demonstrated in
Ref. [62, 63], the main source of non-trivial phase is the
variation of the emission time of the harmonics with both
harmonic order and laser intensity. We first provide a
simple approximate expression for this emission time,
and then analyze the consequences on the phase prop-
erties of the source.

1. Emission time.

According to Eqs. (13) and (26), the frequency com-
ponent nHωL = ωp(xH ) emitted around xH crosses the
critical surface of the plasma and escapes into vacuum at
τe = tr + te + tc, where

tr = tr0 +
√
xH/α0a0, (28)

is the return time at x = 0 (where ne = nc) of the Brunel
electrons that trigger plasma oscillations at xH , and

te =
2L
c

+
L

vp

(
2 +

xH

L

)
=

2L
c

+
√

xH

α0a0

(
1 +

2L
xH

)
,

(29)

is the approximate delay required for these electrons to
reach xH , and for the light emission by plasma oscilla-
tions to occur at this point. This expression is obtained
by combining Eq. (26) and the expression vp =

√
α0a0xc

established in Sec. IV B. Finally,

tc = xH/c, (30)

is the time taken by the light to reach the critical surface,
neglecting the plasma dispersion for simplicity. Summing
Eqs. (28), (29) and (30), we get

τe = tr0 +
2L+ xH

c
+ 2

√
xH

α0a0

(
1 +

L

xH

)
. (31)

This equation shows that τe depends on the harmonic
order nH = exH/2L, on the laser intensity a0, and on the
gradient scale length L. These different dependencies
lead to various effects on the emitted field.

2. Attosecond chirp.

We first examine the consequences of the variation of
τe with nH . According to Eq. (31), we have

∂τe
∂nH

=
1
nH

[
2L
c

+
√

2L
α0a0 lnnH

(
1 − 1

2 lnnH

)]
.

(32)
The emission time is thus a growing function of nH for
all nH ≥ 2. This means that high order harmonics
emerge later from the plasma than low order harmonics.
Physically, this comes from the fact that because higher
harmonic orders are generated at the top of the density
gradient (see Fig. 15(b)), they are excited at later time
by Brunel electrons, and need more time to escape the
plasma. As a result, CWE attosecond pulses, resulting
from the superposition of a group of harmonics, are pos-
itively chirped. Because of this chirp, CWE attosecond
pulses are significantly longer than the Fourier limit du-
ration (Fig. 21), as suggested by the experimental results
of Ref. [33].

Equation (32) does not only provide the sign of the
chirp, it also indicates that it depends on L and a0. An
increase of L, for instance, stretches the spatial distribu-
tion of harmonic sources, and hence increases the delay
between the emission time of these different frequencies.
The amplitude of the chirp, and hence the duration of the
attosecond pulses, therefore grow with L, as confirmed by
Fig. 21.

3. Femtosecond chirp and spatial phase.

According to Eq. (31), τe also depends on a0 and L.
These two quantities vary temporally during the interac-
tion, leading to deviations from perfect periodicity of the
CWE attosecond pulse train, and hence to a broadening
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Different points for a given length are associated to differ-
ent pulses in the attosecond train. These attosecond pulses
correspond to the superposition of harmonics 4 to 10. The
simulation parameters are the same as for Fig. 18.

and a non-trivial spectral phase of the associated har-
monics [32, 62]. The normalized amplitude a0 also varies
spatially because of the intensity distribution of the fo-
cused laser beam. This intensity distribution can in turn
lead to a spatial dependence of L. These two effects re-
sult in a spatial dependence of τe, and, in analogy to the
spectral domain, increase the divergence and distort the
spatial phase of the harmonic beam [52, 62, 64].

According to Eq. (31), τe varies linearly with L, while
it varies as 1/

√
a0. Since a0 goes from 0 to amax

0 during
the laser pulse, the dominant contribution to variations
of τe comes from its dependence on a0, especially on the
edges of the laser pulse where a0 → 0. The dependence
on L only leads to small corrections, as demonstrated in
[62]. In addition, Fig. 1 in [62] shows that neither the
carrier envelope phase nor the chirp of the pulse varies
significantly along the train.

The effect that primarily determines the temporal and
spatial phase properties of individual CWE harmonics is
thus the temporal shift, with hardly any distortion, of
the emitted attosecond pulses when the laser field ampli-
tude a0 varies. This effect is illustrated in Fig. 22, which
displays the delay between the emission of two successive
attosecond pulses, Ti(t) = τe(t+TL)−τe(t), as a function
of time during an incident laser pulse with a sin2 intensity
profile. The instantaneous frequency of the harmonics as-
sociated to this attosecond train varies as 1/Ti, so that
these harmonics are chirped. This chirp is almost linear
in the central portion of the pulse, but becomes stronger
and more complex in the edges, as expected from the
1/

√
a0 dependence of τe.

A remarkable feature of the results of Fig. 22 is that
the variations of Ti are almost independent of the peak
laser amplitude amax

0 . In other word, Ti depends on the
laser pulse envelop but not on amax

0 . This is confirmed by
Fig. 23(b), where τe is observed to decrease by a constant
amount when the peak intensity is reduced. This numer-
ical finding, which is supported by experimental results
(see Sec. VI), is in contradiction with the predictions of

Eq. (31).
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FIG. 22: Time dependence of the delay between the emission
of two successive attosecond pulses, for four different peak
laser intensities. In these calder simulations, nmax

e = 110nc

and L = λL/30. The gray area shows the temporal profile of
the laser pulse amplitude.

The origin of this discrepancy between this simple
model and numerical observations can be traced back to
one of the crude approximations made to evaluate τe. In
Sec. IV B, we approached the function vr(tr) by a linear
function. This approximation is justified when the most
energetic Brunel electrons are not involved in CWE, but
becomes too crude when the electrons that excite plasma
oscillations in the density gradient have a velocity close to
the maximum value (see Fig. 23(a)). This eventually be-
comes the case whatever the gradient scale length, when
a0 gets weak enough.

To solve this issue and properly describe the variation
of τe with a0, we have fitted vr(tr) using the ad hoc an-
alytical expression vr = v0/(C + e(t0−tr)/τ ). Figure 23
shows that, with a proper choice of the parameters v0, t0,
τ and C, this provides a very good fit of vr(tr), including
around its maximum.

Using this fit and assuming, as in Sec. IV B, that
vr ∝ a0, a new expression for τe(a0) can be derived. It
is plotted in Fig. 23(b), for two different peak intensities,
and the same laser envelope as in PIC simulations. We
stress that these theoretical curves have been calculated
without adjusting t0 nor any other parameter. The agree-
ment with PIC results is excellent. In particular, the fact
that τe(a0) is simply shifted without significant distortion
when amax

0 is varied is well-reproduced by the analytical
model. Note that in this improved model, the variation
of τe with a0 mostly originates from the variation of the
return time of Brunel electrons to the overdense plasma.

This study shows that the main features of CWE
can be reproduced analytically assuming that vr(tr) is
known. This is in particular sufficient to determine the
emission time and hence the femtosecond chirp of CWE
harmonics. In most cases a linear fit of this function is
sufficient. However, a more accurate fit is needed when
the laser intensity is so low that Brunel electrons involved
in CWE have return velocities approaching the maximum
of this function.
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G. Conclusion

In conclusion, Coherent Wake Emission is a mechanism
of light generation by collective electron oscillations in a
spatially-inhomogeneous plasmas, typically at a plasma-
vacuum interface. In the case of HHG on plasma mirrors,
these oscillations are excited in the wake of laser-launched
electron bunches that travel across the plasma, and emit
light in the extreme ultraviolet spectral range. How-
ever, CWE can also be induced through other excitations
schemes, and emit in very different frequency ranges, de-
termined by the density of the emitting plasma. Plasma
oscillations excited in underdense plasmas in the wake of
femtosecond laser pulses can for instance emit terahertz
pulses through CWE [53, 54]. In a very different context,
type III radio bursts originating from the interplanetary
plasma [65, 66] might be due to CWE by plasma os-
cillations excited by energetic electrons produced during
stellar flares.

We have shown here that the different steps of HHG
on plasma mirrors by CWE, and the main features of the
light emission, are now fairly well understood, at least
semi-quantitatively. Two elements are now needed to go
further in the analytical modeling of this process:

(i) A description of the shape and amplitude of the
density peaks formed by the Brunel effect in the
overdense part of the plasma.

(ii) A description of the transverse current distribu-
tion in the density gradient, taking into account
refraction of the emitted light. As we have seen in

sec. IV D 2, this is necessary for a satisfactory cal-
culation of the light emission efficiency by plasma
oscillations in the gradient.

While point (i) is specific to HHG on plasma mirror, solv-
ing point (ii) is crucial for a proper and quantitative de-
scription of CWE as a general light emission mechanism
by inhomogeneous plasmas.

V. RELATIVISTIC OSCILLATING MIRROR

Harmonic generation on plasma mirrors at relativistic
laser intensities has attracted considerable interest for
the last fifteen years [26, 67–74]. In the past few years,
this interest has been renewed as its unique potential for
the generation of energetic attosecond [75] or even sub-
attosecond [28] pulses of very short wavelengths was iden-
tified. In this relativistic interaction regime, harmonic
generation on plasma mirrors is now commonly inter-
preted using the Relativistic Oscillating Mirror (ROM)
model [25, 27–29, 76]. From a qualitative point of view,
the idea underlying this model is simple. It attributes the
generation of harmonic frequencies to a periodic Doppler
effect induced on the reflected beam by the laser-driven
relativistic oscillation of the plasma surface.

In the literature, different analytical approaches have
been used to describe this process, using assumptions
such as a step like interface that oscillates as a whole [27],
or the cancellation of the tangential electric field [29] or
vector potential [76] at the surface. Our analysis reveals
that such assumptions are not crucial, but are simply dif-
ferent ways to account for the Doppler effect in analytical
models.

A. Observation in PIC simulations

As an illustration of HHG in the relativistic regime,
Fig. 24 shows the electron density and the attosecond
pulse emission of a dense plasma driven by a p-polarized
laser field, with a normalized vector potential a0 = 4 (I =
3.4×1019 W/cm2 at 800 nm). Dense jets of electrons are
periodically pulled out of the plasma by the intense laser
field. The density of these jets is however significantly
lower than the bulk density. In other words, the plasma
does not oscillate as a whole, as can be suggested by the
oscillating mirror picture, but is rather strongly distorted
by the laser field. The emission of attosecond pulses is
observed precisely when these jets move outward with
v ≈ c. This figure therefore intuitively suggests that
the associated high-frequencies result from the Doppler
effect.

This is however far from obvious, and this simple ob-
servation should not be considered as a proof. In this
regime, the transverse current distribution induced by
the laser in the plasma is extremely complex. Strong
temporal modulations of both ne and γ occur. As we
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FIG. 24: (Color online) euterpe simulation of the Relativis-
tic Oscillating Mirror process. The planar target is on the
right side, while the laser arrives from left. The electron den-
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the intensity of the electromagnetic field, frequency-filtered
from harmonics 5 to 95, to the purple one. The intensity is
Iλ2

L = 2.2 × 1019 W/cm2µm2, the plasma density is 225nc,
and an exponential density gradient of scale length λL/20 is
initially imposed.

have seen in Sec. III E, this can directly lead to HHG,
even in the absence of any Doppler effect. In addition,
assuming that ROM is indeed the main contribution to
HHG in this case leaves some features of Fig. 24 un-
explained: while two outward excursions of the plasma
surface occur in each optical cycle, both with relativistic
velocities, only one attosecond pulse is emitted in this
time interval. Thus, an outward excursion of the plasma
‘surface’ at relativistic velocity does not necessarily imply
the efficient generation of high frequencies.

To clarify these issues, Sec. V B to V E provides a de-
tailed analysis of the Doppler effect on moving mirrors.
Sec. V G is then dedicated to a parametric study of ROM,
and finally, Sec. V H focuses on the phase properties of
the emission.

B. Mirror in uniform motion

We first analyze the Doppler effect occurring when a
wave ψ(x, t) = ψ0 cos(ωt−kx) reflects on a mirror moving
with a constant velocity. As we will see, the formula for
the Doppler shift is, in this case, the same for any kind of
wave, including electromagnetic waves. It can therefore
be established without any explicit reference to Special
Relativity.

We restrict our discussion to the case of normal inci-
dence for simplicity. The mirror moves with a velocity v
(with v > 0 when the mirror moves toward the source)
with respect to a reference frame where the wave has a
phase velocity vp = ω/k, with the restriction |v| < vp.

The field experienced by the mirror is given by ψ(x =
−vt, t) = ψ0 cos(ω′t), with ω′ = ω(1+v/vp). Currents are
induced by this wave in the mirror, which thus behaves as
a moving source of frequency ω′. During one oscillation

period T ′ = 2π/ω′ = λ′/vp of these currents, the mirror
moves a distance vT ′. The emission of this source is
therefore detected by a fixed observer at a wavelength
λ” = λ′ − v(λ′/vp), corresponding to a frequency ω” =
2πvp/λ

′′ = ω′/(1 − v/vp).
The total Doppler shift of the reflected wave is thus

ω”/ω = (1 + v/vp)/(1 − v/vp). In the case of an electro-
magnetic wave, v/vp = v/c = β and

ω”/ω = α =
1 + β

1− β
= (1 + β)2γ2 (33)

This is the well-known Doppler shift induced upon reflec-
tion on a moving mirror, with ω”/ω → 4γ2 as v → c [77].

This simple demonstration gives a physical insight of
the different terms involved in this frequency shift. The
1+β term is due to the fact that the mirror can be consid-
ered as an observer moving with respect to the source,
which results in currents in the mirror at a frequency
ω′ = ω(1 + β). This frequency is at most a factor of
2 higher than the initial frequency. Because the mirror,
considered now as a source, is moving, its emission is
observed at a frequency ω” = ω′/(1 − β) different from
the frequency ω′ of the currents. When v → +c, this
is the main contribution to the Doppler upshift. Note
that a more general analysis, valid in the case of oblique
incidence, can be found in Ref. [78].

C. Doppler effect and retarded currents

We have seen in Sec. III B that the field emitted by a
1D transverse current distribution is determined by the
integral of this distribution along a light ‘cone’ (Eq. (4)).
In this section, we show how this formula can account for
the Doppler effect that occurs when the source is mov-
ing. To this end, we again consider a mirror in uniform
motion, as discussed in Sec. V B.

We first consider a reference frame R, with coordi-
nates (x, t), where the mirror is fixed. It is exposed to
a linearly-polarized, normally-incident electromagnetic
plane wave of frequency ωL propagating along x from
−∞ toward +∞. This wave induces a transverse current
in the mirror along the polarization direction. Assuming
that the mirror surface occupies the half-space x ≥ 0,
this current is given in complex representation by

jt(x, t) =

{
eiωLte−x/δ for x ≥ 0
0 for x < 0

, (34)

where δ ≈ c/ωp is the skin depth, with ωp the plasma
frequency in frame R.

We now consider the same system in a frame R′, with
coordinates (x′, t′), moving with respect to R at a ve-
locity v = βc, with β > 0 when the mirror moves to-
ward the light source in frame R′. According to Spe-
cial Relativity, the frequency of the light wave incident
on the mirror in this frame is ω = γ(1 − β)ωL. As
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the transverse current distribution lies in the (ey, ez)
plane, its expression j′t(x

′, t′) in frame R′ is simply ob-
tained by expressing the variables (x, t) as a function
of (x′, t′) in Eq. (34), using the Lorentz transformation
(x, ct) = (γ(x′ + βct′), γ(ct′ + βx′)). This leads to

j′t(x
′, t′) =

{
ei ωt′+βkx′

1−β e−
x′+vt′

δ/γ for x′ ≥ −vt′

0 for x′ < −vt′
, (35)

where k = ω/c.
The field radiated by this distribution at x = −∞,

which corresponds to the light reflected by the plasma,
is then given by

E(t′) = µ0

∫ +∞

−∞
dx′j′t(x

′, t′ − x′/c). (36)

Substituting the new variable x′′ = (1 − β)x′ + vt′ in
this integral, it can be shown that the frequency of the
reflected wave E(t) in frame R′ is ω′′ = ω(1+β)/(1−β),
in agreement with the Doppler shift given by Eq. (33).

We can now compare the frequency ω′′ of this reflected
wave to the frequency ω′ of the current source in R′, i.e.
the frequency of the current that would be seen by an
observer that would follow the mirror. Setting x′ = −vt′
(the position of the mirror surface) in Eq. (35), we ob-
tain ω′ = (1 + β)ω. This result thus supports the simple
analysis of the previous section: because of the mirror
motion, the current in the skin layer has a frequency
which is shifted by a factor 1+β with respect to the inci-
dent wave frequency ω. This moving current distribution
then radiates at a frequency which is further shifted by
a factor (1 − β)−1.

In the formalism of retarded currents, this last shift
is due to the integration along light cones of slope c.
The qualitative origin of this effect appears very clearly
in Fig. 25, which shows the current distribution for (a)
v = 0 and (b) v = 0.5c. In (a), where the source is fixed,
the frequency of the emitted field is identical to that of
the current source, despite the integration along a tilted
line. In (b), where the source now moves with β = 0.5,
the current distribution is now also tilted in the (x, t)
space, and as a result two integration lines spaced by
dt = T ′ = 2π/ω′ span two oscillations of the current j′t,
while they only spanned one when v = 0. Therefore, an
observer now measures two oscillations of the field in a
time dt = T ′, instead of one when v = 0. The frequency
of the signal has been increased by a factor of two. This
is the origin of the (1 − β)−1 term in the Doppler effect.

D. Doppler effect in reciprocal space

We now analyze how the Doppler effect appears in the
Fourier space (k, ω), focusing on Fig. 25(c-d) which show

the Fourier transforms ˆ̂jt(k, ω) of the two transverse cur-
rent distributions plotted in Fig. 25(a-b).
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FIG. 25: (Color online) Two cases of transverse current dis-
tributions jt(x, t) in a mirror exposed to an electromagnetic
wave in normal incidence. In (a), the mirror is immobile
(β = 0), while in (b), the mirror moves with β = 0.5. In
both cases, the frequency of the current induced by the wave
in the mirror is ω′ = (1 + β)ω, where ω is the frequency of
the incident wave. Panel (c) and (d) show the respective 2D

Fourier-transforms ˆ̂jt(k, ω) of these distributions. The spec-
trum reflected by the mirror is given by a lineout of these
distributions along the line ω = ck (with c = 1 in the units of
these graphs), while the instantaneous spectrum corresponds
to a lineout along k = 0. The emission of the mirror in the
forward direction (along the direction of the incident light) is
given by a lineout along ω = −ck.

In the first case, ˆ̂jt is a narrow horizontal line parallel
to the ω axis, because the current distribution is an os-
cillating function of time, and is well-localized in space.
The Fourier transform of the current distribution when
v 6= 0 is similar, but the line is now rotated in the (k, ω)
space. This is because a current distribution of the form
jt(x, t) = j0t (x, t− x/v) has a Fourier transform with re-
spect to time given by ĵt(x, ω) = ĵ0t (x, ω)eiω/vx. This

leads to ˆ̂jt(k, ω) = ˆ̂j0t (k − ω/v, ω), i.e. to spectral struc-
tures localized along a line of slope v.

According to Sec. III C, the spectrum of the reflected
wave is given by the intersection of this distribution with
the line ω = ck of slope c. Fig. 25(c-d) clearly show
that this intersection moves in frequency when v 6= 0.
This shift corresponds to the Doppler shift between the
frequency of the reflected wave and that of the current
distribution. As expected, when v → c, this intersection
moves to infinity, and so does the frequency ω′′.

Let us now consider the instantaneous spectrum that
would be radiated by the source in the absence of retar-
dation effect. According to Sec. III C, this spectrum is
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given by a lineout of ˆ̂jt(k, ω) along the line defined by
k = 0. In the case of Fig. 25(c-d) the instantaneous spec-
trum is thus peaked at ω = ω′ = (1 + β)ωL, i.e. at the
frequency of the current induced in the mirror by the in-
cident wave, whatever the motion of the mirror. Thus,
for a known current distribution moving toward the ob-
server, this procedure makes it possible to eliminate the
Doppler effect induced on the emission by the source mo-
tion, i.e. the (1 − β)−1 term in Eq. (33). In the case of
a mirror, the 1 + β term of course remains, but this can
only account for a factor of at most two in the frequency
shift, much smaller than the (1−β)−1 term when β → 1.

In conclusion, in the case of a moving mirror, the dom-
inant contribution to the Doppler effect is characterized
by a difference between the instantaneous spectrum and
the real spectrum. Since these spectra are respectively
given by lineouts of ˆ̂jt(k, ω) along k = 0 and ω = ck, the
shape of this function in the (k, ω) reciprocal space pro-
vides a simple way to detect at a glance the occurrence
of such a Doppler effect.

E. Doppler effect in HHG

We now apply the analysis of Secs. V C and V D to
assess the importance of the Doppler effect in the case of
a plasma mirror exposed to a relativistically intense laser
field. The transverse current distribution is then much
more complex, and, in the present state of our knowl-
edge, cannot be calculated analytically. It can however
be directly obtained from PIC simulations. A transverse
current distribution jt(x, t), resulting from an euterpe
simulation in the relativistic regime, is shown in Fig. 26,
and its 2D Fourier transform ˆ̂jt(k, ω) in Fig. 27. The
waveform of the reflected electromagnetic field is shown
in the left panel of Fig. 26, and the corresponding spec-
trum, comprising high harmonic orders of several tens,
in Fig. 28. Note that a low density plasma is considered
(ne = 6nc) to avoid any contribution of CWE to the
harmonic signal.

A first qualitative analysis can be performed in the
(x, t) space. The current distribution jt(x, t) presents
some rather sharp structures, moving at a velocity close
to c toward vacuum. They are induced by the outgo-
ing electrons bunches mentioned earlier, and already ob-
served in Fig. 24. The emitted field at point x0 at dif-
ferent times t0, is obtained integrating this distribution
along the 1D light cones (x − x0) = c(t − t0). The left
panel in Fig. 26 shows that it exhibits fast temporal vari-
ations, which occur when the integration line crosses the
parts of the current distribution which have slope close
to c. This corresponds to the Doppler effect induced by
the moving mirror.

As emphasized in Sec. V D, the importance of this
Doppler effect can be more readily assessed by turning
to the reciprocal space (k, ω). In Fig. 27, the emitted

spectrum S(ω), given by the lineout of ˆ̂jt(k, ω) along the
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FIG. 26: (Color online) Transverse current distribution along
the y-axis, in the boosted frame, induced by a p-polarized
laser field of Iλ2

L = 1.3 ·1018 W/cm2µm2, impinging a plasma
with nmax

e = 6nc and L = λL/20. The integration line to
calculate the electric field at a given time t0 is shown. The
left panel shows the waveform of the electric field reflected by
this plasma mirror.

line ω = ck, comprises many more harmonic orders than
the instantaneous spectrum S̃(ω), given by the k = 0 li-
neout. This is a clear indication of the crucial role of the
Doppler effect.

To illustrate this point more quantitatively, in Fig. 28,
these two lineouts are compared to the reflected light
spectrum SPIC(ω) directly provided by the PIC code,
from the step-by-step resolution of Maxwell’s equations
on the spatio-temporal mesh of the simulation. The
agreement between SPIC(ω) and S(ω) is excellent, thus
validating our calculation of the field using the transverse
current provided by the PIC code. The harmonic signal
in S̃(ω) drops by orders of magnitude compared to S(ω)
for harmonic orders beyond n ≈ 3 − 5. This comparison
shows without any ambiguity that the harmonic content
of the reflected light is in this case almost entirely due to
the Doppler effect induced by the source motion.

To support this analysis, it is also instructive to com-
pare the current distribution ˆ̂jt(k, ω) corresponding to
ROM (Fig. 27), to the one corresponding to CWE
(Fig. 16). In the later case, there is only minor differ-
ences between the harmonic intensities obtained in the
emitted and instantaneous spectra. This is because the
emitted harmonic spectrum results from a collection of
locally harmonic currents, with a broad range of frequen-
cies distributed at different locations in the plasma. The
Doppler effect then plays absolutely no role.

To get a better understanding of what factors deter-
mine the shape of ˆ̂jt(k, ω) in the case of Fig. 27, we con-
sider the following empirical oscillating current distribu-
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tions jt(x, t), which roughly mimics the one of Fig. 26:

jt =




e

−(x−xs(t))
δ

nmax∑

n=1

an cos(nωLt+ ϕn) for x ≥ xs(t)

0 for x < xs(t)

,

(37)
with xs(t) = (vM/ωL) cos(ωLt). Such distributions are
plotted in Fig. 29, for (a) vM = 0, (b) vM = 0.5c and
(c) vM = 0.95c. The corresponding Fourier-transforms
ˆ̂jt(k, ω) are displayed in Fig. 29(d-e-f). In these exam-
ples, nmax = 3, with a1 = 6, a2 = 3, a3 = 1 and
ϕ1 = π/2, ϕ2 = 0, ϕ3 = 0. When vM = 0 (Fig. 29(a-
d)), jt(x, t) simply corresponds to a local anharmonic
current, with three frequency modes. The correspond-
ing peaks in ˆ̂jt(k, ω) lie along the k = 0 axis, like in the
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FIG. 29: (Color online) Three cases of model transverse cur-
rent distributions jt(x, t) (a-b-c), given by Eq. (37), with their
respective 2D Fourier transforms (d-e-f). In (a), the current
distribution does not move along the x axis, while in (b) and
(c) it oscillates with peak velocities of respectively 0.5c and
0.95c.

simple case of the immobile mirror of Fig. 25(c). When
vM 6= 0 (Fig. 29(b-c)), a Doppler effect appears very

clearly in ˆ̂jt(k, ω) (Fig. 29(e-f)). While the instantaneous
spectrum, along the k = 0 axis, still consists in three
frequency modes, the emitted spectrum, along ω = ck,
comprises many more harmonic orders. Comparing cases
(e) and (f) shows that, in analogy with the case of a mir-
ror in uniform motion (Fig. 25(d)), the slope of the tilted
structure observed in this distribution is determined by
the peak velocity vM encountered in the current distri-
bution jt(x, t).

The same thing occurs in the case of laser-driven oscil-
lating mirror. The slope of the tilted structure observed
in the distribution of Fig. 27 is determined by the peak
velocity encountered in the current distribution jt(x, t),
which thus has a crucial influence on the extension of
the harmonic spectrum. The harmonic frequencies that
are observed along the k = 0 axis, and that lead to the
harmonic signal remaining in the instantaneous spectrum
S̃(ω), are due to a local anharmonicity of the transverse
current. Several factors can contribute to this anharmon-
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icty, such as the saturation of the electron velocity in the
relativistic regime (see Sec. III E).

In realistic cases, the harmonic spectrum is however
not fully determined by the peak velocity. Two features
of the electron jets responsible for the relativistic struc-
tures in jt(x, t) can, in particular, influence the emitted
field:

(i) the phase relationship between currents associated
to different parts of these jets,

(ii) the duration and the spatial extension of the jets.

Figure 24 illustrates the first point: despite its relativistic
velocity, the second electron bunch of each optical cycle
does not generate efficiently high order harmonics, be-
cause the fields radiated by the different parts of this jet
interfere destructively. The second point is, in principle,
more beneficial for efficient HHG. The transient charac-
ter of the Doppler effect, due to the sub-laser cycle dura-
tion of the jets, tends to increase the harmonic spectral
cut-off compared to the 4γ2 law, valid for a mirror in
uniform motion only. The more localized in time the rel-
ativistic bunch is, the broader ˆ̂jt(k, ω) is along the ω axis
in (k, ω) space, and the more harmonics are generated.
The spatial localization of the bunches induces a simi-
lar effect along the k axis. As first emphasized in [29],
due to this type of effect, the emitted frequency band-
width tends to become proportional to γ3 in the limit of
an ultra-relativistic charge in non-uniform motion, as is
well known for synchrotron radiation of moving charges.
However, given the complexity of the current distribu-
tions considered here, these is no reason to expect that
such a simple law exactly holds for plasma mirrors - and
indeed, as we will see in Sec. V G, it is not fully supported
by a parametric study of this process.

F. The γ-spikes model

Within our previous analysis, a detailed knowledge of
the transverse current distribution is needed to calcu-
late the harmonic emission of the plasma. Determin-
ing this distribution analytically in the relativistic in-
teraction regime is extremely challenging, and we there-
fore had to turn to PIC simulations to be able to study
HHG from the ROM process. The γ-spikes model, also
called the Baeva-Gordienko-Pukhov (BGP) theory and
proposed in Ref. [29], uses a totally different approach
based on a boundary condition. We summarize this gen-
eral approach and its main conclusions, and then discuss
its limitations.

1. Summary and main results

Instead of trying to determine the current distribution,
the starting point of the BGP theory is the assumption

that a so-called apparent reflection point (ARP) can be
found, with position xARP (t), such that for any time t

Ei
y(xARP (t), t) +Er

y(xARP (t), t) = 0 (38)

where Ei
y and Er

y are respectively the component of the
incident and reflected fields along the target surface. The
authors emphasize that this ARP is not necessarily a real
physical point where the total tangential electric field ac-
tually cancels. Qualitatively speaking, this generalizes
the usual boundary condition at the surface of a perfect
fixed mirror, to the case of a moving mirror, which ef-
fect is then to induce a simple phase modulation on the
reflected beam. This boundary condition is as a matter
of fact an assumption, since no complete demonstration
has been provided to support it [29]. The analysis has
initially been proposed for normal incidence of the laser,
but one might expect it to equally apply to any incidence
angle by a simple transformation to the boosted frame.

Using this boundary condition, the authors analyti-
cally derive two main, and supposedly universal prop-
erties of the emitted harmonic spectrum, in the limit
of ultra-relativistic laser intensities. First, the harmonic
spectral intensity is predicted to decay as n−8/3

H with har-
monic order nH . Second, this power law decay extends
up to a maximum frequency ωc that scales as γ3, where γ
is the maximum Lorentz factor of the apparent reflection
point.

Thus, an important achievement of this theory was to
point out, for the first time, that the frequency cutoff of
the harmonic spectrum does not follow a γ2 scaling as in
the case of a mirror in uniform relativistic motion (see
Eq. (33)), but potentially reaches much higher frequen-
cies due to the γ3 scaling. Interestingly, this corresponds
to the general scaling expected for a charge in arbitrary
ultrarelativistic motion [41]: in the BGP model, electrons
at the plasma surface thus behave as a bunch of ultra-
relativistic electrons radiating coherently. This enhanced
spectral width is due to the fact that the Doppler-induced
frequency upshift of the reflected light only occurs during
the small fraction of the laser optical cycle, of order 1/γ,
in which the Lorentz factor γ is maximum.

Quite remarkably, a good agreement between these
theoretical predictions and experiments in oblique inci-
dence and p-polarization has been reported in Refs. [73]
and [74], which describe experimental results obtained
with the VULCAN laser up to a0 ≈ 10.

2. Limitations of the theory

However, an essential result of our detailed study of the
ROM process is that the boundary condition (38) is gen-
erally not fulfilled in the relativistic regime, in particular
in experimentally relevant interaction conditions (oblique
incidence and finite density gradient scale length). The
reason for this is illustrated in Fig. 30(a), which compares
Ei

y(t) to Er
y(t) in typical interaction conditions leading to
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HHG by ROM. We observe that the oscillation amplitude
of Er

y(t) is almost a factor of 2 larger than that of Ei
y(t).

This is because the Doppler effect results in a temporal
redistribution of the electromagnetic energy within each
laser optical cycle, leading to a higher energy density at
certain times -just when the frequency upshift occurs-
while the total energy per optical cycle remains the same
(in the absence of absorption). This effect is clearly ob-
served in Fig. 30(b), which compares the temporal evo-
lution of the instantaneous energy density in the incident
and reflected fields, at the sub-laser-cycle time scale. A
similar effect is actually observed in most simulations of
ROM.
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FIG. 30: Time redistribution of the laser field energy. (a)
Comparison of the laser electric field before and after re-
flection on a plasma mirror, for a0 = 65, nmax

e = 225nc,
L = λL/20, and incidence angle 45◦. (b) Square of the inci-
dent/reflected laser electric fields |Ey|2, as a function of time.
This function is proportional to the instantaneous energy den-
sity in the field.

Whatever the motion of the hypothetical apparent
reflection point, the equality (38) at the root of the
BGP theory is impossible to fulfill for all times when∣∣Er

y(t)
∣∣ > max

∣∣Ei
y

∣∣. In other words, it is impossible to
go from Ei

y(t) to Er
y(t) by a mere phase modulation in

such a case. Since these are precisely the times where
harmonic generation occurs, this equation, and hence
the theory derived from it, are inadequate to describe
HHG in this regime. This severe limitation of the theory
has recently been put forward by A. Pukhov and coau-
thors in Refs. [79, 80]. The parametric study of ROM
that follows confirms that the BGP model fails to re-
produce the results of most PIC simulations of ROM in
oblique incidence (p-polarization), as already emphasized
in Refs. [81, 82].

In summary, the BGP theory provides an original ap-
proach that lead to the first fully analytical decription
of the ROM process in the ultrarelativistic regime, and
the only experiments performed so far in the ultrarelatis-
tic regime tend to support its main predictions [73, 74].

However, detailed inspection of numerical simulations
show that the boundary condition used as a starting
point for this theory is in many cases violated. This
appears as a serious shortcoming of the theory, which,
despite the insight it has provided, clearly does not cover
all aspects of the interaction. Further numerical and the-
oretical studies will thus be necessary to determine the
range of applicability of the BGP theory.

G. Parametric study

As in the case of Coherent Wake Emission, we now
investigate how the laser peak intensity, the gradient
scale length or the incidence angle affect the emission.
The results presented in this section have been obtained
with the code euterpe, for an exponential gradient with
nmax

e = 225nc.

1. Laser intensity

We analyze first the influence of the laser peak in-
tensity I . Figure 31(a) displays four harmonic spectra
obtained for 3 × 1018 W/cm2µm2 ≤ Iλ2

L ≤ 3 × 1021

W/cm2µm2. We see clearly that the generation efficiency
and the number of emitted harmonics increase with I .
Further we observe in Fig. 31(b), which shows the gener-
ation efficiency of three different harmonics as a function
of I , that the harmonic signal increases rapidly with laser
intensity for Iλ2

L . 1020 W/cm2µm2, and then tends to
saturate for very high intensities. Harmonic spectra thus
converge towards a high-intensity limit.

According to the BGP theory discussed in Sec. V F,
this limit should be proportional to n−8/3

H . Figure 31(a)
shows however that this function gives only an order-of-
magnitude of the limit. This shortcoming of the theory
is confirmed by Fig. 32, which illustrates that the power
law n

−8/3
H does not apply at all in the more realistic case

where ion motion is taken into account.
The second prediction of the BGP theory, that is a

frequency cutoff that varies as γ3, is harder to check nu-
merically (and even more experimentally), because γ is
the maximum Lorentz factor of the ARP point which has
no physical reality (see Sec V F). Defining the cutoff ωc as
the frequency at which the spectrum starts to decrease
significantly faster than n

−8/3
H , we roughly measure in

Fig. 31(a), ωc ∝ I0.6±0.1. Then, assuming that ωc ∝ γ3,
we find that γ ∝ I0.2. This is very different from the scal-
ing γ ∝ I0.5 which is sometimes inferred assuming that
the apparent reflection point behaves as would do a free
electron in the incident laser field [74]. This discrepancy
can either be due to the fact that the BGP cut-off does
not match numerical results, or to the fact that γ indeed
does not vary as I0.5. Whatever the reason, the conclu-
sion of this analysis is that there is is no way to check
unambiguously in experiments the cut-off predicted by



27

1E18 1E19 1E20 1E21 1E22

1E-7

1E-5

1E-3

1 10 100

1E-8

1E-6

1E-4

0.01

1

H20
H25
H35

H
ar

m
on

ic
si

gn
al

Laser peak intensity Iλ
L

2 (in Wcm-2µm2)

(b)

3×1018 

5×1019 

8×1020 

3×1021

n
H

-8/3

H
ar

m
on

ic
si

gn
al

Harmonic order

(a)

FIG. 31: (Color online) Influence of the laser peak intensity
on the generation efficiency of ROM harmonics. (a) Spectra
for 4 different laser intensities (in W/cm2µm2), L = λL/20
and θ = 45◦. The points correspond to the peak intensities of
individual harmonics. The dashed line is the function n−2.66

H .
Solid lines are visual guides. (b) Variation with the laser
intensity of the generation efficiency for harmonics 20, 25 and
35.
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biles ions. In this case, Iλ2

L = 2 × 1021 W/cm2µm2, θ = 45◦,
and initially L = λL/25.

the BGP theory, since γ cannot be measured, and since
this theory does not give any prediction for the function
γ(I).

2. Density gradient scale length

We now focus on the influence of the density gradient
scale length L. Figure 33 shows that an increase of L,
has a similar effect to a rise of I , that is, an increase of
the generation efficiency and of the harmonic spectrum
extension. This is because for long density gradients the

laser field, which is reflected around the critical surface,
interacts with an almost critical plasma, whereas for very
short L, it interacts with a solid density plasma. Because
the ion recalling force is proportional to ω2

p ∝ ne, elec-
trons can actually gain more energy in the laser field for
longer gradient scale lengths. The generation efficiency
can be thus enhanced equivalently by an increase of I
or L. It is worth mentioning that because the whole
emission process happens in an area close to the critical
surface, the form of the gradient is not expected to re-
ally matter in ROM. Both the form and the length of the
gradient can, however, have some influence on the spec-
tral and spatial properties of the laser before it reaches
the critical surface, and can hence indirectly affect the
emission.
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FIG. 33: (Color online) Influence of the gradient scale length
on the generation efficiency of ROM harmonics. (a) Spec-
tra for 4 different gradient scale lengths, Iλ2

L = 2 × 1019

W/cm2µm2 and θ = 45◦. (b) Variation with L of the gener-
ation efficiency of harmonics 20, 30 and 40.

3. Incidence angle

We pursue the parametric study by investigating the
role of the incidence angle θ. In Fig. 34, θ varies in the
range 0◦ – 75◦, while the laser energy is constant (I ∝
cos θ). The overall generation efficiency first increases
with the incidence angle, reaches a maximum for θ ≈ 55◦,
and then decreases steeply with θ.

The existence of an optimal angle and of a sharper de-
crease of the generation efficiency for angles above the
optimum are strong evidence of the predominant role
played by the component of the electric field along the
plasma normal. Actually, for moderately relativistic laser
intensities, electrons involved in the ROM process are,
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to a large extent, accelerated by the Brunel mechanism.
Their velocities are thus proportional to Ex ∝ sin θ

√
cos θ

which is asymmetric in θ and maximal for θ = 55◦. This
simple calculation does not however account for the ac-
tual complexity of the plasma dynamics and the result-
ing angular dependence of the harmonic spectrum. For
instance, it fails to explain why, in Fig. 34, the spectra
obtained for θ = 60◦ and θ = 45◦ cross each other around
nH = 60. The influence of the magnetic field is expected
to rise with the laser intensity, and this could influence
the results of Fig. 34.

0 20 40 60

1E-6

1E-4

0.01

1

G
en

er
at

io
n

ef
fi

ci
en

cy

Harmonic order

75° 
60°
55°
45°
0°

n
H

-8/3

FIG. 34: (Color online) Influence of the incidence angle on
the generation efficiency of ROM. In these simulations, Iλ2

L =
2(cos θ/ cos 45◦)×1019 W/cm2µm2 and L = λL/20. An angle
of 0◦ corresponds to normal incidence.

4. Comparison CWE/ROM

As a conclusion to this parametric study, we compare
the features of the CWE an ROM processes. Concerning
the dependence on the laser peak intensity, we showed
in Sec. IV E that CWE has an almost constant genera-
tion efficiency in a large intensity range above a few 1015

W/cm−2µm2. Below this range, the efficiency abruptly
drops down (see Sec.VI C 1). Roughly speaking, the gen-
eration efficiency of ROM follows a similar behavior for
much higher intensities, where the efficiency reaches a
saturation. A major difference is that the ROM effi-
ciency grows with intensity in a broad range (1018 −1020

W/cm−2µm2), whereas this dependence is always very
weak for CWE.

The influence of the gradient scale length is quite dif-
ferent in the two mechanisms. Indeed, an optimal scale
length exists for CWE, whereas the efficiency of ROM
rises with L for L . λ/5. As the optimal length for CWE
is extremely short (about λL/50), this means for practical
purposes, that short gradients tend to favor CWE (de-
pending on the laser intensity), while long gradients favor
ROM. Changing the gradient scale length can thus be a
way to control the relative strengths of the two mecha-
nisms [60].

In contrast, CWE and ROM have very similar depen-
dences on the incidence angle, except around θ = 0.
In particular, the optimal angle for both mechanisms is
about 55◦. This similarity is explained by the central
role played, in both cases, by the component of the laser
electric field along the plasma normal.

H. Phase properties

We now analyze the phase properties of ROM har-
monics. To begin with, we stress that because all of
the highest ROM harmonics are emitted precisely when
the plasma surface reaches its maximal velocity, the at-
tosecond pulses associated to these harmonics should
be close to Fourier-Transform Limited (FTL) [83]. In
other words, the so-called ‘attosecond spectral phase’ of
ROM harmonics should be constant. By taking advan-
tage of this fact and of the very broad spectra that can
be generated, extremely short pulses, possibly down to
the zeptosecond range, can potentially be produced by
ROM [28]. In contrast, for multi-cycle laser pulses, there
is no reason why the pulse train should be perfectly pe-
riodic, and the individual harmonics can therefore be
chirped -i.e. the femtosecond spectral phase is not nec-
essarily constant.

This issue has been studied in Ref. [62], where the
properties (Carrier-envelop relative phase, emission time,
chirp) of ROM attosecond pulses are observed to be al-
most independent of I , for Iλ2

L . 1019 W/cm2µm2.
This means that for moderately relativistic intensities,
the generated pulse trains are almost fully periodic,
and individual harmonics are FTL. By contrast, Fig. 35
shows that, for very high laser intensities, the emis-
sion time of the attosecond pulses is intensity-dependent,
which means that in this case harmonics have non-trivial
phases, as already emphasized in [84]. Figure 35 also in-
dicates that in the case of fixed ions, the sign of the fem-
tosecond chirp is not the same in the CWE and ROM pro-
cesses. Indeed, ROM harmonics are positively chirped,
because the spacing between successive pulses in the train
decreases in time.

This temporal variation of τe originates from the dent-
ing of the plasma surface, induced by the laser pondero-
motive effect [85]. To illustrate this point, we performed
a simulation with mobile ions, which result is plotted in
Fig. 36. The grayscale map of the electron density clearly
shows that the mean position of the critical surface is
pushed inwards. As a consequence, the time needed for
the laser field to reach the surface, and then the time
needed for the attosecond pulses to reach the observer,
both increase in time. The time at which a fixed observer
detects an attosecond pulse is given by

τe(i) = te(i) + iT + 2 cos θxe(i)/c, (39)

where i is the number of the laser optical cycle, te(i)
is the delay after which an attosecond pulse is emitted
within the ith laser cycle (with respect to a fixed reference
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FIG. 35: Emission times of CWE and relativistic attosec-
ond pulses. These curves show the time dependence of the
emission time for three different laser peak intensities. The
three curves have been shifted vertically to simplify their
comparison, absolute values of τe are thus meaningless. In
these calder simulations, ne = 110nc. In the CWE case,
L = λL/100, while in the relativistic cases, L = λL/30 for the
moderate intensity, and L = λL/10 for the highest one. The
gray area shows the amplitude temporal profile of the laser
pulse.

phase of the local laser field), and xe(i) the position of the
critical surface at t = iTL + te(i). To check if the phase
is really due to the surface denting, we assume that te is
constant, i.e. that the emission of the attosecond pulse
always occur at the same local phase of the laser field,
whatever the laser intensity. With this assumption, we
then calculate the position of the emission points xe(i)
using Eq. (39) and the emission times τe(i) provided by
the PIC simulation. These points are plotted in Fig. 36,
and are precisely localized on the critical surface, which
proves that the variations in time of τe are due to the
motion of the plasma surface, and not to an intrinsic
dependence of te on I , as in the case of CWE. Thus,
the measure of τe(i) provides a way to monitor the slow
dynamics of the plasma surface.

The time dependence of τe affects the properties of the
harmonic spectrum. The main effect in the case of Fig. 36
is a red Doppler shift of the harmonics. Indeed the fre-
quency of harmonic n is ωn ≈ nωL(1 − 2 cos θvdrift/c),
where vdrift is the mean drift velocity of the plasma sur-
face. In the present case we have vdrift ≈ 0.03c and hence
ωn ≈ 0.96nωL. Note that because ∆ωn = ωn − nωL ∝
nvdrift, we can use the harmonic shift to measure slow
motions of the plasma surface with a high precision, by
considering sufficiently high harmonic orders.

While the main effect of hole boring in Fig. 36 is to in-
troduce a spectral shift, harmonic phases have also non-
linear components because the surface has a non-constant
velocity. This leads to a spectral broadening of individ-
ual harmonics and to non-trivial spectral phases. At very
high intensities such as the one considered in Fig.36, the
harmonic spectral widths are thus expected to be signif-
icantly larger than the Fourier-transform limit. Similar
effects can also be observed at much lower laser inten-
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FIG. 36: Hole boring and femtosecond chirp. The grayscale
map shows the electron density as a function of time and
space. The circles are the calculated positions (te, xe) of the
emission points. The numerical conditions are the same as in
Fig. 35 for a0 = 100, except that ions are now free to move.

sities, if the plasma has a lower density, or if a longer
density gradient is present [85–87]. Note that when ions
are fixed in simulations, as in the case of Fig. 35, the
Doppler shift is suppressed, and harmonics are only spec-
trally broadened.

Finally, we already mentioned that the temporal effect
described above has an equivalent in the spatial domain.
The space-dependent laser intensity in the focal plane
actually leads to a focusing of the harmonic beam, and
increases it divergence. This effect was put forward in
Ref. [64] to interpret the measured divergences of ROM
harmonics.

I. Conclusion

The essential ingredient of the Relativistic Oscillating
Mirror mechanism is the periodic Doppler effect induced
on the reflected light, within each laser cycle, by the
moving current distribution at the plasma-vacuum inter-
face. We have shown here how to diagnose and assess the
importance of this Doppler effect on the reflected light,
for a given transverse current distribution jt(x, t) in the
boosted frame. Such a Doppler effect indeed leads to a
very specific shape of the 2D Fourier-transform ˆ̂jt(k, ω)
of jt(x, t).

In this work, this current distribution was simply ob-
tained by PIC simulations. A predictive and quantitative
analytical theory of the ROM mechanism will require de-
termining a general expression of jt(x, t) in the relativis-
tic interaction regime. To calculate the emitted harmonic
spectrum and generation efficiency for ROM, this distri-
bution is only needed around the times where the plasma
move toward vacuum at relativistic velocities. Even then,
given the complexity of the interaction, deriving such an
expression is a very challenging task, and it is not clear
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yet that it will be possible at all in the most general case.

VI. EXPERIMENTAL EVIDENCE

We now turn to the experimental evidence support-
ing the existence of the two HHG mechanisms described
so far, CWE and ROM. We mostly focus our discussion
on the experimental results obtained at CEA in the past
five years. One essential conclusion from these recent
studies is the fact that the harmonic signals associated
to these two mechanisms can be distinguished unam-
biguously in experiments in the moderately relativistic
regime, through a set of very different properties. These
are the following:

(i) the spectral extension of the harmonic signal,

(ii) the dependence of this signal on laser intensity,

(iii) the spectral width of individual harmonics,

(iv) the divergence of the harmonic beam.

After a short description of our main experimental tools,
we present several measurements of these different prop-
erties, and show how they can be used to discriminate
between CWE and ROM.

A. Experimental tools

The first requirement for the experimental study of
HHG on plasma mirror is to produce such a mirror, i.e.
a dense plasma at the surface of a solid target, with a
sharp interface with vacuum. In Sec. II, we showed that
this can in principle be achieved simply by focusing an
ultrashort and intense laser pulse on a solid target, which
both generates the plasma during its leading edge, and
generates the harmonics. In practice, this is greatly com-
plicated by the light pedestal surrounding ultrashort laser
pulses, which is an inherent feature resulting from the
technology used in these lasers. This pedestal is much
weaker than the main pulse -the ratio of their intensities
being the temporal contrast- but generally much longer
(up to nanoseconds). Without any special tool to reduce
this pedestal, the temporal contrast is generally what
imposes the maximum intensity IM at which a plasma
mirror can be driven. Beyond IM , the pedestal becomes
intense enough to ionize the target well before the ar-
rival of the main pulse. This pulse then interacts with
an expanded plasma rather than with a plasma mirror.

The potentially dramatic effects of the pedestal on
the reflected beam and harmonic signal are illustrated
in Fig. 37. While the plasma behaves as a high-quality
mirror at lower intensities, above IM the profile of the
reflected laser beam is strongly distorted because of pre-
plasma expansion. Further, Fig. 37 shows that HHG is
suppressed for I > IM , which proves that it is absolutely
necessary to avoid any effect of the pedestal to produce

high order harmonics at high intensity [88]. For this rea-
son, the issue of the temporal contrast has kept hindering
the experimental study of HHG in dense plasmas, until
efficient tools to improve this contrast were developed a
few years ago [89–93].

Two lasers, luca and uhi10, from the Saclay Laser In-
teraction Center (SLIC) Laserlab facility in CEA, France,
have been used for our experimental investigations of
HHG on plasma mirrors. Both lasers are based on the
Chirped Pulse Amplification technique (CPA) [94], use
Titanium-Sapphire as a laser medium, and deliver pulses
at a central wavelength of 800 nm.

luca is a 1 TW laser chain, consisting of an oscillator
followed by a regenerative amplifier and two multi-pass
amplifiers, and delivering 40 fs pulses at a repetition rate
of 20 Hz. The laser beam was focused at the surface of
bulk silica targets using a 200 mm focal length off-axis
parabolic mirror, leading to a numerical aperture of f/5
for the focused beam. The temporal intensity profile of
this laser is shown in logarithmic scale in Fig. 38. The
temporal contrast is typically 10−6 beyond 10 ps. Be-
cause of this rather poor contrast, only 10 % of the 50
mJ provided by luca can be focused on the silica targets
before they get altered by the pedestal (Fig. 37). This
corresponds to a maximum intensity of 6× 1016 W/cm2,
much lower than the limit of a few 1018 W/cm2 required
to enter the relativistic interaction regime for an 800 nm
laser field. As demonstrated by Fig. 37, this is however
high enough to drive HHG by CWE.
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FIG. 37: Intensity dependence of the CWE harmonic signal
induced by a femtosecond laser pulse of ≈ 106 contrast on the
ns time-scale (from the luca laser), hitting a silica target.
This signal suddenly collapses when I exceeds IM ≈ 6 · 1016

W/cm2. The insets show the far-field intensity distribution of
the laser beam after reflection on the plasma, for two different
peak intensities, above and below IM .

uhi10 has the same architecture as luca, but has
one more multipass amplification stage. It delivers 60
fs pulses with an energy of up to 700 mJ, leading to
a peak power of about 10 TW. This laser was focused
on either metallic or dielectric solid targets with off-axis
parabolic mirrors of two different focal lengths, 200 mm
or 500 mm, corresponding to numerical apertures of re-
spectively f/3.3 and f/8.3. With the 200 mm parabola,
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FIG. 38: Temporal profile of the luca laser over a 100 ps
time range, measured with a high-dynamic third-order auto-
correlator (SEQUOIA, Amplitude Technologies).

measurements of the laser focal spot size lead to an esti-
mate of a maximum intensity close to 2.1019 W/cm2.

The temporal contrast at the output of uhi10 is of
the order of 10−6 beyond 10 ps, comparable to the luca
laser. Driving HHG on plasma mirrors at the highest in-
tensities provided by this laser thus first requires improv-
ing this contrast by several orders of magnitude. This
is achieved using a double plasma mirror system as an
ultrafast optical switch [93]. This system, permanently
installed between the compressor and the experimental
chamber of uhi10, is described in Ref. [95]. It improves
the temporal contrast by about four orders of magnitude
up to the very beginning of the laser pulse, leading to
contrast of the order of 1010 on the 10 ps time scale. The
cost for this improvement is a loss of about 50 % of the
main laser pulse energy, thereby reducing the peak in-
tensity on target to about 1019 W/cm2 with the 200 mm
parabola.

We now turn to the experimental study of HHG on
plasma mirrors, performed with these two lasers.

B. Spectral extension of the harmonic signal

1. Case of Coherent Wake Emission

According to Sec. IV D, an essential feature of CWE is
the fact that it results in a harmonic spectrum extending
up to the maximum plasma frequency ωmax

p of the plasma
generated by the laser pulse on the initially-solid target.
This frequency is given by ωmax

p =
√
nmax

e e2/mε0, where
nmax

e is the maximum electron density of this plasma.
As we have seen in Sec. II A, with ultrashort pulses

(of high-enough temporal contrast) the expansion of the
plasma is extremely weak during the laser pulse, and
nmax

e is then given by pns
e, with ns

e the total electron
density of the initial solid target, and p the ionization
fraction of the dense part of the target due to the inter-
action with the laser field. A rigorous calculation of p
is extremely complex, but for targets made of elements
with low-enough Z (such as silica SiO2, plastic CH or

Aluminum Al), one can safely assume p ≈ 1 for laser
intensities I > 1017 W/cm2 (see Fig. 2(b) in Sec. II A).

A good way to identify CWE harmonics is thus to mea-
sure the harmonic spectral cut-offs obtained on targets
with different electron densities. For laser intensities of
up to a few 1018 W/cm2 experiments performed with
the uhi10 laser led to a harmonic frequency cut-off that
varies as the expected target maximum plasma frequency
(Fig. 39 and Tab. II). This is a clear indication of the
dominant role of in this interaction regime.
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FIG. 39: (Color online) CWE harmonic spectra obtained at
an intensity of 3× 1018 W/cm2, on targets of different initial
densities, with the uhi10 laser. The stars indicate incoher-
ent plasma line emission. To make comparison easier, these
different spectra have been arbitrarily shifted along the y axis.

The case of gold, also presented in Fig. 39, is less
conclusive. For a target with such a high Z number
(Z = 79), p is actually significantly lower than 1 even
at these laser intensities, and it is difficult to determine
its exact value, be it by numerical calculations or by an
independent density measurement. However, assuming
that CWE is the dominant generation mechanism, the
harmonic spectrum cut-off of Fig. 39 at n ≈ 26 for gold
leads to p ≈ 25%, which is realistic at the considered
laser intensity.

Materials CH SiO2 Al Au

ns
e in cm−3 4 × 1023 7 × 1023 8 × 1023 5 × 1024

ωmax
p in ωL 15 20 21 53

Max. order observed 15 20 − 21 20 − 21 > 26

TABLE II: Maximum plasma density (totally ionized target
with neglegible expansion), corresponding plasma frequency
(ωmax

p ), and measured maximum harmonic order for plastic,
silica, aluminum and gold targets.

Finally, we note that in the first experiments on high
order harmonic generation on solid targets performed in
1981 [18, 19] with nanosecond laser pulses, Carman et al.
already reported a frequency cutoff around ωmax

p . The
major difference with the present results is that, in the
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nanosecond regime, the density profile in the interaction
zone is largely the result of a competition between the
thermal expansion of the plasma and the radiation pres-
sure. The maximum plasma density is thus unknown a
priori, and this made the evidence for a cut-off at ωmax

p

highly uncertain.

2. Case of Doppler harmonic generation

As opposed to the case of CWE, there is no fixed limit
to the maximum harmonic order that can be generated
by the Doppler effect. In this case, the frequency cut-off
depends mostly on the maximum velocity of the outgo-
ing electron bursts at the plasma surface (see Sec. V E),
which is expected to increase with laser intensity.

Observing this mechanism requires to increase the laser
intensity typically beyond a few 1018 W/cm2 for an 800
nm laser field -a limit that can actually shift toward lower
intensities as the density gradient scale length increases
[60]. Experimentally, we observed the sudden appearance
of a large number of harmonics above the target max-
imum plasma frequency above approximately 5 × 1018

W/cm2 (Fig. 40). As these harmonics precisely appear
when the laser intensity exceeds the threshold for the
relativistic interaction regime, we attribute them to the
Doppler effect. We will see that several other observa-
tions support this conclusion. We emphasize, however,
that direct experimental evidence that these relativistic
harmonics are indeed due to a Doppler effect remains to
be obtained.
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FIG. 40: Non-relativistic and relativistic angularly-integrated
harmonic spectra measured with uhi10. (a) Experimental
spectra obtained on a plastic target, for laser intensities of
3×1018 W/cm2 and 8×1018 W/cm2. (b) Calculated spectra
obtained from 2D calder simulations, in the case of a plasma
of 110nc maximum density.

C. Laser intensity dependence

1. Case of Coherent Wake Emission

The second essential feature of CWE is its quasi-linear
dependence on the laser intensity, all other things being
equal. As we have seen in Sec. IV E1, this unexpected
property is clearly observed in numerical simulations, and
is well understood by considering the intensity depen-
dences of the different steps of the CWE process.

For laser intensities below a few 1018 W/cm2, the har-
monic signal intensity dependence measured experimen-
tally is also quasi-linear (Fig. 41). This is further evi-
dence of the dominance of the CWE mechanism in this
intensity range. The measured exponent of the power law
slightly varies in different experiments. This is probably
due to the variation with the laser intensity of important
physical parameters, such as the form and the length of
the density gradient.
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FIG. 41: (a) Intensity dependence of the harmonic sig-
nal for three different CWE harmonics, produced with the
luca laser. The laser intensity was varied using an atten-
uator (combination of an half wave-plate and two polariz-
ers). (b) Intensity dependence of the spatially and spectrally-
integrated harmonic signal, measured experimentally in the
non-relativistic regime with the uhi10 laser. In these case
the different points have been obtained by simply varying
the laser polarization (from pure p to pure s). The harmonic
beam goes through a 200 nm thick Indium filter which mainly
transmits orders 10 to 15.

It is worth stressing that, because it does not rely on
any highly non-linear coupling between the laser field and
the plasma, CWE can be driven at laser intensities as
low as a few 1015 W/cm2, which initially came as a com-
plete surprise. The laser intensity simply needs to be
high enough to drive the Brunel absorption and acceler-
ate electrons to velocities allowing them to cross within
the density gradient (see Sec. IV E1). Below ≈ 1015

W/cm2, we observed experimentally that the CWE sig-
nal abruptly vanishes.
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2. Case of Doppler harmonic generation

As we have seen, observing relativistic harmonics re-
quires increasing the laser intensity beyond the range cov-
ered by the measurements of Fig. 41. Figure 42 displays
a contour map showing the evolution of the harmonic
spectrum around order 15 with laser intensity, above and
below the relativistic threshold. Since the target in this
case consists in plastic, CWE does not contribute to the
harmonic signal above order 15. The higher order are
thus attributed to the Doppler effect.

These two classes of harmonics have very different be-
havior when the laser intensity is reduced. The harmonic
signal varies very smoothly below order 15, as expected
for CWE harmonics, while higher orders disappear al-
most as soon as the intensity is reduced, and almost all
simultaneously. These harmonics thus have a highly non-
linear behavior near the relativistic threshold, which is
characteristic of harmonics generated by the Doppler ef-
fect (see Sec. V G 1). These different behaviors thus pro-
vide a second mean to differentiate harmonics generated
by CWE or ROM.
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FIG. 42: Intensity dependence of the harmonic spectrum (or-
ders 13 to 17) generated on a plastic target (ωmax

p = 15ωL),
for 2 × 1017 W/cm2 . I . 8 × 1018 W/cm2. The signal is
plotted in logarithmic scale. It was obtained using spectral
profiles averaged over 5 laser shots, for 10 different laser in-
tensities. The intensity was varied by changing the distance
between the target surface and the best focus of the laser
beam (right y scale).

D. Spectral width of individual harmonics

Another striking difference between the two classes
of harmonics associated to CWE and ROM appears on
Fig. 40: the individual CWE harmonics have a signifi-
cantly larger spectral width than the ROM ones. This
is at first somewhat counterintuitive. Indeed, in the ab-
sence of a spectral phase of order 2 or higher, the spectral
width of an individual harmonic is inversely proportional
to the emission duration. Thus, considering the different
intensity dependences of CWE an ROM, the ROM emis-
sion is expected to span a smaller fraction of the laser
pulse than CWE, and should hence have larger spectral

width than CWE, as opposed to what is observed exper-
imentally.

The explanation for this apparent contradiction lies in
the phase properties of the harmonics. As we have seen
in Sec. IV F 3, the phase of CWE harmonics has a fairly
strong dependence on the laser intensity. On the oppo-
site, we observed in Sec. V H that the phase of ROM
harmonics is almost independent of this intensity in the
moderately relativistic interaction regime. Since the laser
intensity varies in time in an actual experiment, accord-
ing to the intensity envelop of the driving laser pulse,
CWE harmonics have a large temporal phase -in other
words, they are far from their FTL duration- while ROM
harmonics do not. This temporal phase leads to a spec-
tral broadening of the harmonics, which accounts for the
difference observed between CWE and ROM harmonics.

This interpretation of the spectral width of CWE har-
monics is corroborated by several experimental observa-
tions, which all support the theoretical and numerical
analysis of Sec. IV F. Experimental evidence of the neg-
ative intrinsic chirp of CWE harmonics was first obtained
in Ref. [62], in which this chirp, and the associated spec-
tral broadening, were partially compensated by introduc-
ing a positive chirp on the driving laser pulse. In addi-
tion, a direct measurement of the intensity dependence
of the emission time of CWE attosecond pulses using an
interferometric technique agrees well with numerical re-
sults [96]. Finally, the analysis of Sec. IV F showed that
the phase variations of CWE harmonics only depends
on the laser pulse temporal intensity profile, but not on
its peak intensity. This is confirmed experimentally by
the fact that the spectral width of CWE harmonics is
observed to be independent of the peak laser intensity
(Fig. 43(a)).
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FIG. 43: Experimental measurements of the properties of
CWE harmonics generated on silica, as a function of the peak
laser intensity. (a) RMS spectral width of harmonic 14, (b)
RMS divergence of the superposition of harmonics 10 to 15,
selected with a 100nm thick In filter.
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E. Divergence of the harmonic beam

The intensity dependence of the harmonic phase, which
has just been analyzed in the spectral domain, has anal-
ogous consequences in the spatial domain. Indeed, at the
target surface, the laser intensity varies not only tempo-
rally, but also spatially. When the generation mechanism
leads to a phase that depends on laser intensity -as in
the case of CWE- the spatial variation of this intensity
induces a spatial phase on the harmonic beam, and, for
a given harmonic source size, this spatial phase results in
an increase of the beam divergence.

The direct influence of this phase on the divergence of
CWE harmonics has been proved experimentally in Ref.
[62], using the same method as in the spectral domain.
The intrinsic spatial phase was partly compensated by
applying a spatial phase of opposite sign on the driving
laser beam, obtained by simply moving the target slightly
away from the best focus. Moreover, in Fig. 43(b), the
divergence of the CWE harmonic beam, and hence the
intrinsic spatial phase, is observed to be independent of
the laser peak intensity, as predicted in Sec. IV F and
observed in the spectral domain (Fig. 43(a)).

Due to these phase effects, and in analogy to the
spectral domain, ROM harmonics are expected to have
a weaker divergence than CWE harmonics, despite a
smaller source size. This prediction is confirmed by
2D numerical simulations performed with the calder
code (Fig. 44). This essential difference between the two
classes of harmonics has recently been verified experi-
mentally, on the astra laser at the Rutherford Appleton
Laboratory [64].

Our interpretation of this effect is also supported by
the results of PIC simulations displayed in Fig. 45, which
shows the intensity of the generated attosecond pulses as
a function of the spatial coordinates (x, y) in the vicin-
ity of the source (i.e. within the Rayleigh length). It
clearly demonstrates that ROM attosecond pulses are
generated over a smaller radius than CWE pulses, due to
the stronger intensity dependence of the ROM efficiency.
It also shows that the CWE pulses are bent because of
the intensity dependence of their emission time, while the
ROM ones are not. This explains the smaller divergence
of the ROM signal compared to the CWE one, despite a
smaller source size.

Finally, in Fig. 44, we observe that below ωmax
p , CWE

and ROM harmonics interfere, leading to a dark el-
lipse around each harmonic in the (ω, θ) space. Un-
derstanding this interference pattern requires consid-
ering the phase properties of both mechanisms. In
the case of CWE, we have shown that the depen-
dence of the phase on the laser intensity induce both
spatial and spectral non-trivial phases. If we assume
that they are quadratic, we can write for a given har-
monic ECWE(ω, r) ∝ ei(ωt+αωω2+αθθ2). In contrast,
in the weakly relativistic regime the phase of ROM
harmonics is almost independent of I , and we have
EROM (ω, θ) ∝ eiω(t−t0). The interference term in the
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FIG. 44: (Color online) Angularly-resolved harmonic spec-
trum, in the moderately relativistic regime (a0 = 1.7), ob-
tained from a 2D calder simulation. This spectrum was
corrected by a smooth function T (ω), to make it possible
to observe simultaneously the angular width of all individual
harmonics. An angle of −45o corresponds to the direction of
specular reflexion, and the divergence of the incident Gaus-
sian laser beam is ±7.3o. In this simulation, the maximum
plasma density is nmax

e = 110nc, harmonics beyond order 10
are therefore necessarily due to ROM.

spectrum S(ω, r) = |ECWE(ω, r) +EROM (ω, r)|2 is thus
proportional to cos(ωt0 +αωω

2 +αθθ
2). This means that

destructive interference occur on the ellipse of equation
αω(ω + t0/2αω)2 + αθθ

2 = π/2 + t20/4α
2
ω, in agreement

with Fig. 44.

FIG. 45: (Color online) Intensity of the attosecond pulses
resulting from the superposition of harmonics 7 to 15, pro-
duced during the 4 central optical cycles of a laser pulse with
amax
0 = 1.7, in a 2D calder simulation where nmax

e = 110nc

and L = λL/50.

F. Summary and comparison to numerical
simulations

In summary, we have demonstrated in this section that
it is possible to produce experimentally CWE and ROM
harmonics, and that these two classes of harmonics can
be easily distinguished experimentally, through the ex-
tension of the harmonic spectrum, the intensity depen-
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dence of the harmonic signal, the spectral width of indi-
vidual harmonics as well as their divergence.

All these features are fairly well reproduced by PIC
simulations, as illustrated by the simulated harmonic
spectra displayed in Fig. 40(b) which exhibit, in par-
ticular, the two spectral ranges, on each side of ωmax

p ,
where each harmonic family dominates, as well as a
clear difference in spectral width between these two fam-
ilies. The intensity dependence is also qualitatively re-
produced. However, to totally eliminate the ROM signal,
a stronger decrease in intensity is required in simulations
than in experiments. This is most likely because simula-
tions are performed in 2D only. As the harmonic signal
is generated over a smaller fraction of the laser focal spot
in ROM than in CWE, the relative weight of CWE and
ROM signal in an angularly-integrated spectrum depends
on the geometry of the interaction. Assuming ρ < 1 is the
ratio between the ROM and CWE source radii, the ratio
of the ROM and CWE integrated signals indeed scales as
ρ in 2D geometry, while it scales as ρ2 in 3D geometry.
This can explain the different intensity dependences of
the spectrum in 2D simulations and in experiments.

VII. CONCLUSION

This paper provides a detailed analysis of the mecha-
nisms that dominate laser high-order harmonic genera-
tion on plasma mirrors: these are Coherent Wake Emis-
sion, and the Relativistic oscillating Mirror process. The
clear experimental evidence obtained to support the ex-
istence of these two mechanisms have also been summa-
rized.

As already emphasized in this paper, some interest-
ing theoretical problems remain to be solved on these
two mechanisms. This includes establishing, if possible,
a predictive and general theory of ROM, in particular in
the ultra-relativistic regime, and a proper and accurate
theoretical treatment of the last step of the CWE process,
i.e. attosecond light pulse emission by plasma oscillations
in an inhomogeneous plasma. However, from our point of
view, these basic generation mechanisms are now fairly
well understood, and the main remaining challenges on
the topic of HHG from plasma mirrors lie on the exper-
imental side. The most important problem to address
is the temporal characterization of light reflected from
plasma mirrors, with a temporal resolution going down to
the attosecond range. A recent experiment has provided
a first evidence of the existence of attosecond pulses pro-
duced by CWE [33], but this measurement only provides
a rough estimate of their duration, averaged over the
train. Going beyond and accessing experimentally the
exact temporal structure of the attosecond pulse trains
produced on plasma mirrors has two main interest.

Firstly, such measurements will provide a new and
unique probe of the laser-plasma interaction. For in-
stance, in CWE, the frequency content of each individual
attosecond pulse in the train is determined by the instan-

taneous maximum density of the plasma, while its chirp
is influenced by the instantaneous gradient scale length.
If this frequency content and this chirp could be mea-
sured for each attosecond pulses in a CWE train, this
would provide the temporal evolution of the maximum
plasma density and gradient scale length, with unprece-
dented temporal resolution and accuracy. These are some
of the quantities that are still difficult to predict with
numerical codes, but which have a crucial influence on
the laser-plasma interaction. ROM can also provide a
very valuable probe of the plasma. At relativistic inten-
sities, a significant hole boring can be induced by the
laser at the surface of the plasma. This can be diagnosed
to some extent by measuring the resulting Doppler spec-
tral shift induced on ROM harmonics. However, a full
temporal characterization of the ROM attosecond pulse
trains would provide a much more detailed diagnostics,
and make it possible to reconstruct the complete tempo-
ral dynamic of this effect, simply by looking at the vari-
ation of the emission time of attosecond pulses during
the laser pulse (Fig. 36). As a last example, a measure-
ment of the timing of CWE and ROM attosecond pulses
with respect to the laser field would tell us when the
plasma surface reaches its peak velocity toward vacuum
(ROM pulses), and when laser-accelerated electrons re-
turn to the plasma (CWE pulses). Such a measurement
over the complete train would show how these two times
vary with laser intensity, and thus provide new insight
into the laser-plasma interaction dynamics. We note that
complete measurements of attosecond fields are now pos-
sible using techniques such as described in Refs.[97, 98],
and have already been achieved experimentally by several
groups, for attosecond fields produced in gas targets.

Secondly, HHG from plasma mirrors is at present one
of the best candidates to obtain an attosecond source
of second generation. From this point of view, ROM
is clearly far more promising than CWE, although it is
also more demanding in terms of laser performances -
in particular laser peak intensity and temporal contrast.
Indeed, as opposed to CWE, it has the potential to pro-
duce extremely broad spectra, associated to attosecond
pulses that are close to Fourier-Transform Limited. For
a given laser intensity, the ROM emission efficiency and
spectral extension can be increased significantly by in-
creasing the density gradient scale length at the plasma
mirror surface (see Fig. 33), which can be achieved using
a well-controlled pre-pulse. However, a longer gradient
also implies a ‘softer’ plasma, and hence a stronger hole
boring effect by the laser field. This hole boring will even-
tually increase the divergence and degrade the spatial
quality of the harmonic beam. The best plasma-mirror
based attosecond source will be a result of a compromise
between these two trends.

Another essential and challenging experimental devel-
opment is to go from trains of attosecond pulses to single
pulses, as has been done about 10 years ago for HHG
in gases. Several schemes have already been proposed to
gate the ROM attosecond pulse emission [99–101]. These
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schemes should become experimentally accessible as laser
and ultrafast optics technology improve.
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N. Baboi, J. Bähr, V. Balandin, B. Beutner, A. Brandt,
A. Bolzmann, et al., Nature Photon. 1, 336 (2007).

[14] S. V. Bulanov, T. Esirkepov, and T. Tajima, Phys. Rev.
Lett. 91, 085001 (2003).

[15] M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito,
L.-M. Chen, T. Z. Esirkepov, K. Ogura, T. Homma,
Y. Hayashi, et al., Phys. Rev. Lett. 99, 135001 (2007).

[16] T. Z. Esirkepov, S. V. Bulanov, M. Kando, A. S.
Pirozhkov, and A. G. Zhidkov, Phys. Rev. Lett. 103,
025002 (2009).

[17] N. H. Burnett, H. A. Baldis, M. C. Richardson, and
G. D. Enright, Appl. Phys. Lett. 31, 172 (1977).

[18] R. L. Carman, D. W. Forslund, and J. M. Kindel, Phys.
Rev. Lett. 46, 29 (1981).

[19] R. L. Carman, R. F. Benjamin, and C. K. Rhodes, Phys.
Rev. A 24, 2649 (1981).

[20] B. Bezzerides, R. D. Jones, and D. W. Forslund, Phys.
Rev. Lett. 49, 202 (1982).

[21] C. Grebogi, V. K. Tripathi, and H.-H. Chen, Phys. Flu-
ids 26, 1904 (1983).

[22] U. Teubner and P. Gibbon, Rev. Mod. Phys. 81, 445
(2009).

[23] D. von der Linde, T. Engers, G. Jenke, P. Agostini,
G. Grillon, E. Nibbering, A. Mysyrowicz, and A. An-
tonetti, Phys. Rev. A 52, R25 (1995).

[24] S. Kohlweyer, G. D. Tsakiris, C.-G. Wahlström, C. Till-
man, and I. Mercer, Opt. Commun. 117, 431 (1995).

[25] S. V. Bulanov, N. M. Naumova, and F. Pegoraro, Phys.
Plasmas 1, 745 (1994).

[26] P. Gibbon, Phys. Rev. Lett. 76, 50 (1996).
[27] R. Lichters, J. Meyer-ter-Vehn, and A. Pukhov, Phys.

Plasmas 3, 3425 (1996).
[28] S. Gordienko, A. Pukhov, O. Shorokhov, and T. Baeva,

Phys. Rev. Lett. 93, 115002 (2004).
[29] T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E

74, 046404 (2006).
[30] U. Teubner, K. Eidmann, U. Wagner, U. Andiel,

F. Pisani, G. D. Tsakiris, K. Witte, J. Meyer-ter Vehn,
T. Schlegel, and F. E., Phys. Rev. Lett. 92, 185001
(2004).

[31] K. Eidmann, T. Kawachi, A. Marcinkevičius, R. Bart-
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