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In new Intelligent Manufacturing Systems, Product Driven Systems (PDS) architectures require 
emulation tool (Thomas et al. 2008) to be developed. Discrete events simulation is often used to 
build such emulation tool, nevertheless this remains complex because of large scale problems. The 
goal of this paper is to propose a way to design a simulation model by reducing its complexity. 
According to theory of constraints, we build reduced models composed exclusively of bottlenecks 
and a neural network. In Particular, a multilayer perceptron is used. The structure of the network is 
determined by using a pruning procedure. This work highlights the impact of discrete data on the 
computational results. An application to a sawmill internal supply chain is suggested to validate 
the proposed approach.  
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1. Introduction  
 

In classical centralized manufacturing systems, planning and control processes simulation is 

essential for evaluation of planning and scheduling scenarios to make better and faster 

decisions. Indeed, simulation allows to describe dynamically the behaviors of machines, 

where WIP (work in process), and queues are easily modeled. So, simulation models would 

be useful in order to perform a “Predictive scheduling” (Lopez and Roubellat 2001) or a 

rescheduling in case or disturbance.  

On the other hand, in Product Driven processes (distributed way to control physical 

flow in a Supply Chain), dedicated architectures are implemented. These architectures consist 

of a control system and an emulation system which are very useful for Product Driven 

Systems (PDS) design. Moreover, it is used in order to validate such systems by one hand and 

making decisions by scenario evaluation by the other hand. So, the PDS architectures require 



 

emulation models which should be sufficiently precise to represent the most closely the real 

system by maintaining a reasonable size in order to decrease computation running time. 

Discrete event simulation is also often used to build such emulation system, but 

emulation model design, which is not a trivial task, relies on reusability, modularity and 

genericity concepts (Thomas et al. 2008). Moreover, for emulation models, the number of 

“objects” and the number of events can be very large. Consequently, the problem relies on the 

time to build the model. Moreover, the simulation running time could be too much high which 

makes the models not operational in practice. Thus, it could be necessary to reduce the model 

size (Thierry et al. 2008).  

The real time systems performing manufacturing follow up (production reporting) 

transmit information very quickly to the management system (Khouja 1998). However, it is 

difficult to use this large amount of information to make decisions (Prisker and Snyder 1994, 

Roder 1994). At these levels of planning and control, to estimate how the whole physical 

system behaves, the “management of critical resources” (bottlenecks) is often efficient 

(Vollmann et al. 1992). Goldratt and Cox, in “The Goal” (1992) put through the Theory of 

Constraints (TOC), which proposes to manage the whole supply chain by bottlenecks control. 

Dynamic discrete events simulation of material flow permits this management (Thomas and 

Charpentier 2005). In fact, build an emulation model is a complex task which could take a lot 

of time. Moreover, emulation models which aim to represent real industrial cases are often 

complex because of the large scale problems (Page et al. 1999). Thus, numerous authors have 

expressed interest in using the simplest (reduced/aggregated) models of simulation (Brooks 

and Tobias 2000, Chwif et al. 2006, Ward 1989). In Thomas and Charpentier (2001), the 

authors have shown that an interesting method would be to reduce the model according to the 

TOC. 

In addition, neural networks have proved their abilities to extract performing models 

from experimental data (Thomas et al. 1999). So, the use of neural networks appears recently 



 
   
as an interesting approach within the framework of the supply chain (Thomas and Thomas 

2008). In this context, we associate a queuing model with a neural network, respectively, to 

model both the bottlenecks and, works centers. 

However, neural networks are generally used in order to perform a mapping between 

continuous spaces, and, in the considered cases, continuous variables (as length, speed…) are 

mixed with discrete ones (as category, color…).  

Thus, the main goal of this paper is to investigate the impact of these discrete data on 

the learning process and on the quality of neural model used in order to reduce simulation 

models according to the TOC, i.e. to maximize the bottleneck utilization rate. This is studied 

with one industrial example which is a sawmill flow shop case. In the next part, a brief 

bibliography overview is presented. The third part describes the proposed approach of 

reduction model and the multilayer perceptron. The fourth part presents the construction of an 

emulation model applied to the sawmill internal supply chain case. Part five focuses on one 

step of this approach which is the neural network design. The validation of the approach and 

the impact of the discrete data on the results are highlighted in the last part before to conclude. 

 

2. Bibliography overview on model reduction 
 
The two main difficulties encountered during the design step in a supply chain simulation 

model are related to the size of the system and the complexity of the control system. The 

problem could be seen at the supply chain level which is composed of a group of enterprises 

and composed in turn of a group of factories, or at the shop floor level which is composed of a 

group of work centers, etc. Moreover, modeling the behavior of the leading policies of each 

enterprise and the relationships between them is needed (Thierry et al. 2008). This fact 

implies that the duration of one simulation may become unacceptably long to be usable. 



 

Therefore, it may be useful to reduce the size of the model. Different ways can be used to 

perform the model reduction (Zeigler 1976): 

• abstraction, which allows the complexity of the model to be reduced and preserves the 
validity of the results (Frantz 1995), 

• aggregation, which is a form of abstraction where a group of data or variables with 
common characteristics can be replaced by aggregated data or variables (Mercé 1987), 

• reduction of the number of events, where a part of discrete event system is replaced by 
a variable or a formula (Zeigler 1976). 
 

In addition, Innis and Rexstad (1983) have listed 15 simplification techniques for 

general modeling. Their approach is composed of four steps: hypotheses (identify the 

important parts of the system), formulation (specify the model), coding (build the model), and 

experiments. Based on these works, different approaches have been proposed. 

Brooks and Tobias (2000) suggest a ‘simplification of models’ approach for cases 

where the indicators to be followed are the average throughput rates. They suggest an eight-

stage procedure. The reduced model can be very simple and then an analytical solution 

becomes feasible and the dynamic simulation redundant. Their work is interesting, but is valid 

in cases where the required results are averaged and where the aim is to measure throughput. 

It is not interesting to follow the various events taking place in the work center (WC). 

Leachman (1986) has proposed a model for use in the semiconductor industry, which 

uses cycle time as an indicator. This model has been improved by Hung and Leachman 

(1999). They propose a technique for model reduction to be applied in large wafer fabrication 

facilities. They use ‘total cycle time’ and ‘equipment utilization’ as decision-making 

indicators to do away with the WC. In their case, these WCs have a low utilization rate and a 

fixed service level (they use the standard deviation of batch waiting time as a decision-making 

criterion). 

Tseng et al. (1999) compare the regression techniques applied to an ‘aggregate model’ 

(macro) by using the ‘flow time’ indicator. They suggest reducing the model by mixing the 



 
   
‘macro’ and ‘micro’ approaches, so as to minimize errors in complex models. Here again, for 

the ‘macro’ view, they deal only with the estimation of flow time as a whole. For the ‘micro’ 

approach, they construct an individual regression model for each stage of the operation to 

estimate its individual flow time. The cumulative order of flow time estimates is then the sum 

of the individual flow times. They, then, try to mix the macro and micro approaches. 

These different approaches simplify the model by using a macroscopic view of the 

system and by optimizing a macroscopic indicator (total cycle time, flow time…) 

Li et al. (2009) propose a reduction model approach based on the aggregation of 

machines on the production line. They build a complete model of the production line and, if 

the last two machines correspond to a serial line, they aggregate them. The same is performed 

with the first two machines if they correspond to a serial line. These aggregation steps may be 

performed recursively and they are denoted backward and forward aggregation, respectively. 

If the two machines to be aggregated follow a Bernoulli model or an exponential model, an 

analytical investigation allows the production rate of the new aggregated machine to be 

determined. If not, a simulation phase must be performed to determine an empirical formula 

for the production rate. 

Some works (Doumeing 1989, Hwang et al. 1999) use Petri nets as tool in order to 

simplify network structures by using macro-places which represent complex activities 

associated with function groups.  

To simplify models, some works have studied the use of a continuous flow model 

based on gradient estimation for stochastic systems in order to approximate discrete 

manufacturing environments (Ho 1987, Suri and Fu 1994). Other authors use metamodels 

(linear regression, splines, Kriging, etc.) to perform a simulation model (Kleijnen and Sargent 

2000). Neural networks can be viewed as a type of metamodel (Barton 1994, Pierreval 1996, 

Kleijnen and Sargent 2000). In addition, neural networks have proved their abilities to extract 



 

models from experimental data (Thomas et al. 1999). Therefore, the use of neural networks 

has emerged recently as an interesting approach within the framework of the supply chain 

(Shervais et al. 2003, Chiu and Lin 2004). 

 

3. The proposed model reduction process 
 

a. The algorithm 
 

The proposed approach is based on the association of discrete event models and continuous 

metamodels (neural network) in order to design a simulation model. Our previously described 

objective was to maximize the bottleneck utilization rate and, at the same time, simplify 

simulation model construction for modellers. The reduction algorithm proposed is an 

extension of those presented by Thomas and Charpentier (2005). The main goal of this 

algorithm is to reduce the number of simulation blocks. For its understanding, three concepts 

must be defined: 

• ‘conjunctural bottleneck’ (current bottleneck) is a WC that is saturated for the MPS in 
the predictive scheduling in question. This means that it uses all of its available 
capacity,  

• ‘structural bottleneck’, we mean a WC that has often been or is in such a condition. 
Effectively, production managers know only where the regular overloaded WC(s) is 
(are), 

• ‘synchronization work centers’ are resources used jointly with bottlenecks for at least 
one MO and are used for the planning of different MOs that do not use a bottleneck. 
To minimize the number of these ‘synchronization work centers’, only those which 
are often associated with bottlenecks in MOs must be considered. 

 
The main algorithm steps are recalled and explained below: 

1) Identify the work center (WC) which is the structural bottleneck. This one has been 
the main capacity constraint for several years (according to the experience of 
production manager). 

2) Identify the conjunctural bottleneck for the bundle of manufacturing orders (MOs) of 
the Master Production Schedule (MPS) under consideration (see explanation later in 
the text). 

3) Among the WCs not listed in 1 and 2, identify the one (synchronization WC) that 
satisfies the following two conditions: 

o presents at least in one of the MOs using a bottleneck, and 



 
   

o widely used considering the whole body of MOs. 
4) If all MOs have been considered, go to 5; if not, go to 3. 
5) Use neural networks to model the intervals between the WCs that have been found 

during the preceding steps (figure 1). 

 
INSERT FIGURE 1 

 
Hence, the WCs remaining in the model are either conjunctural or structural 

bottlenecks, or are WCs that are vital to the synchronization of the MOs. All other WCs are 

incorporated in ‘aggregated blocks’ upstream or downstream of the bottlenecks. 

The main benefits of this algorithm are: 

• modellers can focus on the description of the bottlenecks, 
• noncrucial parts of the system are modelled with a learning approach (automatization 

of this modelling step), 
• the resulting model is less complex than a complete one, and 
• simulation time is shorter than with a complete model. 

 

This paper focuses on step 5 of the reduction algorithm which uses a neural model. 

Here, the bottlenecks are considered as known. 

 

b. The multilayer perceptron (MLP) 
 

The works of Cybenko (1989) and Funahashi (1989) have proved that a multilayer neural 

network with only one hidden layer using a sigmoidal activation function and an output layer 

using a linear activation function can approximate all nonlinear functions with the desired 

accuracy. This result explains the great interest of this type of neural network, which is called 

‘multilayer perceptron.’ In this work, it was assumed that a part of the modelled production 

system could be approximated with a nonlinear function obtained with a MLP. The objectives 

of this nonlinear function are to model the material flow behaviour (in our case, processing 

time). 



 

The structure of the multilayer perceptron is recalled here. Its structure is shown in 

figure 2. The neurons of the first (or input) layer distribute just the 0n  inputs { }0
n

0
1

0
x,,x ⋯  of 

the MLP to the neurons of the next (hidden) layer. A special input neuron (depicted by a 

square in figure 2) represents a constant input equal to 1, and it is used to represent the biases 

or thresholds of the hidden layer. 

 
INSERT FIGURE 2 

 
The ith neuron (i = 1, … n1) in the hidden layer receives the 0n  inputs { }0

n
0
1

0
x,,x ⋯  

from the input layer with the associated weights { }1
in

1
1i

0
w,,w ⋯ . This neuron first computes 

the weighted sum of the 0n  inputs: 
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where 1
ib  is the bias or threshold term of the ith hidden neuron. The output of this neuron is 

given by a so-called ‘activation function’ of the sum in (1): 
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Lastly, the outputs of the hidden neurons { }1
n

1
1

1
x,,x ⋯  are distributed with associated 

weights { }2
n

2
1

1
w,,w ⋯  to the unique neuron of the last (or output) layer. As for the input layer, 

a particular hidden neuron (depicted by a square in figure 2) represents a constant input equal 

to 1, which is used to represent the bias or threshold of the output layer. 

The neuron of the last layer simply performs the following sum, with its activation 

function being chosen as linear: 
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where 2
iw  are the weights connecting the outputs of the hidden neurons with the output 

neuron and b is the threshold of the output neuron. 

The number of hidden neurons must be determined. For this, the learning starts from 

an over parameterized structure. A weight elimination method is used to remove spurious 

parameters, and the pruning algorithm used here is the one proposed by Setiono and Leow 

(2000).  

In our case, the input neurons are processing system variables (number of parts, 

inventories...). As previously said output neuron is throughput time.  

The learning of the MLP is performed in three steps: 

1. initialization of the weights and biases of an oversized structure by using a 
modification of the Nguyen–Widrow algorithm (Thomas and Bloch 1997), 

2. learning of the parameters by using the Levenberg–Marquard algorithm with a robust 
criterion (Thomas and Bloch 1996), and 

3. weights elimination by using the Neural Network Pruning for Function  
Approximation (N2PFA) algorithm (Setiono and Leow 2000). 
 

Kleijnen and Sargent (2000) have proposed a metamodeling process that can be 

subdivided into 10 steps: 

• determine the goal of the metamodel, 
• identify the inputs and their characteristics, 
• specify the domain of applicability, 
• identify the output variable and its characteristics, 
• specify the accuracy required of the metamodel, 
• specify the validity of metamodel measures and their required values, 
• specify the metamodel and review this specification, 
• specify a design, 
• fit the metamodel, and 
• determine the validity of the metamodel. 

In this work, these different steps were used to design the neural network. 

 

4. Design of emulation models 
 



 

For validation, we use the proposed approach to build a simulation model of a sawmill. In this 

actual case, managers need a tool to help them in their weekly MPS decision-making process. 

In this process, their decision variables are number of logs, product demand..., their objectives 

are throughput time, MPS respect (backorders)... The industrial example considered here is 

limited to the shop floor level. However, this approach can be deployed to all levels of the 

supply chain.  

 

a. Overview of the sawmill 
 

At the time of the study, the sawmill had a capacity of 270,000 m3/year, a turnover of €52 

million and 300 employees. 

 
INSERT FIGURE 3 

 
The sawmill objective is to transform logs into main and secondary products according to a 

cutting plan. The physical industrial production system is composed of sequential work 

centers (kockums saw, trimmer, sorter…) and queues or conveyors (named respectively 

RQM4, RQM5, RQM7…). It is subdivided into three main parts. The first one is the canter 

line presented figure 3. In this subsystem, the log enters the system in RQM1 then it is steered 

to RQM4 or 5 according to its characteristics. After that, it passes to the cutting machine 

(Canter). It then enters the edger. After this phase, the log is transformed into main and 

secondary products. The final operation is the cross cutting which consists in cutting up 

products to length.  

Two important steps occur during this process. The first one is the choice of the 

conveyors RQM4 or RQM5 in order to store the arrival log. In function of this choice, the 

time spending by the log to wait the Canter saw may be very different. The second one is the 



 
   
type of product considered. When the cutting plan is considered, two types of products 

appear: main and secondary ones.  

 
INSERT FIGURE 4 

 
Figure 4 shows the second part of the process, where the main machine is the 

Kockums saw. Only secondary products are driven on this part. The secondary products are 

taken in the line by the BT4 and BT5 conveyors. They are cut by the QM11 saw, after which 

they reach the Kockums saw, which optimizes the plank according to the products needed. 

The alignment table is used as the input inventory of the Kockums saw. The secondary 

products are finally sent to the third part of the process by the exit conveyor.  

The third part of the process is the trimmer line, which is presented in figure 5. This 

line performs the final operation of cross cutting. This operation consists in cutting up 

products to length. The input of the line is from collectors 1 and 2, which collect the 

secondary and main products from Kockums and Canter lines respectively. Saw 1 is used to 

perform default bleeding and Saw 2 cuts up products to length. A previous work (Thomas and 

Charpentier, 2005) has shown that this machine, the trimmer saw, is the bottleneck of the 

entire process. 

 
INSERT FIGURE 5 

 
However, when the physical industrial system is considered, three types of products 

have to be considered. In fact the Cutting machine Canter works into three steps. First, one 

saw (CSMK) cuts two faces of the considered log and produces two secondary products. 

These two products are driven to kockums saw in order to be finished. Next the log is rotated 

of 90° and stored into conveyor RQM7. After that, the log is driven once again to the Canter 

machine. The saw (CSMK) cuts the two other faces of the log, and produces the two other 



 

secondary products which are driven to kockums saw. At this time, a parallelepiped is 

obtained which is divided into three main products by another saw (MKV). The main 

products are finally driven to the trimmer.  

 

b. Application of the reduction model approach 
 

In order to produce the sawmill emulation model, described in the preceding part, the 

procedure proposed in part 3 is applied. The model is designed with the Arena® software and 

the inclusion of neural network is performed by using a module VBA.  

The first step of the procedure is to identify the structural bottleneck. Preceding studies of the 

sawmill have shown that the structural bottleneck is the trimmer (Thomas and Charpentier 

2005). The second and the third steps are respectively to determine the conjunctural 

bottleneck and the synchronization WC. In the considered case, no conjunctural bottleneck or 

synchronization WC is present. This fact allows us to focus on the step five which is the core 

of this paper.  

 
INSERT FIGURE 6 

 
The step five specifies that all the WC which are not bottleneck (structural or 

conjectural) or synchronization ones must be modeled by using a neural model, consequently 

and within this framework, the functioning of inventories RQM4, RQM5 and RQM7, the 

canter and the kockums lines must be modeled by a neural network. The discrete part of the 

model describes the functioning of the bottleneck (the trimmer) and the log arrival. The 

emulation model can be described by figure 6. The structure of the neural network (input and 

output layers) is constrained by the information that must be transmitted to the bottleneck 

(output) and by the information given by the log arrival part (input). So, the first step to 

design the neural network is to construct the database to use for the learning.  



 
   
 

5. Design of neural network 
 

In order to construct a reduced emulation model, the neural network design is the main 

task to perform. For this, a complete data set must be collected.  

 

a. The data set  
 
Neural model is a black box obtained with a supervised learning of a non linear relation 

between input and output data sets. For this, we need to collect the available input data of the 

process and to determine the desired output (Thomas and Thomas 2008).  

First, each log gives information which is collected by a scanner in input of the canter 

line. This information is relating to the product dimension, as length (Lg) and three values for 

timber diameter (diaPB ; diaGB ; diaMOY). These variables are used to control the log to 

RQM4 or RQM5 queues which is additional information (RQM). In addition of this 

dimensional information, we have to characterize the process variables at the time of the log 

arrival. Particularly, the input stock of the trimmer (Q_trim), the utilization rate of the 

trimmer (U_trim) and the number of logs present in the different conveyors RQM4, RQM5 

and RQM7 (Q_rqm4; Q_rqm5; Q_rqm7) must be taken. Moreover, the sum of these number 

is also used (Q_rqm = Q_rqm4+Q_rqm5+Q_rqm7). The last type of information is related to 

the cutting plan of the logs. In fact, each log will be cut into n main or secondary products. In 

our application, the cutting plan divides the log into 7 products:  

• 2 secondary products resulting from the first step of cutting process on saw CSMK of 
the canter line,  

• 2 secondary products resulting from the second step cutting process on saw CSMK of 
the canter line after staying in the RQM7 queue, 

• 3 main products resulting from the third step of cutting process on saw MKV of the 
canter line. 

 



 

These two saws (CSMK and MKV) belong to the canter line. These 7 products can be 

classified into three categories according to the location (CSMK or MKV) and the time during 

the cutting process (first or second cutting). This information is given by the variable 

(T_piece) which can take as values type1, type2 and type3. The last information is the 

thickness (in mm) of the product which is also the reference. In our case, we are taking into 

account only two references: main products 75; secondary products 25 (ref). However, 

preceding works (Thomas and Thomas 2008) have shown that this data has no impact on the 

result and so it will no be taken into account. Consequently, the neural networks input 

variables are: Lg; diaGB; diaMoy; diaPB; T_piece; Q_trim; U_trim; Q_rqm; Q_rqm4; 

Q_rqm5; Q_rqm7; RQM. In our application 12775 products are simulated. Among these 12 

inputs data, two different categories exist: 

• Continuous one (quantitative) [Lg; diaGB; diaMoy; diaPB; Q_trim; U_trim; Q_rqm; 
Q_rqm4; Q_rqm5; Q_rqm7]. These data are continuous ones and so are well adapted 
to be used by learning procedure.  

• Discrete one (qualitative) [T_piece; RQM]. These data are qualitative. So the study of 
their impact on the learning process is the core of this paper.  

 

Our objective is to estimate the delay (∆T) corresponding to the duration of the throughput 

time for the 12775 products. ∆T is measured between the process input time and the trimmer 

queue input time. In practice ∆T is the output of the neural network: 
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b. The structuring of the data set  
 
Now, all the data which characterize the process are collected. However, it can be noticed that 

two different categories have been determined in this dataset, continuous ones and discrete 

ones. Neural networks are generally used in order to perform a mapping between continuous 

spaces. So, the difficulty, here, is to determine how the discrete data can be used.  

In order to determine this, two different approaches may be proposed.  



 
   
The first and simplest one is to consider all the discrete data like continuous ones, and to 

present them to the input of an unique neural network. In the present case, the structure of the 

emulation model is presented figure 7 where the considered neural network uses 12 inputs.  

 
INSERT FIGURE 7 

 
As said previously, preceding works have shown that the data RQM has a great influence on 

the behavior of the system. It is very different if RQM is 4 or if RQM is 5. So, an approach 

for dealing with this fact is to make two different models in order to model it in these two 

cases and to switch from one to another with the value of RQM. This approach can be related 

to the multiple-model approach (Delmotte et al. 1996).  

With this approach, the emulation model includes two different neural networks which are 

used in function of the value of the data RQM.  

So, two neural models have to be learned by using respectively the RQM=4 data and the 

RQM=5 data uniquely. These two neural networks have 11 inputs: Lg; diaGB; diaMoy; 

diaPB; T_piece; Q_trim; U_trim; Q_rqm; Q_rqm4; Q_rqm5; Q_rqm7. The structure of this 

emulation model is presented figure 8.  

 
INSERT FIGURE 8 

 

c. The learning  
 
For the two approaches, the learning of the network is supervised. So, it is necessary to divide 

the database into two datasets, learning and validation ones. Only the number of hidden 

neurons is always unknown and should be determined. In order to determine it, the learning 

starts from an over parameterized structure and a weight elimination method is used to 

remove spurious parameters. 



 

The learning approach corresponds to a local search of a minimum. So, in function of the 

initial weights, the results may be different. In order to evaluate the dispersion of the results, 

30 different sets of initials weights are used. 

 

6. Validation of the emulation models 
 
In preceding works (Thomas and Charpentier 2005), a complete model of the sawmill has 

been constructed and validated with the real process. Here, this complete model is also used 

in order to compare the results obtained with the two reduced emulation models with it.  

 

a. First approach 
 
Table 1. Mean and standard deviation of the residuals – first approach 

                Learning residual              Validation residual 

 Mean (s) StD Mean (s) StD 

Mean 78.61 586.09 74.33 582.06 

StD 43.94  146.50 41.61 145.44 

Min 17.11  408.45 12.35  413.93 

Max 213.08  1168.80 206.75  1170.93 

 

The 30 learnings on the different weight sets have been performed with the initial over 

parameterized structure composed by the 12 inputs and the 10 hidden neurons (5) which 

corresponds to 141 parameters. In the table 1, the mean and the standard deviation of the 

residuals obtained on the learning and the validation data sets are presented. The residuals 

represent the errors performed by the model for the estimation of throughput times ∆T 

comparatively to the desired ones.  

It can be recalled that the objective of the learning is to obtain a white noise (normal 

distribution of mean null) as residual. These results show that the residuals obtained are 

always bad. In particular, the mean of the obtained residual may vary, in function of the initial 

weights from 17.11s to 213.08s on the learning data set. For the validation data set, the results 



 
   
are very similar, with a mean of residual varying from 12.35s to 206.75s. It can be noticed 

that the mean of the residuals is lower than 30s in only 10% of the cases in learning and 

16.67% of the cases in validation. Concerning the standard deviation values, they are large 

and varying from 408.45 to 1168.8 for the learning data set and from 413.93 to 1170.93 for 

the validation data set. These two facts show that the learning is not efficient.  

 
INSERT FIGURE 9 

 
Figure 9 shows an example of residual characteristic of those obtained on the 

validation and learning data sets for the 30 different initial weights. Except those surrounded 

by circle, they could be acceptable for validation. But those highlighted by the circles may be 

due to different causes: 

i. the number of hidden neurons is not sufficient, 
ii.  the neural network does not succeed to learn some dynamics due to not taken into 

account root causes, 
iii.  some explicative variables (example, marginal products, exceptional breakdown…) 

could be not present in the input data. 
In order to evaluate if the residuals surrounded by circle are due to cause i), other tests 

series have been implemented where the number of hidden neurons varied from up to 35 to 

less than 10. These tests have shown that 10 hidden neurons are sufficient. Moreover, the 

pruning algorithm prunes some of these ten hidden neurons into 56% of the cases.  

For evaluating cause ii), so, in order to determine if some dynamics, due to not taken 

into account root causes, present in the data are not learned, the correlation between the 

different inputs and the residuals can be performed on the learning data set (table 2). The table 

2 presents the mean, standard deviation, minimal and maximal values of the absolute value of 

the correlation coefficients obtained between the 30 residuals and the 12 inputs on the 

learning data set.  

 

Table 2. Coefficients correlation between residual and inputs – first approach  



 

 Lg diaGB diaMoy diaPB T_piece Q_trim U_trim Q_rqm Q_rqm4 Q_rqm5 Q_rqm7 RQM 

Mean 0.0354 0.0118 0.0393 0.1619 0.0350 0.0484 0.0298 0.0707 0.0628 0.0697 0.0525 0.2875 

StD 0.0245 0.0096 0.0238 0.0692 0.0261 0.0324 0.0211 0.0467 0.0531 0.0456 0.0355 0.1310 

Min 0.0002 0.0013 0.0014 0.064 0.0001 0.0002 0 0 0.0025 0 0 0.1124 

Max 0.0882 0.0342 0.0843 0.3411 0.0959 0.1172 0.0813 0.1774 0.2280 0.1831 0.1314 0.6706 

 

It can be noticed that Lg, diaGB, diaMoy, T_piece, U_trim present a correlation 

coefficient with residuals which is never significant (always smaller than 0.0959). U_trim, 

Q_rqm, Q_rqm5, Q_rqm7 present a minimal value of correlation to 0 because the pruning 

algorithm, in some case has pruned these inputs. Only two inputs have always a significant 

coefficient correlation with the residual: diaPB and RQM. So, on the two discrete inputs, 

T_piece and RQM, the correlation coefficients show that the dynamic of the first one is well 

taken into account by the network when the RQM not. Similar results can be obtained on the 

validation data set. These results are very similar with those obtained on the validation data 

set. 

Moreover, these two data (RQM and T_piece) are discrete ones. So, the correlation 

test is not the most significant. Figure 10 presents an example of the residuals in function of 

RQM. It can be thus noticed that two different residuals exist depending of the value of RQM. 

These two residuals are biased. This fact implies that this model introduces a systematic error. 

So, in order to estimate the influence of RQM on the residual the best approach is to compare 

these two samples.  

 
INSERT FIGURE 10 

 
For this, two tests can be performed. The first one is the T Student test which tests if 

the two samples of mean µ1 and µ2 have the same mean. The null hypothesis (H0) and its 

alternative (H1) are: 





≠µ−µ
=µ−µ

0:1H

0:0H

21

21  (6) 



 
   

The second test is the F Fisher test which is the ratio of the two variances 2maxσ  and 

2
minσ  of the samples. The null hypothesis (H0) and its alternative (H1) are: 







>σσ

=σσ

1:1H

1:0H
2
min

2
max

2
min

2
max  (7) 

The table 3 presents the results of these two tests with a confidence of 95% and 99% 

for the two variables RQM and T_piece for the 30 neural models constructed with the 

different initial sets of weights on the validation data set. The results on the learning data set 

are very similar. The data T_piece can take 3 values: type1; type2 and type3. So, the F test 

and the T test have to be performed two by two.  

  



 

Table 3. Results of the Fisher and Student tests  

 RQM T_piece 1-2 T_piece 2-3 T_piece 1-3 

  F test T test  F test T test  F test T test  F test T test  

Threshold 95%  1.092 1.961  1.070 1.961  1.077 1.961  1.070 1.961 

Reject H0  100% 100%  96.67% 73.33%  43.33% 76.67%  96.67% 66.67% 

Threshold 99%  1.130 2.583  1.101 2.583  1.127 2.583  1.101 2.583 

Reject H0  100% 100%  93.33% 60%  10% 63.33%  90% 36.67% 

 

These results show that RQM has an important influence on residual. Even with a 

confidence level of 99% no relation can be found between residuals obtained with RQM=4 

and RQM=5. This is not the case with the T_piece data because the hypothesis of equality of 

mean (T test) is often not rejected and even the hypothesis of equality of variance (F test) is 

accepted to 90% between T_piece type2 and type3 with a confidence level of 99%. In 

conclusion, it seems that the residuals surrounded by circle figure 9 are due to cause ii): 

neural network does not succeed to learn some dynamics due to not taken into account root 

causes. In order to compensate this, a second approach is proposed.  

 

b. Second approach 
 

Here, two neural models have to be learned by using respectively the RQM=4 data only and 

the RQM=5 data only. These two neural networks have 11 inputs: Lg; diaGB; diaMoy; 

diaPB; T_piece; Q_trim; U_trim; Q_rqm; Q_rqm4; Q_rqm5; Q_rqm7. The learning begins 

with a structure using ni=10 hidden neurons (5) which corresponds to 131 parameters. 30 

different sets of initial weights are used. The table 4 presents the mean and the standard 

deviation of the residuals obtained on the learning and the validation data sets by using only 

RQM=4 data and RQM=5 data. 

  



 
   
Table 4. Mean and standard deviation of the residuals – second approach  

 RQM = 4 RQM = 5 

 Learning residual Validation residual  Learning residual Validation residual 

 Mean (s) StD Mean (s) StD  Mean (s) StD Mean (s) StD 

Mean 12.36 478.00 8.40 528.33  7.22 332.80 7.75 335.54 

StD 13.15  66.30 13.88 64.08  19.99  42.64 19.35 41.28 

Min -3.68  352.33 -19.55  376.15  -39.92  291.57 -37.28  291.83 

(abs) 0.17   0.33    0.02   1.02   

Max 35.09  620.01 34.28  678.21  33.48  485.03 33.95  482.42 

 
Table 5. Coefficients correlation between residual and inputs – second approach – RQM = 4  

 Lg diaGB diaMoy diaPB T_piece Q_trim U_trim Q_rqm Q_rqm4 Q_rqm5 Q_rqm7 

Mean 0.0225 0.0366 0.0371 0.0225 0.0257 0.0263 0.0189 0.0135 0.0157 0.0283 0.0168 

StD 0.0313 0.0262 0.0262 0.0237 0.0227 0.0174 0.0208 0.0134 0.0132 0.0216 0.0106 

Min 0.0005 0.0007 0.0020 0.0011 0.0000 0.0016 0.0014 0.0005 0.0003 0.0002 0.0011 

Max 0.1305 0.0854 0.0870 0.1093 0.1123 0.0653 0.0791 0.0397 0.0451 0.0798 0.0398 

 
Table 6. Coefficients correlation between residual and inputs – second approach – RQM = 5  

 Lg diaGB diaMoy DiaPB T_piece Q_trim U_trim Q_rqm Q_rqm4 Q_rqm5 Q_rqm7 

Mean 0.0135 0.0195 0.0227 0.0189 0.0405 0.0501 0.0275 0.0770 0.0722 0.0623 0.0530 

StD 0.0257 0.0213 0.0272 0.0314 0.0453 0.0566 0.0267 0.0682 0.0695 0.0609 0.0445 

Min 0.0009 0.0009 0.0002 0.0000 0.0000 0.0012 0.0016 0.0000 0.0000 0.0020 0.0005 

Max 0.1058 0.0760 0.1053 0.1326 0.1330 0.2267 0.0920 0.2211 0.1847 0.2349 0.1577 

 

The line (abs) presents the minimum of the mean in absolute value. It can be noticed 

that these values are very close to 0 to be compared with the results presented table 1 where 

the mean value is always greater than 12.35s. These results show that neural models present 

very similar residuals. In particular, the mean of the residuals is in the worst case, to 35.09s 

for the RQM=4 data and to 33.95s for the RQM=5 data. These results are to be compared 

with those presented table 1 where the mean of the residuals moves from 12.35s to 213.08s 

and where only 10% of the cases in learning and 16.67% of the case in validation give a mean 

lower than 30s. In order to determine if some dynamics present in the data are not taken into 

account by the learning of the two neural models, the correlation between the different inputs 

and the residuals can be performed on the learning data set for the RQM=4 data (table 5) and 



 

for the RQM=5 data (table 6). Similar results can be obtained on the validation data set. The 

tables 5 and 6 present the mean, standard deviation, minimal and maximal values of the 

absolute value of the correlation coefficients obtained between the 30 residuals and the 11 

inputs on the learning data set for the RQM=4 neural network and the RQM=5 neural network 

respectively. It can be noticed that, for the two neural models, no input is significantly 

correlated with the residual. In the worst case, the correlation coefficient obtained between 

Q_rqm5 input and the residual for the RQM=5 neural network is of 0.2349. However, for this 

input, in 76.67% of the cases, the correlation coefficient is lower than 0.01.  

 

7. Conclusion and future work 
 

The use of neural network in order to build a reduced model of emulation is investigated here. 

Within this framework, this paper focuses on the impact of discrete data on the learning 

results of the neural model. 

The results have shown that some discrete data (T_piece) are perfectly taken into 

account without adaptation. This can be explained by the fact that, even if, these discrete data 

are useful for the comprehension of the system, they do not produce some very different 

behavior and a unique neural model can explain all its evolution. However, some discrete data 

(RQM) implies that some different behaviors of the process occur. These data imply that 

different models should be used in order to model all the system.  

The perspectives of this work are to investigate how to use these discrete data in the 

best way. Besides, the proposed reduction emulation model approach must be applied to the 

modeling of one flexible manufacturing system in order to validate this approach for discrete 

events systems.  

In addition, the system modeled may be changing. In this case, it may be interesting to 

use an on line learning rule in order to adapt the neural model to the evolution. Another 



 
   
perspective will be to investigate the advantages and disadvantages of this reduction model 

algorithm comparatively to a complete model. The computing times will be particularly 

studied. 
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CAPTIONS of the figures 
 

Figure 1. Reduction model algorithm 
 

Figure 2. Structure of the multilayer perceptron 
 

Figure 3. First part of the process: the Canter line 
 

Figure 4. Second part of the process: the Kockums line 
 

Figure 5. Third part of the process: the Trimmer line 
 

Figure 6. The reduced model 
 
Figure 7. The emulation model – first approach 
 
Figure 8. The emulation model – second approach 
 
Figure 9. Residual obtained on the learning data set 
 
Figure 10. Residual function of RQM 
 

Table 1. Mean and standard deviation of the residuals – first approach 
 
Table 2. Coefficients correlation between residual and inputs – first approach  
 
Table 3. Results of the Fisher and Student tests  
 
Table 4. Mean and standard deviation of the residuals – second approach  

 
Table 5. Coefficients correlation between residual and inputs – second approach – RQM = 4  

 
Table 6. Coefficients correlation between residual and inputs – second approach – RQM = 5  
 
 


