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Abstract

In this work we present a new four-component implementation of the two-particle (2p) propagator

as a powerful tool for calculating double ionization spectra of systems containing heavy elements.

The 2p-propagator approach provides immediate access to the complete final state distribution

of doubly ionized systems together with a detailed configurational information of each final state.

This information is vital for the analysis of electronic decay processes as radiationless relaxation

mechanisms after an initial core hole ionization and for the simulation of Auger spectra. The

capabilities of the four-component realization is first demonstrated at the xenon atom and the

bromine molecule for which experimental results are available. It turns out that a relativistic

treatment is required for an adequate description of the experimental findings. In this first paper

we focus on the electronic structure described by the 2p-propagator and will later on apply this

method to the calculation of Auger spectra and electronic decay processes in heavy systems.
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I. INTRODUCTION

In the last few years modern experimental techniques such as double charge transfer

spectroscopy [1–3], time-of-flight mass spectrometry [4], photoion and photoelectron coin-

cidence spectroscopy [5–7] and threshold photoelectron coincidence (TPEsCO) [8] allowed

for a detailed analysis of double ionization processes and a characterization of the result-

ing fragments. In these processes atoms, molecules or clusters are irradiated by photons of

sufficient energy to produce at least two photoelectrons and dications that undergo frag-

mentation in most cases. The analysis of the photoelectrons and fragments yields a detailed

insight into the ionization processes from an experimental viewpoint and is of prominent

interest for the understanding of atmospheric chemistry, for example, where highly ener-

getic radiation is initiating a multitude of chemical reactions. Of similar importance is the

understanding of radiation damage in biological tissue also initiated by highly energetic pri-

mary ionization processes. In the case of CF4, for example, the double ionization threshold

was determined as 37.5 eV [8] and by photoion coincidence measurements the corresponding

fragmentation products such as CF+
3 + F+ (37.6 eV) and CF+

2 + F+ (42.4 eV) could be

identified. Simultaneous theoretical calculations with nonrelativistic Green’s function tech-

niques in combination with a two-hole (2h) population analysis [9] allowed for an accurate

interpretation of the obtained experimental CF4 spectrum. Other prominent examples for

successful theoretical prediction and experimental analysis are the double ionization pro-

cesses in formaldehyde [10], the interpretation of the spectrum in SF6 [11], N2O [12] and O2

[13].

For all these systems the application of propagator methods turned out to be beneficial

due to the accessibility of all dicationic states and their composition after a single matrix

diagonalization. For the CF4 molecule a final state analysis showed a prevailing hole lo-

calization on the fluorine atoms with only minor carbon contributions. Coincidence maps

further allow for a classification in direct and indirect ionization processes depending on the

photon energy as has been shown for SF6 [11]. Here the indirect mechanism via a primary

ionization of the F 2s level followed by an electronic decay could be established. These decay

mechanisms are accurately predicted by the current theoretical methods and play a major

role in the correct interpretation of the spectra.

Recently, experimentalists started to analyze double ionization spectra of heavier systems
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such as molecular bromine [14, 15] and iodine [16], the interhalogen compound ICl [17] and

the iodine-containing systems HI, CH3I and CF3I [18]. For the doubly ionized final states of

ICl state-specific multi-reference configuration interaction (MRCI) methods were employed

by Edvardsson et al. [17] where the X3Σ−
0,1, A1∆2 and B1Σ+

0 states could be clearly identified

in the outermost part of the spectrum between 27 eV and 29 eV. Above 30 eV the assignments

were done tentatively. The potential curves give precise information about the boundedness

of a specific state but it is more difficult to decide about further electronic decay processes

and the nature of states at higher energy ranges.

Another prominent example for double ionization processes in systems with heavy el-

ements are the methyl iodide CH3I and trifluoro methyl iodide CF3I spectra which were

measured by the TOF-PEPECO (time-of-flight photoelectron coincidence) method [18].

Whereas in the methyl iodide spectrum four well resolved peaks of symmetry 3A2 (spin-

orbit split in an A1 and E state), 1E and 1A1 occur, the CF3I
2+ shows a more complicated

structure with five peaks including spin-orbit splitting and a broad ionisation edge. The

authors in [18] attribute the extra peaks to final states where one hole is each located on the

iodine and fluorine atom leading to a dication with considerably lowered Coulomb repulsion

compared to the purely iodine-centered dicationic state.

Doubly ionized clusters often result from an electronic decay process following a primary

ionization on one site. Hereby the Intermolecular Coulombic Decay (ICD) [19] or the Elec-

tron Transfer Mediated Decay (ETMD) [20] are the most prominent examples of these decay

processes currently investigated. These processes are normally initiated by a inner valence

ionization where the vacancy is filled by an outer valence electron from the same site (ICD)

or from a neighboring site (ETMD). The released energy is hereby sufficient to ionize the

system further where in general many decay channels are open. It sould be kept in mind

that the accessibility and characterization of the possible final states will also depend on the

inclusion of relativistic effects.

In order to treat the abovementioned systems containing heavy elements adequately a

four-component implementation of the two-particle propagator was undertaken and is pre-

sented in this work. Hereby access to the full spectrum together with a detailed configuration

information of the final states is obtained. Relativity will have substantial influence on the

energetics of the resulting final states which in turn determine the structure of the spectra

and the accessibility of decay pathways. In the following we first outline the relativistic
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methodology of the 2h propagator together with a focus on the symmetry handling in the

double group-based framework. Afterwards, the double ionization spectra of xenon and Br2

are calculated in order to demonstrate the capabilities of the method. For Br2 double group

configuration interaction (CI) and multi-reference coupled cluster (MRCC) calculations are

also available [21] and allow for a comparison with our results. In subsequent work we will

address relativistic effects in the double ionization spectra of CH3I, CF3I, I2 and ICl and

their impact on ICD/ETMD processes in clusters containing heavy elements.

II. METHODOLOGY IN THE RELATIVISTIC CASE

The two-particle propagator or Green’s function describing a double ionization or attach-

ment process reads as

Gpq,p′q′(t1, t2; t
′
1, t

′
2) = −〈ΨN

0 |T̂
[
cp(t1)cq(t2)c

†
q′(t

′
2)c

†
p′(t

′
1)

]
|ΨN

0 〉 , (1)

with |ΨN
0 〉 being the exact N -particle ground state wave function of the Dirac-Coulomb

(DC) operator

ĤDC =

N∑

i=1

(
c~αi · ~pi + βimec

2 + Vext(i)14

)
+

N∑

i<j

1

rij
, (2)

where magnetic interaction (Gaunt) corrections to the Coulomb term and retardation effects

are neglected. T̂ is the Wick time-ordering operator and the c†q(t) [cq(t)] denote creation

(destruction) operators for one-particle states |φ(q)〉 in the Heisenberg representation. In

the language of second quantization in which the algorithm is cast no excitations from

negative energy states are considered (see [22] for the no-pair formalism in combination

with propagators and [23] for an analysis of the general unboundedness problem in case of

the DC operator).

For the practical implementation one starts form the energy-dependent representation of

(1) obtained by a Fourier transformation:

Πpq,p′q′(ω) = Π+
pq,p′q′(ω) + Π−

pq,p′q′(ω) .

Π+
pq,p′q′(ω) hereby describes a two-particle attachment whereas Π−

pq,p′q′(ω) is used for a two-

particle detachment (ionization) process. The Lehmann representation [24] of Π−
pq,p′q′(ω)
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which we are focusing on in this work reads as

Π−
pq,p′q′(ω) = −

∑

m

x
(m)
pq x

(m)∗
p′q′

ω + EN−2
m − E0

N − iη
(3)

utilizing a complete set of exact N − 2 particle states |ΨN−2
m 〉 with corresponding energies

EN−2
m . η is an infinitesimal positive number required for the convergence of the backtrans-

formation. The spectral amplitudes

x(m)
pq = 〈ΨN−2

m |cpcq|ΨN
0 〉

provide information about the composition of the mth final state with respect to the one-

particle states p and q. It should be pointed out that the N -particle ground state wave

function |ΨN
0 〉 can be expanded in a N -particle basis of Slater determinants made of four-

component one-particle functions. The no-pair confinement puts us into the advantageous

situation that the spin-orbital based expressions derived from diagrammatic perturbation

theory need not be modified for a corresponding realization with four-component one-particle

functions.

Up to this stage we have not yet obtained actual expressions for the propagator. This is

established by a combination of the diagrammatic representation for Π− together with an al-

gebraically formulated perturbation expansion of a nondiagonal representation of (3) termed

as Algebraic Diagrammatic Construction (ADC) [25–28]. In a compact matrix notation (3)

reads as

Π−(ω) = X†(ω1 + Ω)−1X

with 1 being the identity matrix and Ω being the diagonal matrix of double ionization

potentials. This diagonal representation is now brought into a nondiagonal form by inserting

a so-called intermediate state basis [29] leading to

Π−(ω) = F †(ω1 − Γ)−1F .

A perturbational expansion of the Γ and F matrices then allows for an order-by-order com-

parison to the graphs obtained by a diagrammatic perturbation expansion from which the

explicit expressions for the matrix elements can be derived [25, 30]. The F matrices are

needed for the calculation of transition moments and are disregarded for the current inves-

tigation. A final matrix diagonalization then yields the sought double ionization potentials
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together with the eigenvectors containing the expansion coefficients of the mth eigenstate

in terms of the intermediate basis. A specific eigenstate in the intermediate state basis can

also be expanded in a perturbation series starting with a two-hole Slater determinant in

zeroth order and where the additional terms account for electron relaxation and correlation

[31]. If a specific final state exhibits main state character, 3h1p configurations mix in only

weakly whereas other 2h configurations may participate substantially as the calculations

show. The Algebraic Diagrammatic Construction in its four-component extension will be

termed as Dirac-Coulomb ADC (DC-ADC).

Similar to other post-Hartree-Fock methods like coupled cluster (CC) or configuration

interaction (CI) an atomic orbital (AO) to molecular orbital (MO) transformation step is also

required in DC-ADC yielding relativistic molecular two-electron integrals over the Coulomb

operator

Vabcd =

∫∫
φ∗

a(1)φ∗
b(2)

1

r12

φc(1)φd(2) ≡ 〈ab|cd〉 (4)

and their totally antisymmetric versions used in the implementation

Vab[cd] = Vabcd − Vabdc ≡ 〈ab||cd〉 . (5)

The Vab[cd] integrals exhibit the relations

Vab[cd] = −Vab[dc] = −Vba[cd] = Vba[dc] and Vcd[ab] = V ∗
ab[cd] . (6)

The indices a, b, c, d hereby cover the occupied and/or the virtual orbital space. The totally

antisymmetric MO integrals together with the (relativistic) spinor energies εa are the only

entities entering the expressions for the DC-ADC matrix elements which were originally

derived in the nonrelativistic regime by Schirmer and Barth [25] and restated by Tarantelli

[28] with an appropriate sign change in order to obtain positive eigenvalues of the ADC

matrix. In [28] both the spin-containing and spin-free formulas can be found where in

the latter case two different sets of equations for the singlet and triplet final states result.

This classification according to spin multiplicity is no longer applicable for heavy systems

with large spin-orbit coupling and the spin-orbital-based expressions are to be employed

in the four-component case. It should be kept in mind that the AO/MO transformation

is done exclusively in the positive energy space utilizing the corresponding Dirac-Hartree-

Fock spinors. As a consequence, the molecular spinors can not be further relaxed with

respect to the negative energy solutions in the ADC step which might yield to changes in
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the ionization potentials for very heavy systems and core-like final states. In the valence

region these additional contributions are assumed to be small and the electron relaxation and

correlation effects are completely covered by the propagator. In the following we will often

refer to the equations given in [28] and we will therefore repeat them here for convenience

in eqs. (7) - (9). The three equations comprise the 2h/2h main block Cij,kl (7), the 3h1p/2h

coupling block Crklm,ij (8) and the 3h1p/3h1p satellite block Crijk,slmn (9) of the DC-ADC

matrix. In the following the indices i, j, k, . . . refer to occupied (hole) orbitals, the indices

p, q, r, . . . to virtual (particle) orbitals and εijk... is an abbreviation for εi + εj + εk + · · ·.

Cij,kl = Vij[kl] +

{
δjl

1

2

∑

mrs

Vrs[km]Vim[rs]

(εrs − εkm)(εrs − εim)

[
εrs − εm − εik

2

]}
(7)

−{i ↔ j} − {k ↔ l} + {i ↔ j, k ↔ l}

−1

2

∑

rs

Vrs[kl]Vij[rs]

(εrs − εkl)(εrs − εij)

[
εrs −

εijkl

2

]
− δikδjlεij .

Crklm,ij =
(
δikVlm[jr] + δilVmk[jr] + δimVkl[jr]

)
− (i ↔ j) . (8)

Crijk,slmn =
{
δrs

[
δilVjk[mn] + δimVjk[nl] + δinVjk[lm]

]}
(9)

+ {(i, j, k) → (j, k, i)} + {(i, j, k) → (k, i, j)}

+
{
δjmδknVis[rl] + δjlδkmVis[rn] − δjlδknVis[rm]

}

+ {(i, j, k) → (k, i, j)} − {i ↔ j}

+δrsδilδjmδkn(εr − εijk) .

The abbreviation {i ↔ j} in (7) - (9) hereby symbolizes an i, j swapping of the preceding

expression cast in curly brackets and (i, j, k) → (k, i, j) stands for the index replacements

as indicated. For the numerical realization the 2- and 4-tuples ij, . . . and rijk, . . . are to

be understood as multi-indices addressing rows and columns of the DC-ADC matrix in a

unique way. The expressions (7) - (9) are complete up to second order in perturbation

theory (DC-ADC2) and contain additional first order contributions in the satellite block not

present in the strict second order formulation.

A fundamental property of all matrix elements above is their antisymmetry with respect

to hole-index interchange within the bra or ket space (not between these spaces, of course).

In equation (8), for example, we end up with the identities Crklm,ij = −Crlkm,ij = −Crklm,ji =

. . .. As a consequence, matrix elements vanish identically if two or more of their hole indices

are equal. It is important for the implementation to omit all permutationally related or zero
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terms in the DC-ADC matrix which can be achieved by following a restricted enumeration

scheme for the multi-indices. For example, in the (rklm) multi-index the confinements

k > l > m ∀ r ∈ {virt} ∧ k, l, m ∈ {occ} have to be obeyed.

One major factor essentially governing our realization is molecular symmetry which is

fully exploited up to all Abelian subgroups of the D∗
2h double group. Since the molecular

spinors transform according to the molecular double group G∗ and not according to the

single-valued counterpart G the use of double groups containing so-called extra or fermionic

irreducible representations (irreps) γi is mandatory for DC-ADC. The single-valued coun-

terpart G of G∗ contains the bosonic irreps βi ∈ G. All irreps of Abelian subgroups to G∗

are one-dimensional and exhibit the following useful property:

γ∗
i ⊗ γi = Γ0 , γi ∈ G∗ and β∗

i ⊗ βi = Γ0 , βi ∈ G (10)

with Γ0 being the totally symmetric irrep of G∗(G). The complex conjugate of an irrep

therefore is its own inverse allowing for a fast computation of target irreps being part of a

multiple direct product. Furthermore, the direct product of two fermionic (bosonic) irreps

yields a bosonic irrep, whereas the mixed product yields a fermionic irrep. The highest

available point group symmetry in the employed DIRAC program package [32] is D∗
2h fol-

lowed by D∗
2 and C∗

2v. The bosonic irreps of these groups are one-dimensional and the

corresponding bosonic subgroups therefore are Abelian. However, for the corresponding

fermionic representations nonseparable two-dimensional irreps are obtained not leading to

an overall Abelian group structure anymore. This can be seen, for example, in the C∗
2v group

where E1/2 ⊗ E1/2 yields a four-dimensional reducible representation which can be decom-

posed into A1 ⊕ A2 ⊕ B1 ⊕ B2. Therefore a projection of the non-Abelian double groups to

their Abelian subgroups is performed according to D∗
2h → C∗

2h, D∗
2 → C∗

2 and C∗
2v → C∗

2 .

For these subgroups the number of fermionic and bosonic irreps is identical and their sum

equals the number of classes in G∗ allowing for an efficient symmetry handling.

In our implementation the storage of integrals and the tensorial contractions are

symmetry-driven. In order to demonstrate this for the Vij[kl] integrals as a representative

example one always follows the all-encompassing requirement

γ∗
i ⊗ γ∗

j ⊗ γk ⊗ γl
!
= Γ0 , (11)

otherwise Vij[kl] vanishes. For defining a label-free storage sequence we simply follow the

generic order (γ1, . . . , γN) starting with the rightmost irrep γl ∈ G∗. The subsequent irreps
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γk, γ
∗
j and γ∗

i are then looped over accordingly always maintaining relation (11) where the

irreps γi and γj have to be taken as complex conjugates due to their relation to the bra space.

For a two-indexed array 〈i|j〉 we then obtain the following storage scheme with respect to

the irrep sequence:

〈i|j〉 : γ∗
1 |γ1, γ∗

2 |γ2, . . . , γ∗
N |γN with γ∗

q ⊗ γq = Γ0 .

In the case of four-index quantities 〈ij||kl〉 the situation is a bit more complex since on the

bra and on the ket side the two fermionic irreps first combine to bosonic irreps which in turn

are again stored in generic order:

〈ij||kl〉 : β
(ij)∗
1 |β(kl)

1 , β
(ij)∗
2 |β(kl)

2 , . . . β
(ij)∗
N |β(kl)

N with β(ij)∗
q ⊗ β(kl)

q = Γ0 .

Hereby the superscripts (ij) and (kl) indicate the fermionic parent irreps and the subscripts

enumerate the bosonic irreps. For a given βq we recursively apply this logic again and obtain

a stream sequence like

β(ij)
q : γi1|γ1, γi2|γ2, . . . γiN |γN with γik ⊗ γj

!
= β(ij)

q . (12)

Both fermionic irreps producing β
(ij)
q either stem from the bra or from the ket space and

relation (12) also applies to the bra space after complex conjugation. As soon as the smallest

symmetry cell, γik |γj, is established the individual spinors occurring therein are enumerated

generically completing the index-free storage scheme. This label-free storage is also applied

for the relativistic coupled cluster [33] and configuration interaction module in the DIRAC

program suite [32].

In the general two-electron integral Vab[cd] the indices a, b, c, d stand for occupied (O)

or virtual (V ) orbitals. It is evident from Eqs. (7)-(9) that only four distinct integral

classes, namely the 〈OO||OO〉, 〈V O||OO〉, 〈V V ||OO〉 and 〈V O||V O〉 types are needed for

the construction of the matrix elements. Hereby the 〈V V ||OO〉 and 〈V O||V O〉 classes are

essentially distinct due to the different bra and ket origin of the O and V spinors. Every

other order of indices such as e.g. Vis[rm] with i, m ∈ {occ}, r, s ∈ {virt} can be brought into

one of the four generic forms utilizing the equivalence relations (6). The matrix elements of

Eqs. (7)-(9) are therefore transformed to a form suitable for direct use of the four generic

integral classes.

One very important property of the total ADC matrix which holds in the one- and four-

component case is its block structure with respect to different bosonic final state symmetries
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(see Fig. 1). Hereby no coupling between blocks of different symmetry occurs which can be

seen as a consequence of relation (11). By this grouping into disjoint blocks the numerical

effort for the matrix diagonalization is drastically reduced. It should be noted that the

symbols I2, J2, . . . in Fig. 1 stand for the twofold and fourfold multi-indices of Eqs. (7)-(9)

in exactly the same index ordering. The symmetry requirements for nonvanishing 2h/2h

matrix elements Cij,kl of Eq. (7) now read as

bra : β
(ij)∗
1 = γ∗

i ⊗ γ∗
j , ket : β

(kl)
2 = γk ⊗ γl , β

(ij)∗
1 ⊗ β

(kl)
2

!
= Γ0 . (13)

After multiplying the last equation by β
(ij)
1 and considering (10) we obtain relations for the

bra and ket irreps in order to obtain nonvanishing matrix elements as

β1 := β
(ij)
1

!
= β

(kl)
2 =: β2 .

This holds for all available bosonic irreps βq in G∗, q = 1, . . .N leading to the block structure.

The present considerations can be applied in a similar way to the coupling and satellite blocks

where care must be taken to perform integral contractions exclusively over corresponding

bra/ket pairs. The transition from Abrikosov diagrams to their algebraic counterpart exactly

determines the position of a specific spinor index in the bra or ket space. The left-hand-side

occurrence of the (rklm) multi-index in Crklm,ij (Eq. 8), for example, does not automatically

imply a bra character for them. Instead, from Eq. (8) the correct bra/ket sequence for this

multi-index can be derived according to

Crklm,ij : (rklm, ij) ↔ |〉〈|〈|〈|, |〉|〉 (14)

and the symmetry conditions are established as

γr ⊗ γ∗
k ⊗ γ∗

l ⊗ γ∗
m ⊗ γi ⊗ γj

!
= Γ0 . (15)

The pair γi, γj hereby defines the final state symmetry βf := β
(ij)
q = γi ⊗ γj of the DC-ADC

matrix block. In order not to omit contributions we loop through all possible (γk, γl, γm)

triples and fix γr after complex conjugation of (15) via

γ∗
r ⊗ γklm = βf with γklm = γk ⊗ γl ⊗ γm =⇒ γr = β∗

f ⊗ γklm .

The numerous delta-conditions in the satellite block (9) test for like spinor labels which

are a priori not available in a purely symmetry-driven storage. Since the DC-ADC matrix is
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β

β

β

β

FIG. 1: Illustration of the symmetry block formation of the total ADC matrix with respect to the
final state irreps βi. The symbols I2, J2 (I4, L4) denote the twofold (fourfold) multi-indices from
Eqs. (7)-(9).

to be constructed for each Lanczos iteration and to be stored in a packed row/column form

on disk it is more efficient to utilize a row/column-based addressing in the satellite block

and recover the spinor index quadruple via a lookup table whenever needed.

III. COMPUTATIONAL DETAILS

For all calculations the Dirac-Coulomb Hamiltonian with inclusion of the (SS|SS) in-

tegrals was employed and the relevance of spin-orbit effects was demonstrated by ad-

ditionally performing ADC2 calculations with an underlying spin-free Hamiltonian by

Dyall [34, 35]. In the latter case only scalar relativistic effects are taken into account

and the symmetry is governed by the normal group instead of the double group. For

xenon the dual-type (26s21p16d4f4g2h) primitive exponent set from [36] was used and

is shown in table I. The duality condition hereby restricts the exponent sets according to

{d} ⊂ {s}, {f} ⊂ {p}, {g} ⊂ {s} and {h} ⊂ {p} by which the number of (SS|SS) integrals

to be determined in a four-component calculation can be considerably reduced. Spinors in

the energy range from -10.0 a.u. up to +100.0 a.u. were taken into account for the electron

correlation treatment which corresponds to an inclusion of all occupied Xe orbitals with

n ≥ 4.

For the bromine molecule the Dyall (23s16p10d1f) triple zeta basis set [37] was taken

in its uncontracted form and all spinors in the energy range of -4.0 a.u. to +10.0 a.u.

were included in the active correlation space. It should be kept in mind that a molecular
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s exponents 58489121.56, 12439351.36, 3316966.28, 990057.5054, 324445.4957,

114591.3996, 43146.79011, 17136.16529, 7100.746012,

3039.568325, 1338.816396, 606.7452457, 281.9892934,

134.2794051, 65.33858323, 32.35300441, 16.27465179,

8.322702468, 4.136039210, 1.996937059, 0.9255024105,

0.3746212971, 0.1430107603, 0.0656456, 0.0326239, 0.0112533

p exponents 1463134.8, 213759.6455, 45317.14034, 12192.17836, 3947.39928,

1469.89679, 606.2137536, 269.3317758, 125.9350996, 60.95699859,

29.54636251, 14.616124, 7.355676352, 3.483210105, 1.624885916,

0.6565235892, 0.2871010293, 0.1115846738, 0.04188980896, 0.025,

0.011

d exponents: {s10 − s25} f exponents: {p15 − p18}

g exponents: {s21 − s24} h exponents: {p16 − p17}

TABLE I: Dual primitive exponent set for xenon used in the DC-ADC2 calculations. The notation {s10−

s25} hereby indicates the s exponent range used for the d functions asf.

calculation is much more elaborate than an atomic one and the range of active spinors

therefore had to be restricted accordingly. The experimental distance of R = 2.28105Å [38]

was taken for the Br2 calculations.

All electronic structure calculations have been carried out with the program system

DIRAC [32] which is a general-purpose four-component package. The relativistic imple-

mentation of the two-particle propagator DC-ADC2 is available in the developers’ version

at the moment and will soon be part of the official release. In addition to spatial symmetry

time-reversal symmetry is exploited throughout the DC-ADC2 code. In the current imple-

mentation DIRAC also supports linear symmetry which allows for a Ω-coupled final state

classification of the bromine molecule and also for a MJ classification in the xenon atom.
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IV. RESULTS AND DISCUSSION

A. Xenon

As a first application we provide theoretical DC-ADC2 results for the Xe2+ final states

and corresponding line spacings together with a simulated double ionization spectrum of

Xe in the low energy regime comprising the 5p4 configuration. Experimental levels and

transitions were obtained by Persson et al. [39] who also performed theoretical calculations

based on Hartree-Fock theory with inclusion of some configuration interaction effects. These

energy levels also served for the determination of a xenon N4,5OO Auger spectrum [40]. In

table II we collect the experimental data by Persson et al. for the gerade final states and our

theoretical results obtained by the DC-ADC2 procedure. Uncorrelated self-consistent field

results (DC-SCF) are also given and stress the relevance of electron correlation contributions.

All states listed emerge from a valence doubly ionized 5s25p4 configuration (nonrelativistic

notation) leading to possible (5p 1
2
)2(5p 3

2
)2, (5p 1

2
)1(5p 3

2
)3 and (5p 1

2
)0(5p 3

2
)4 occupations in the

jj-coupled case.

J level Exp. [39] DC-SCF DC-ADC2 ∆(DC-SCF) ∆(DC-ADC2)

3P0 8130.08 8929.7 8493.01 799.64 362.93

3P1 9794.36 9657.7 9627.03 -136.64 -167.33

1D2 17098.73 19689.1 17344.14 2590.4 245.41

1S0 36102.94 41052.3 37840.29 4949.3 1737.35

TABLE II: Experimental and theoretical transition energies (in cm−1) from the lowest (5p 1
2
)2(5p 3

2
)2 3P2

reference state to the various excited states with J = 0, 1, 2, 0. Uncorrelated (DC-SCF) and correlated

(DC-ADC2) results are included. In the last two columns the difference to the experimental value is shown

stressing the relevance of electron correlation contributions.

The inadequacy of a pure LS coupling scheme can be seen in table II where the individual

J terms belonging to a specific 2S+1L manifold are significantly separated (the splitting of the

5p1/2 and 5p3/2 spinors in neutral xenon amounts to 1.44 eV at the DC-SCF level). We note

that the obtained energetic order in a relativistic description is identical to the experimental

one (see table II) and the corresponding level spacings at the correlated DC-ADC2 level

are in much better agreement to experiment than they are for an uncorrelated description
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(DC-SCF).

J level Energy cm−1 CSF

2 0.0 0.95185 Φ2 + 0.30657 Φ3

0 8929.7 0.84705 Φ1 - 0.53151 Φ5

1 9657.7 1.00000 Φ4

2 19689.1 -0.30657 Φ2 + 0.95185 Φ3

0 41052.3 0.53151 Φ1 + 0.84705 Φ5

TABLE III: Composition of the J-adapted CSFs at the DC-SCF level. Φ1 = p2
1
2
p2

3
2
(J = 0), Φ2 = p2

1
2
p2

3
2
(J =

2), Φ3 = p1
1
2
p3

3
2
(J = 2), Φ4 = p1

1
2
p3

3
2
(J = 1), Φ5 = p0

1
2
p4

3
2
(J = 0)

Adapting the jj coupling scheme we expect configurations belonging to the same J value

to mix as observed at the Dirac-Hartree-Fock level already. In a relativistic average open

shell calculation of the xenon [core](5p)4 electron configuration (e.g. with GRASP [41, 42])

the CSFs for individual J levels are mixtures of different two-particle jj-coupled Slater

determinants (see table III for the atomic results). This multi-configurational character will

also transfer to the propagator results.

In table IV a relativistic final state analysis for the 5p4 configuration is presented where

the spinors carrying the holes are listed. The calculated final states all possess main state

character and genuine 2h configurations are strongly prevailing over 3h1p admixtures. Since

the calculations were performed applying linear symmetry we have immediate access to the

projection of the total angular momentum J onto the z axis. These different MJ values

occur in separate irreps allowing for a detailed classification of the final states. For example,

a DC-SCF calculation of the J = 2 ground state yields a 0.95p2
1/2p

2
3/2 + 0.31p1

1/2p
3
3/2 state

composition. According to the notation in table IV this corresponds to a p(mj1)p(mj2) and

a p(mj1)p̄(mj2) 2h state. As in the DC-SCF case the p(mj1)p(mj2) configuration remains the

dominant part of the Xe2+ ground state for all MJ projections (in the case of MJ = 0 there

are two realizations with respect to the individual mj projections but the sum of the squares

is identical to the square of the MJ 6= 0 contributions) and therefore shows resemblance to

the DC-SCF ground state with respect to the configuration mixing. However, the decrease

of the pole strength from unity to 0.8818 clearly indicates contributions from other 2h and

3h1p states accounting for electron correlation. Due to their large number and smallness
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they are not listed in table IV.

DIP PS Configurations MJ

32.7964 0.8818 -0.1786 p(−1
2)p̄(1

2 ) -0.1786 p̄(−1
2)p(1

2 ) -0.6395 p(−1
2)p(1

2 ) -0.6395 p(−3
2)p(3

2) 0

32.7964 0.8818 0.2187 p(1
2)p̄(1

2 ) +0.1263 p(3
2)p̄(−1

2 ) +0.9044 p(3
2)p(−1

2 ) +1

32.7964 0.8818 -0.1263 p(−3
2)p̄(1

2) -0.9044 p(−3
2)p(1

2 ) -0.2187 p(−1
2)p̄(−1

2) -1

32.7964 0.8818 0.2526 p(3
2 )p̄(1

2) -0.9044 p(3
2)p(1

2 ) +2

32.7964 0.8818 0.2526 p(−3
2)p̄(−1

2) -0.9044 p(−3
2)p(−1

2 ) -2

33.8494 0.8840 -0.4676 p̄(−1
2)p̄(1

2 ) +0.5759 p(−1
2)p(1

2) -0.5759 p(−3
2)p(3

2 ) 0

33.9900 0.8749 0.4677 p(1
2)p̄(1

2 ) -0.8100 p(3
2)p̄(−1

2) +1

33.9900 0.8749 0.8100 p(−3
2)p̄(1

2 ) -0.4677 p(−1
2)p̄(−1

2) -1

33.9900 0.8749 -0.6614 p(−1
2)p̄(1

2) +0.6614 p̄(−1
2 )p(1

2) 0

34.9468 0.8744 -0.4501 p(−3
2)p̄(1

2) +0.2532 p(−3
2)p(1

2 ) -0.7796 p(−1
2)p̄(−1

2) -1

34.9468 0.8744 0.7796 p(1
2)p̄(1

2) +0.4501 p(3
2 )p̄(−1

2) -0.2532 p(3
2)p(−1

2) +1

34.9468 0.8744 -0.9001 p(3
2)p̄(1

2 ) -0.2532 p(3
2 )p(1

2) +2

34.9468 0.8744 -0.9001 p(−3
2)p̄(−1

2 ) -0.2532 p(−3
2)p(−1

2 ) -2

34.9468 0.8744 0.6365 p(−1
2)p̄(1

2 ) +0.6365 p̄(−1
2)p(1

2 ) -0.1790 p(−1
2)p(1

2 ) -0.1790 p(−3
2)p(3

2) 0

37.4880 0.8945 -0.8070 p̄(−1
2)p̄(1

2 ) -0.3383 p(−1
2)p(1

2 ) +0.3383 p(−3
2)p(3

2 ) 0

TABLE IV: Double ionization potentials (DIPs, in eV) and pole strengths (PS) for the 2h final states

of gerade symmetry in jj coupling. The p(p̄) symbols denote the p 3
2

(p 1
2
) spinors and the corresponding

individual mj projections are given in parentheses. MJ = mj1 + mj2 .

Additionally, the proper inclusion of spin-orbit coupling becomes evident when a scalar

relativistic propagator calculation is performed setting out from the spin-free Hamiltonian

(table V). Now the double ionization potentials (DIPs) exhibit a ninefold, fivefold and one-

fold degeneracy corresponding to the 3P , 1D and 1S LS-coupled manifold of a 5p4 electron

configuration and only two transitions at 9630.3 cm−1 and 27087.3 cm−1 can be predicted

where just the first one is in reasonable agreement with experiment. Obviously, this spin-free

description is inadequate even for a qualitatively correct interpretation of the spectrum.

The spin-free final state classifications in table V occur with respect to Cartesian px, py

and pz orbitals obtained in D2h symmetry. The spin projections (MS values) can be read

off directly from the final state configurations in table V and for a proper ML assignment

15



DIP PS Configurations MS

33.4693 0.8778 0.66249 pzβpyα -0.66249 pyβpzα 0

33.4693 0.8778 0.66249 pzβpxα -0.66249 pxβpzα 0

33.4693 0.8778 -0.66249 pyβpxα +0.66249 pxβpyα 0

33.4693 0.8778 -0.93690 pzαpyα 1

33.4693 0.8778 0.93690 pzαpxα 1

33.4693 0.8778 0.93690 pzβpyβ -1

33.4693 0.8778 0.93690 pzβpxβ -1

33.4693 0.8778 -0.93690 pyαpxα 1

33.4693 0.8778 0.93690 pyβpxβ -1

34.6633 0.8767 0.19955 pxβpxα -0.73886 pyβpyα +0.53930 pzβpzα 0

34.6633 0.8767 0.66203 pzβpyα +0.66203 pyβpzα 0

34.6633 0.8767 0.66203 pzβpxα +0.66203 pxβpzα 0

34.6633 0.8767 -0.66203 pyβpxα -0.66203 pxβpyα 0

34.6633 0.8767 0.73795 pxβpxα -0.19616 pyβpyα -0.54179 pzβ pzα 0

36.8277 0.9066 -0.54485 pxβpxα -0.54485 pyβpyα -0.54485 pzβpzα 0

TABLE V: Spin-free (LS coupled) DIPs (in eV) and pole strengths (PS) for the final states of gerade

symmetry derived from the 5p4 configuration of xenon. The most prominent change compared to the DC-

ADC2 is the high degree of degeneracy and the concomitant loss of spectral structure. The configurations

are to be understood as being totally antisymmetric with respect to particle interchange.

suitable linear combinations within the degenerate manifolds are to be formed. Similar to

the four-component calculation the spin-free states resemble a Hartree-Fock state but with

additional contributions accounting for electron correlation.

As it was mentioned in section I the propagator method gives immediate access to the

complete final state manifold where the pole strengths relate to the peak heights in the

spectrum. The coefficients of the participating 2h configurations constituting a specific final

state can hereby be obtained from the eigenvector. Employing this information, a theoretical

spectrum can be immediately generated. In order to compare the DC-ADC2 stick spectrum

to the experimental one possessing a natural linewidth we convolve the theoretical spectrum

with Lorentzian envelopes. Hereby the reported spectroscopic resolution serves as the full
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width at half maximum (FWHM) value which was taken as Γ = 50 meV for the Xe and Br2

spectrum. The simulated peaks which appear at the energies Ei then attain the following

functional form:

Li(E) =
1

π

Γ/2

(E − Ei)2 + (Γ/2)2
. (16)

The total spectrum Itot(E) is obtained by summing over all contributions Li(E) multiplied

by the pole strength Xi obtained from the DC-ADC2 calculation as

Itot(E) =
∑

i

Li(E)Xi . (17)

The simulated experimental Xe2+ spectrum is shown in Fig. 2 and the lowest DIP was

shifted to the experimental onset. The areas under the peaks exhibit conformity with the

statistical weights of the populated levels and the theoretical spectrum well resembles the

experimental one in [43].

S1
0

2
1D

P3
0

P1
3

P2
3

Xe 2+

Ionization energy (eV)

FIG. 2: Simulated experimental Xe2+ spectrum obtained from the stick spectrum by convolution with a

Lorentzian curve and shifted to the experimental onset.
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B. Molecular bromine

Recently, Fleig et al. calculated potential energy curves for the lowest g and u states of

Br2+
2 and proposed a new double ionization mechanism [21]. For the determination of the

dicationic final states relativistic CI [44, 45] and MRCC approaches [46, 47] together with

a large ANO-RCC basis were employed. It is therefore of prominent interest to compare

our propagator approach to these wave function-based results. It was not our intention to

reproduce the Br2+
2 potential energy curves for a characterization of special ionization pro-

cesses proposed in [21] but to demonstrate the usefulness of the four-component propagator

approach with respect to final state and spectrum analysis for this molecule. The orbital en-

ergy diagram at the self consistent field level for the outer valence p orbitals is shown in Fig.

3 obtained with the Lévy-Leblond (nonrelativistic), the spin-free (purely scalar relativistic)

and Dirac-Coulomb Hamiltonian (scalar relativistic and spin-orbit).

LL DCSF

π π

π π

σ

g g

u u

g

π π

π π

σ

g g

u u

g

σu σu

g1/2

3/2 g

3/2 u

u1/2

g1/2

u1/2

−0.4056 −0.4056

−0.5062 −0.5062

−0.5354

−0.9480

−0.4047 −0.4047

−0.5038 −0.5038

−0.5331

−0.9776

−0.4110
−0.3970

−0.5108
−0.4973

−0.9775

−0.5345

FIG. 3: Orbital energy diagram (in a.u.) for the outer valence p space of neutral Br2 obtained with the

Lévy-Leblond (LL), the spin-free (SF) and Dirac-Coulomb (DC) Hamiltonian.

One observes an average spin-orbit splitting of 6.9 mH for the πg, πu outer valence orbitals

that prevails over scalar relativistic energy changes of 1.0 - 2.4 mH. Due to open πg,u shells

in Br2+
2 spin-orbit coupling will play a role in the corresponding spectra. The classification

of the molecular orbitals follows the ΛΣ and Ω coupling schemes, respectively. For the

onset of the double ionization Fleig et al. obtained a value of 26.94 eV compared to the

experimental onset of 28.55 eV (vertical) and 28.25 eV (adiabatic) [15] where in the ADC2

approach 27.39 eV (DC-ADC2) and 27.54 eV (SF-ADC2) were obtained. The interplay of

electron correlation and relaxation effects together with spin-orbit coupling is rather involved

and puts high demands on the theoretical methodology. The deviations of the DC-ADC2
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DIPs from experiment mainly result from an insufficient inclusion of electron relaxation

effects which are larger for a double ionized final state than for excited or singly ionized final

states. This deficiency could be cured by increasing the order of the perturbation treatment

but will not distort the physical picture obtained from the current calculations. It should

be mentioned that a strict second order DC-ADC where the 3h1p/3h1p particle (satellite)

block is included only in zeroth order would be too inaccurate and the additional first order

contributions (the various Vab,[cd] terms in eq. (9)) considerably improve on the final state

energies. It is common practice to use this so-called extended ADC2 routinely as can be

seen from eq. (9) where these first order contributions are included. The satellite block will

not change any further when it comes to an extension to third-order.

The energy differences of the outer valence final state energies obtained at the DC-ADC2

and wave function-based level of Fleig et al. exhibit an average deviation of 0.084 eV (see

table VI). With the exception of the DIP onset a good agreement between both approaches

is therefore observed.

The second aspect to be addressed is the comparison of the individual final state compo-

sitions. Table VII lists the DC-ADC2 DIPs and pole strengths together with the detailed

configuration information for the 10 lowest final states in Br2+
2 . Hereby the explicit Kramers

partners occurring in the degenerate ±Ω pairs are reported separately. All outer valence

states can be identified as main states which are states of high pole strength and no signif-

icant admixture of 3h1p configurations. This is beneficial for a future two-hole population

analysis because for main states it suffices to include the 2h space in the population analysis

without loss of accuracy [48].

Ω ∆a) ∆b) Ω ∆a) ∆b)

0g 0.000 0.000 3u 1.538 1.418

1g 0.126 0.149 2u 1.882 1.774

2g 0.639 0.622 1u 1.949 1.854

0g 1.134 1.059 0u 2.207 2.112

0u 1.491 1.365 1u 2.229 2.133

TABLE VI: Energy differences ∆ (in eV) of the individual Ω-coupled states to the lowest state of Br2+2 .

States with Ω 6= 0 are doubly degenerate. a) Our work, b) Ref. [21].
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For a direct comparison of a specific final state configuration one has to account for the

different notations employed in [21] and in our work (table VII). We report the spinors where

the hole was created (indicated by the −1 superscript) whereas Fleig et al. list the remaining

occupied spinors after the double ionization. In this respect we find a dominant π̄−1
3/2gπ

−1
3/2g,

a less pronounced π̄−1
1/2gπ

−1
1/2g and a weak π̄−1

3/2uπ−1
3/2u contribution to the Br2+

2 ground state

which also seems natural from an energetic point of view (see Fig. 3). Fleig et al. report

for this state a 0.84π2
g1/2 − 0.37π2

g3/2 − 0.23π2
u1/2π

2
g1/2π

2
g3/2 configuration well matching with

our result apart from a different phase in the π̄−1
1/2gπ

−1
1/2g(π

2
g3/2) part. A detailed analysis of

the other states reveals some additional contributions to the second 0g state in DC-ADC2,

namely the π̄−1
1/2uπ−1

1/2u and π̄−1
3/2uπ

−1
3/2u determinants (table VII) in contrast to an expansion

in pure gerade (0.81 + 0.33)π2
3/2gπ

2
1/2g orbitals reported in [21]. The remaining states in this

energy range exhibit a good resemblance to the wave function-based results. Already for

the ground state of the doubly ionized system considerable configuration mixing is observed

which can not be reproduced by a single reference self consistent field calculation. This

strong configuration mixing is quite characteristic for doubly ionized states and is already

observed in light systems such as BF3 [48]. This is in contrast to outer valence final states

of singly ionized systems which in most cases possess only one major contribution in the

intermediate state representation [29]. Due to the relevance of spin-orbit coupling for a

correct interpretation of the spectral structure spin-free results are not discussed here.

In an analogous way we convoluted the Br2+
2 stick spectrum with Lorentzian curves in the

energy range of 28 and 32 eV (Fig. 4) in order to simulate the experimental spectrum. The

experimental peak positions in table VIII together with their nonrelativistic designations

were obtained by Yencha et al. [15]. Hereby the a1∆g and the 3∆u states will undergo

spin-orbit splitting.

Comparing the theoretical spectrum with the experimental threshold photoelectron co-

incidence spectrum one finds a substantial discrepancy of the intensities for the lowest u

states (indicated by the dashed box in Fig. 4). The intensity of a transition is controlled

by the magnitude of the transition matrix element including the initial and final state wave

function. In the absence of strong vibronic coupling effects one can in a first approximation

write the full wave function as a product of an electronic and nuclear part yielding addi-

tional overlap matrix elements over nuclear wave functions, the well-known Franck-Condon

(FC) factors. By extensive calculations Fleig et al. found a purely repulsive character of
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DIP (eV) PS Final state configuration Ω

27.393 0.8574 0.40229π̄−1
1/2gπ

−1
1/2g +0.81293π̄−1

3/2gπ
−1
3/2g

-0.18101π̄−1
3/2uπ−1

3/2u

0g

27.519 0.8539 -0.90975π−1
3/2gπ̄

−1
1/2g -0.15729π−1

3/2uπ̄−1
1/2u +1g

27.519 0.8539 0.90975π̄−1
3/2gπ

−1
1/2g +0.15729π̄−1

3/2uπ−1
1/2u -1g

28.032 0.8668 -0.88962π−1
3/2gπ

−1
1/2g +0.27335π−1

3/2uπ−1
1/2u +2g

28.032 0.8668 -0.88962π̄−1
3/2gπ̄

−1
1/2g +0.27335π̄−1

3/2uπ̄−1
1/2u -2g

28.527 0.8712 -0.78746π̄−1
1/2gπ

−1
1/2g +0.36346π̄−1

3/2gπ
−1
3/2g

+0.26375π̄−1
1/2uπ−1

1/2u -0.21103π̄−1
3/2uπ−1

3/2u

0g

28.884 0.8777 0.65611π̄−1
3/2uπ−1

3/2g -0.65611π−1
3/2uπ̄−1

3/2g 0u

28.931 0.8806 0.93841π−1
3/2uπ−1

3/2g +3u

28.931 0.8806 -0.93841π̄−1
3/2uπ̄−1

3/2g -3u

29.275 0.8782 -0.65854π−1
3/2uπ−1

1/2g +0.66591π−1
1/2uπ−1

3/2g +2u

29.275 0.8782 -0.65854π̄−1
3/2uπ̄−1

1/2g +0.66591π̄−1
1/2uπ̄−1

3/2g -2u

29.342 0.8783 -0.65105π−1
3/2uπ̄−1

1/2g -0.67280π̄−1
1/2uπ−1

3/2g +1u

29.342 0.8783 0.65105π̄−1
3/2uπ−1

1/2g +0.67280π−1
1/2uπ̄−1

3/2g -1u

29.600 0.8742 0.65371π̄−1
1/2uπ−1

1/2g -0.65371π−1
1/2uπ̄−1

1/2g 0u

29.622 0.8757 0.93404π−1
1/2uπ−1

1/2g +1u

29.622 0.8757 -0.93404π̄−1
1/2uπ̄−1

1/2g -1u

TABLE VII: DC-ADC2 DIPs (in eV) and pole strengths (PS) for the 10 lowest 2h final states of Br2+2 .

States with Ω 6= 0 are doubly degenerate and the configurations are totally antisymmetric with respect

to particle interchange. A Kramers partner is indicated by a barred symbol and π denotes the fourfold

degenerate parent orbital before inclusion of spin-orbit coupling.

the lowest excited u states of Br2+
2 in contrast to the bound 0g(1), 1g(1), 2g(1) and 0g(2)

states supporting vibrational levels. It has been shown that in case of an excitation to a

decaying state complicated nuclear dynamics lead to a substantially altered spectral struc-

ture [49]. This obviously happens in the considered spectral range for the u states of Br2+
2 .

Additionally, energies and band shapes are strongly influenced by vibrational motion and

Franck-Condon factors therefore should be taken into account if one seeks a reliable predic-

tion of these spectra [50, 51]. The purely electronic DC-ADC2 results do not incorporate
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State Energy /eV

X3Σ−
g 28.55

a1∆g 29.03

b1Σ+
g 29.54

1Σ−
u 30.54

3Σ+
u 31.22

3∆u 31.75

TABLE VIII: Vertical double-ionization potentials in the low-energy region of Br2+2 taken from [15].

these nuclear effects and lead to deviations for the decaying u states. For the bound states of

Br2+
2 , however, a good agreement with experiment is observed already without the inclusion

of nuclear effects.

Br 2+

1g

0g

2 g

0g

3 u
2 u 1u

0u

1u

1u
0u0u

0u

Ionization energy (eV)

FIG. 4: Theoretical four-component (upward peaks) and scalar relativistic (downward peaks) double ion-

ization spectrum of molecular bromine without FC factors and shifted to the experimental onset at 28.55

eV. In the experiment the ungerade features (dashed box) are only weakly visible due to their repulsive

character. An assignment of the spin-free peaks is not done.

A substantial alteration of the spectrum takes place if spin-orbit contributions are omit-
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ted as can be seen from the lower part of Fig. 4. The main changes hereby comprise a

reduced structure, partial peak shifts and alterated intensities especially for the u states.

The DIP onset for the spin-free spectrum is by 0.2 eV higher than the DC-ADC2 onset and

the theoretical spectrum was also shifted to the experimental DIP onset. Obviously the

spectral features even for the moderately relativistic bromine molecule are not reproducible

by ignoring spin-orbit coupling in the propagator calculations, a situation which will become

more pronounced in heavier systems.

V. SUMMARY

In this work we have shown the methodology and capability of the four-component two-

particle propagator for spectrum analysis and final state classification. The efficient exploita-

tion of symmetry in the integral handling and ADC matrix construction was demonstrated

and the performance tested on two systems, the xenon atom and the bromine molecule.

These calculations showed that without a proper account for relativistic effects neither of

the two spectra can be adequately described. Compared to the high-level four-component

multi-reference coupled cluster treatments our results are in excellent agreement with re-

spect to line spacings and state analysis, already at the extended second-order stage of the

propagator implementation. The deviations from experiment especially in the intensities for

the u states can be understood by not accounting for nuclear dynamical effects occurring

after excitation into decaying states. Subsequent analysis will be extended by inclusion of

vibrational effects and a two-hole population analysis allowing for a detailed insight into

electronic decay processes of clusters containing heavy elements. Already in the case of the

moderately relativistic bromine molecule inclusion of spin-orbit coupling is mandatory for

a reasonable resemblance of the experimental structure. Due to its second-order character

the DC-ADC matrix construction scales similarly to the second-order Møller-Plesset (MP2)

method and at the moment the AO→MO integral transformation and the band Lanczos

diagonalization represent the computational bottlenecks in large DC-ADC2 calculations.
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