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In new Intelligent Manufacturing Systems, ProdueivBn Systems (PDS) architecture require
emulation tool (Thomast al 2008) to be developed. Discrete events simulaarften used to
build such emulation tool, nevertheless this resmiaimmplex because of large scale problems. The
goal of this paper is to propose a way to desiginaulation model by reducing its complexity.
According to theory of constraints, we build rediliceodels composed exclusively of bottlenecks
and a neural network. In Particular, a multilayergeptron is used. The structure of the network is
determined by using a pruning procedure. This woghklights the impact of discrete data on the
computational results. An application to a sawrnmternal supply chain is suggested to validate
the proposed approach.
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1. Introduction

In classical centralized manufacturing systemspmlay and control processes simulation is
essential for evaluation of planning and schedulsecgnarios to make better and faster
decisions. Indeed, simulation allows to describ@adyically the behaviors of machines,
where WIP (work in process), and queues are easigeled. So, simulation models would
be useful in order to perform a “Predictive schedyil (Lopez and Roubellat 2001) or a
rescheduling in case or disturbance.

On the other hand, in Product Driven processedri@lited way to control physical
flow in a Supply Chain), dedicated architecturesiarplemented. These architectures consist
of a control system and an emulation system whieh \eery useful for Product Driven
Systems (PDS) design. Moreover, it is used in omlealidate such systems by one hand and

making decisions by scenario evaluation by therdtla@d. So, the PDS architectures require
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emulation models which should be sufficiently psecto represent the most closely the real
system by maintaining a reasonable size in orddetoease computation running time.

Discrete event simulation is also often used tddbsuch emulation system, but
emulation model design, which is not a trivial tasklies on reusability, modularity and
genericity concepts (Thomast al 2008). Moreover, for emulation models, the numdbier
“objects” and the number of events can be veryda@pnsequently, the problem relies on the
time to build the model. Moreover, the simulatiomming time could be too much high which
makes the models not operational in practice. Thusuld be necessary to reduce the model
size (Thierryet al. 2008).

The real time systems performing manufacturingofellup (production reporting)
transmit information very quickly to the managemsystem (Khouja 1998). However, it is
difficult to use this large amount of informatiom thake decisions (Prisker and Snyder 1994,
Roder 1994). At these levels of planning and contm estimate how the whole physical
system behaves, the “management of critical resglr¢bottlenecks) is often efficient
(Vollmann et al. 1992). Goldratt and Cox, in “The Goal” (1992) ptough the Theory of
Constraints (TOC), which proposes to manage thdemhupply chain by bottlenecks control.
Dynamic discrete events simulation of material flparmits this management (Thomas and
Charpentier 2005). In fact, build an emulation madea complex task which could a lot of
time. Moreover, emulation models which aims to espnt real industrial cases are often
complex because of the problems large scale (Pagke1999). Thus, numerous authors have
expressed interest in using the simplest (reduggdégated) models of simulation (Brooks
and Tobias 2000, Chwiét al. 2006, Ward 1989). In Thomas and Charpentier (R0bE
authors have shown that an interesting method woeilth reduce the model according to the
TOC.

In addition, neural networks have proved theiriibd to extract performing models

from experimental data (Thomasal 1999). So, the use of neural networks appeaentigc



as an interesting approach within the frameworlhef supply chain (Thomas and Thomas
2008). In this context, we associate a queuing mnadb a neural network, respectively, to
model both the bottlenecks and, works centers.

However, neural networks are generally used inrom@erform a mapping between
continuous spaces, and, in the considered casatswous variables (as length, speed...) are
mixed with discrete ones (as category, color...).

Thus, the main goal of this paper is to investighteimpact of these discrete data on
the learning process and on the quality of neuradleh used in order to reduce simulation
models according to the TOC, i.e. to maximize tb#léneck utilization rate. This is studied
with one industrial example which is a sawmill flshop case. In the next part, a brief
bibliography overview is presented. The third pdescribes the proposed approach of
reduction model and the multilayer perceptron. ficheth part presents the construction of an
emulation model applied to the sawmill internal gypchain case. Part five focuses on one
step of this approach which is the neural netwaigh. The validation of the approach and

the impact of the discrete data on the resulthigftdighted in the last part before to conclude.

2. Bibliography overview on model reduction

The two main difficulties encountered during thesiga step in a supply chain simulation

model are related to the size of the system anccdingplexity of the control system. The

problem could be seen at the supply chain levetiwis composed of a group of enterprises
and composed in turn of a group of factories, dhatshop floor level which is composed of a
group of work centers, etc. Moreover, modeling ble@avior of the leading policies of each
enterprise and the relationships between them eéslete (Thierryet al 2008). This fact

implies that the duration of one simulation may dree unacceptably long to be usable.



Therefore, it may be useful to reduce the sizehefmodel. Different ways can be used to
perform the model reduction (Zeigler 1976):
» abstraction, which allows the complexity of the relob be reduced and preserves the

validity of the results (Frantz 1995),

e aggregation, which is a form of abstraction whemgr@up of data or variables with

common characteristics can be replaced by aggmgate or variables (Mercé 1987),

» reduction of the number of events, where a padisifrete event system is replaced by

a variable or a formula (Zeigler 1976).

In addition, Innis and Rexstad (1983) have list&d simplification techniques for
general modeling. Their approach is composed of fteps: hypotheses (identify the
important parts of the system), formulation (spetiie model), coding (build the model), and
experiments. Based on these works, different agpeshave been proposed.

Brooks and Tobias (2000) suggest a ‘simplificatafnmodels’ approach for cases
where the indicators to be followed are the avetageughput rates. They suggest an eight-
stage procedure. The reduced model can be verylesiam then an analytical solution
becomes feasible and the dynamic simulation rechind@aeir work is interesting, but is valid
in cases where the required results are averagéavhere the aim is to measure throughput.
It is not interesting to follow the various evetdking place in the work center (WC).

Leachman (1986) has proposed a model for use isaheconductor industry, which
uses cycle time as an indicator. This model has beproved by Hung and Leachman
(1999). They propose a technique for model redandtidbe applied in large wafer fabrication
facilities. They use ‘total cycle time’ and ‘equipnt utilization’ as decision-making
indicators to do away with the WC. In their casese WCs have a low utilization rate and a
fixed service level (they use the standard deviatibbatch waiting time as a decision-making
criterion).

Tsenget al (1999) compare the regression techniques apfaiad ‘aggregate model’

(macro) by using the ‘flow time’ indicator. Theyggest reducing the model by mixing the



‘macro’ and ‘micro’ approaches, so as to minimiz@es in complex models. Here again, for
the ‘macro’ view, they deal only with the estimatiof flow time as a whole. For the ‘micro’
approach, they construct an individual regressiaueh for each stage of the operation to
estimate its individual flow time. The cumulativeder of flow time estimates is then the sum
of the individual flow times. They, then, try toxrthe macro and micro approaches.

These different approaches simplify the model bywgi® macroscopic view of the
system and by optimizing a macroscopic indicatata(tcycle time, flow time...)

Li et al (2009) propose a reduction model approach baseth® aggregation of
machines on the production line. They build a catgmodel of the production line and, if
the last two machines correspond to a serial they aggregate them. The same is performed
with the first two machines if they correspond teegial line. These aggregation steps may be
performed recursively and they are denoted backwaddforward aggregation, respectively.
If the two machines to be aggregated follow a Belihenodel or an exponential model, an
analytical investigation allows the production ratethe new aggregated machine to be
determined. If not, a simulation phase must begoeréd to determine an empirical formula
for the production rate.

Some works (Doumeing 1989, Hwaegal. 1999) use Petri nets as tool in order to
simplify network structures by using macro-placebic represent complex activities
associated with function groups.

To simplify models, some works have studied the afsa continuous flow model
based on gradient estimation for stochastic system®rder to approximate discrete
manufacturing environments (Ho 1987, Suri and F84)90ther authors use metamodels
(linear regression, splines, Kriging, etc.) to peri a simulation model (Kleijnen and Sargent
2000). Neural networks can be viewed as a typeaitbmodel (Barton 1994, Pierreval 1996,

Kleijnen and Sargent 2000). In addition, neuralvoeks have proved their abilities to extract



models from experimental data (Thonesal. 1999). Therefore, the use of neural networks
has emerged recently as an interesting approadtinntite framework of the supply chain

(Shervaiset al 2003, Chiu and Lin 2004).

3. The proposed model reduction process

a. Thealgorithm

The proposed approach is based on the associdtidisavete event models and continuous
metamodels (neural network) in order to desigmaukition model. Our previously described
objective was to maximize the bottleneck utilizaticate and, at the same time, simplify
simulation model construction for modellers. Thealugion algorithm proposed is an
extension of those presented by Thomas and ChapgR005). The main goal of this
algorithm is to reduce the number of simulationckfo For its understanding, three concepts
must be defined:

» ‘conjunctural bottleneck’ (current bottleneck) iS\C that is saturated for the MPS in
the predictive scheduling in question. This medma it uses all of its available
capacity,

» ‘structural bottleneck’, we mean a WC that hasrotieen or is in such a condition.
Effectively, production managers know only where tiegular overloaded WC(s) is
(are),

* ‘synchronization work centers’ are resources usattly with bottlenecks for at least
one MO and are used for the planning of differef@9vthat do not use a bottleneck.
To minimize the number of these ‘synchronizationrkvoenters’, only those which
are often associated with bottlenecks in MOs mastdnsidered.

The main algorithm steps are recalled and explai@bolv:

1) Identify the work center (WC) which is the struetubottleneck. This one has been
the main capacity constraint for several years u@ting to the experience of
production manager).

2) ldentify the conjunctural bottleneck for the bundfemanufacturing orders (MOs) of
the Master Production Schedule (MPS) under coraiider (see explanation later in
the text).

3) Among the WCs not listed in 1 and 2, identify theeqsynchronization WC) that
satisfies the following two conditions:

0 presents at least in one of the MOs using a beitlerand



o widely used considering the whole body of MOs.
4) If all MOs have been considered, go to 5; if nottg 3.
5) Use neural networks to model the intervals betwienWCs that have been found
during the preceding steps (figure 1).

Before bottleneck After bottleneck
Fwe | fwe | .fwe | [ BorTL WC WC
vo |- R e > e > e e >
NN NN

Figure 1. Reduction model algorithm

Hence, the WCs remaining in the model are eithemjucwtural or structural
bottlenecks, or are WCs that are vital to the syorization of the MOs. All other WCs are
incorporated in ‘aggregated blocks’ upstream or mtveam of the bottlenecks.

The main benefits of this algorithm are:

* modellers can focus on the description of the bo#tks,

* noncrucial parts of the system are modelled witaaning approach (automatization
of this modelling step),

« the resulting model is less complex than a commats and

e simulation time is shorter than with a complete slod

This paper focuses on step 5 of the reduction ghgorwhich uses a neural model.

Here, the bottlenecks are considered as known.

b. The multilayer perceptron (MLP)

The works of Cybenko (1989) and Funahashi (1989 h@oved that a multilayer neural
network with only one hidden layer using a sigmoalivation function and an output layer
using a linear activation function can approximalienonlinear functions with the desired
accuracy. This result explains the great interéshis type of neural network, which is called
‘multilayer perceptron.’ In this work, it was assedhthat a part of the modelled production

system could be approximated with a nonlinear fionobbtained with a MLP. The objectives



of this nonlinear function are to model the malteftiav behaviour (in our case, processing
time).

The structure of the multilayer perceptron is rischhere. Its structure is shown in

figure 2. The neurons of the first (or input) laykstribute just theng inputs{x?,---,xgo} of

the MLP to the neurons of the next (hidden) layerspecial input neuron (depicted by a
square in figure 2) represents a constant inpudlaqul, and it is used to represent the biases

or thresholds of the hidden layer.

Figure 2. Structure of the multilayer perceptron

The " neuron (i = 1, ... ) in the hidden layer receives thg inputs{xf,---,xgo}

from the input layer with the associated Weig(wél,~--,wi1no}. This neuron first computes
the weighted sum of thag inputs:
& 0 1
Z =) Wexa +h, (D)
h=1
where bil is the bias or threshold term of tHetidden neuron. The output of this neuron is

given by a so-called *‘activation function’ of thens in (1):



d=del). @
where g(.) is chosen as the hyperbolic tangent:

-2X
2 1-e
1+e <X 1+e <X

Lastly, the outputs of the hidden neurc{w%,---,xil} are distributed with associated

Weights{wf,u-,wﬁl} to the unique neuron of the last (or output) layerfor the input layer,

a particular hidden neuron (depicted by a squafegure 2) represents a constant input equal
to 1, which is used to represent the bias or thoiesbf the output layer.
The neuron of the last layer simply performs thbofing sum, with its activation

function being chosen as linear:

z=iW.2->¢ +b,  (4)
i=1

2

where w are the weights connecting the outputs of the énddeurons with the output

neuron and b is the threshold of the output neuron.

The number of hidden neurons must be determinedthi® the learning starts from
an over parameterized structure. A weight elimoratmethod is used to remove spurious
parameters, and the pruning algorithm used hetieei®ne proposed by Setiono and Leow.
(2000).

In our case, the input neurons are processing mystriables (number of parts,
inventories...). As previously said output neursthiroughput time.

The learning of the MLP is performed in three steps

1. initialization of the weights and biases of an evmed structure by using a

modification of the Nguyen—Widrow algorithm (Thomeasd Bloch 1997),

2. learning of the parameters by using the Levenbeagyghtard algorithm with a robust
criterion (Thomas and Bloch 1996), and

3. weights elimination by using the Neural Network ®ng for Function
Approximation (N2PFA) algorithm (Setiono and Leo@0D).



Kleijnen and Sargent (2000) have proposed a metalmgdprocess that can be
subdivided into 10 steps:

» determine the goal of the metamodel,
» identify the inputs and their characteristics,
» specify the domain of applicability,
* identify the output variable and its characterstic
« specify the accuracy required of the metamodel,
« specify the validity of metamodel measures and tiegjuired values,
« specify the metamodel and review this specification
« specify a design,
» fit the metamodel, and
* determine the validity of the metamodel.
In this work, these different steps were used wgiethe neural network.

4. Design of emulation models

For validation, we used the proposed approach ild busimulation model of a sawmill. In
this actual case, managers needed a tool to heip ih their weekly MPS decision-making
process. In this process, their decision varialesnumber of logs, product demand..., their
objectives are throughput time, MPS respect (batds)... The industrial example
considered here is limited to the shop floor letwever, this approach can be deployed to

all levels of the supply chain.

a. Overview of the sawmill

At the time of the study, the sawmill had a capecft270,000 ri¥year, a turnover of €52

million and 300 employees.
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The sawmill objective is to transform logs into maind secondary products according to a
cutting plan. The physical industrial productionstgyn is composed of sequential work
centers (kockums saw, trimmer, sorter...) and quearesonveyors (named respectively
RQM4, RQM5, RQM7...). It is subdivided into three maiarts. The first one is the canter
line presented figure 3. In this subsystem, theeoigrs the system in RQML1 then it is steered
to RQM4 or 5 according to its characteristics. Aftieat, it passes to the cutting machine
(Canter). It then enters the edger. After this phdke log is transformed into main and
secondary products. The final operation is the srmgtting which consists in cutting up
products to length.

Two important steps occur during this process. Tirst one is the choice of the
conveyors RQM4 or RQM5 in order to store the afrleg. In function of this choice, the
time spending by the log to wait the Canter saw imayery different. The second one is the
type of product considered. When the cutting plarncaonsidered, two types of products

appear: main and secondary ones.
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Figure 4 shows the second part of the process, evtteg main machine is the
Kockums saw. Only secondary products are drivemhapart. The secondary products are
taken in the line by the BT4 and BT5 conveyors.yTaee cut by the QM11 saw, after which
they reach the Kockums saw, which optimizes thalpkaccording to the products needed.
The alignment table is used as the input inventafrfhe Kockums saw. The secondary
products are finally sent to the third part of gnecess by the exit conveyor.

The third part of the process is the trimmer liwhjch is presented in figure 5. This
line performs the final operation of cross cuttifihis operation consists in cutting up
products to length. The input of the line is fromllectors 1 and 2, which collect the
secondary and main products from Kockums and Cdines respectively. Saw 1 is used to
perform default bleeding and Saw 2 cuts up prodiactsngth. A previous work (Thomas and
Charpentier, 2005) has shown that this machine trihrener saw, is the bottleneck of the

entire process.
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However, when the physical industrial system issabered, three types of products
have to be considered. In fact the Cutting mackiaater works into three steps. First, one
saw (CSMK) cuts two faces of the considered log pratluces two secondary products.
These two products are driven to kockums saw ieroi@ be finished. Next the log is rotated
of 90° and stored into conveyor RQM7. After th&g tog is driven once again to the Canter
machine. The saw (CSMK) cuts the two other facetheflog, and produces the two other
secondary products which are driven to kockums satwvthis time, a parallelepiped is
obtained which is divided into three main produbis another saw (MKV). The main

products are finally driven to the trimmer.

b. Application of the reduction model approach

In order to produce the sawmill emulation modelsaled in the preceding part, the
procedure proposed in part 3 is applied. The misd@ésigned with the Arena® software and
the inclusion of neural network is performed byngsa module VBA.

The first step of the procedure is to identify gteictural bottleneck. Preceding studies of the
sawmill have shown that the structural bottlenexlthie trimmer (Thomas and Charpentier
2005). The second and the third steps are respbctio determine the conjunctural
bottleneck and the synchronization WC. In the ader®d case, no conjunctural bottleneck or
synchronization WC is present. This fact allowdaifocus on the step five which is the core

of this paper.
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The step five specifies that all the WC which ao¢ bottleneck (structural or conjectural) or
synchronization ones must be modeled by using eahenodel, consequently and within this
framework, the functioning of inventories RQM4, RGMind RQM7, the canter and the
kockums lines must be modeled by a neural netwidrk. discrete part of the model describes
the functioning of the bottleneck (the trimmer) ahd log arrival. The emulation model can
be described by figure 6. The structure of the alenetwork (input and output layers) is
constrained by the information that must be tratiehito the bottleneck (output) and by the
information given by the log arrival part (inpuo, the first step to design the neural network

is to construct the database to use for the legrnin

5. Design of neural network

In order to construct a reduced emulation model niural network design is the main

task to perform. For this, a complete data set mestollected.



a. Thedata set

Neural model is a black box obtained with a sumedilearning of a non linear relation
between input and output data sets. For this, vee b collect the available input data of the
process and to determine the desired output (Tham&3 homas 2008).

First, each log gives information which is collettey a scanner in input of the canter
line. This information is relating to the produaingnsion, as length (Lg) and three values for
timber diameter (diaPB ; diaGB ; diaMOY). Theseiables are used to control the log to
RQM4 or RQM5 queues which is additional informatiRQM). In addition of this
dimensional information, we have to characterize glocess variables at the time of the log
arrival. Particularly, the input stock of the triram(Q_trim), the utilization rate of the
trimmer (U_trim) and the number of logs presentha different conveyors RQM4, RQM5
and RQM7 (Q_rgm4; Q_rgm5; Q_rgm7) must be takenteldeer, the sum of these number
is also used (Q_rgm = Q_rgm4+Q_rgm5+Q_rgm7). Thetigpe of information is related to
the cutting plan of the logs. In fact, each loglwé cut inton main or secondary products. In
our application, the cutting plan divides the latpi 7 products:

* 2 secondary products resulting from the first stbputting process on saw CSMK of
the canter line,

e 2 secondary products resulting from the secondattmg process on saw CSMK of
the canter line after staying in the RQM7 queue,

* 3 main products resulting from the third step dtiog process on saw MKV of the
canter line.

These two saws (CSMK and MKV) belong to the caliter. These 7 products can be
classified into three categories according to tlzation (CSMK or MKV) and the time during
the cutting process (first or second cutting). Thiformation is given by the variable
(T_piece) which can take as values typel, type2 tgpd3. The last information is the
thickness (in mm) of the product which is also te&erence. In our case, we are taking into

account only two references: main products 75; rsg&xy products 25 (ref). However,

preceding works (Thomas and Thomas 2008) have shioatrthis data has no impact on the



result and so it will no be taken into account. §aquently, the neural networks input
variables are: Lg; diaGB,; diaMoy; diaPB; T_piece; t@n; U_trim; Q_rgm; Q_rgm4;
Q_rgm5; Q_rgm7; RQM. In our application 12775 pratduare simulated. Among these 12
inputs data, two different categories exist:

« Continuous one (quantitative) [Lg; diaGB; diaMoya®B; Q _trim; U_trim; Q_rgm;
Q_rgm4; Q_rgm5; Q_rgm7]. These data are continooes and so are well adapted
to be used by learning procedure.

» Discrete one (qualitative) [T_piece; RQM]. Theseadare qualitative. So the study of
their impact on the learning process is the cothisfpaper.

Our objective is to estimate the deldyT] corresponding to the duration of the throughput

time for the 12775 productAT is measured between the process input time antrithmer

gueue input time. In practicerl is the output of the neural network:

ni 12
AT =3 w? .g(m X0+ b%]+ 2 (5)
i=1 h=1

b. The structuring of the data set

Now, all the data which characterize the processallected. However, it can be noticed that
two different categories have been determined i diataset, continuous ones and discrete
ones. Neural networks are generally used in ol@etform a mapping between continuous
spaces. So, the difficulty, here, is to determioe khe discrete data can be used.

In order to determine this, two different approach®y be proposed.

The first and simplest one is to consider all tiecméte data like continuous ones, and to
present them to the input of an unique neural nétwa the present case, the structure of the

emulation model is presented figure 7 where thesicemed neural network uses 12 inputs.
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As said previously, preceding works have shown tiatdata RQM has a great influence on
the behavior of the system. It is very differenR®M is 4 or if RQM is 5. So, an approach
for dealing with this fact is to make two differemiodels in order to model it in these two
cases and to switch from one to another with theevaf RQM. This approach can be related
to the multiple-model approach (Delmogteal 1996).

With this approach, the emulation model includes tifferent neural networks which are
used in function of the value of the data RQM.

So, two neural models have to be learned by ussgectively the RQM=4 data and the
RQM=5 data uniquely. These two neural networks Haveputs: Lg; diaGB; diaMoy;

diaPB; T_piece; Q_trim; U_trim; Q_rgm; Q_rgm4; Qm% Q_rgm7. The structure of this

emulation model is presented figure 8.
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c. Thelearning

For the two approaches, the learning of the netwsoskipervised. So, it is necessary to divide
the database into two datasets, learning and validanes. Only the number of hidden
neurons is always unknown and should be determimedtder to determine it, the learning
starts from an over parameterized structure andemght/ elimination method is used to
remove spurious parameters.

The learning approach corresponds to a local seairéh minimum. So, in function of the
initial weights, the results may be different. Irder to evaluate the dispersion of the results,

30 different sets of initials weights are used.

6. Validation of the emulation models
In preceding works (Thomas and Charpentier 20086pnaplete model of the sawmill has

been constructed and validated with the real psodésre, this complete model is also used

in order to compare the results obtained with W@ teduced emulation models with it.



a. First approach

Table 1. Mean and standard deviation of the ressduéirst approach

Learning residual \datiion residual
Mean (s) StD Mean (s) StD
Mean 78.61 586.09 74.33 582.06
StD 43.94 146.50 41.61 145.44
Min 17.11 408.45 12.35 413.93
Max 213.08 1168.80 206.75 1170.93

The 30 learnings on the different weight sets hbgen performed with the initial over
parameterized structure composed by the 12 inputistlee 10 hidden neurons (5) which
corresponds to 141 parameters. In the table 1mib@n and the standard deviation of the
residuals obtained on the learning and the vabdatlata sets are presented. The residuals
represent the errors performed by the model for @bmation of throughput timeAT
comparatively to the desired ones.

It can be recalled that the objective of the laagns to obtain a white noise (normal
distribution of mean null) as residual. These ressshow that the residuals obtained are
always bad. In particular, the mean of the obtamesttual may vary, in function of the initial
weights from 17.11s to 213.08s on the learning dataFor the validation data set, the results
are very similar, with a mean of residual varyingni 12.35s to 206.75s. It can be noticed
that the mean of the residuals is lower than 30enly 10% of the cases in learning and
16.67% of the cases in validation. Concerning tla@dard deviation values, they are large
and varying from 408.45 to 1168.8 for the learndaga set and from 413.93 to 1170.93 for

the validation data set. These two facts showttietearning is not efficient.
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Figure 9. Residual obtained on the learning ddta se

Figure 9 shows an example of residual characteristi those obtained on the
validation and learning data sets for the 30 daférinitial weights. Except those surrounded
by circle, they could be acceptable for validatiBat those highlighted by the circles may be
due to different causes:

i.  the number of hidden neurons is not sufficient,
ii.  the neural network does not succeed to learn symeanaics due to not taken into
account root causes,
iii.  some explicative variables (example, marginal pet&llexceptional breakdown...)
could be not present in the input data.

In order to evaluate if the residuals surroundedilgte are due to cause i), other tests
series have been implemented where the numberddehineurons varied from up to 35 to
less than 10. These tests have shown that 10 hideerons are sufficient. Moreover, the
pruning algorithm prunes some of these ten hidamans into 56% of the cases.

For evaluating cause ii), so, in order to deterniirmome dynamics, due to not taken
into account root causes, present in the data ardearned, the correlation between the

different inputs and the residuals can be perfororethe learning data set (table 2). The table

2 presents the mean, standard deviation, minindhhaaximal values of the absolute value of



the correlation coefficients obtained between tler8&siduals and the 12 inputs on the

learning data set.

Table 2. Coefficients correlation between residural inputs — first approach

Lg diaGB diaMoydiaPB T piec& trim U trim Q rgm Q_rgm@® rgm5Q rgm7RQM
Mean 0.0354 0.0118 0.0393 0.1619 0.0350 0.0484 98.02.0707 0.0628 0.0697 0.0525 0.2875
StD  0.0245 0.0096 0.0238 0.0692 0.0261 0.0324 0.0210467 0.0531 0.0456 0.0355 0.1310
Min  0.0002 0.0013 0.0014 0.064 0.0001 0.0002 0 0 0025 O 0 0.1124
Max 0.0882 0.0342 0.0843 0.3411 0.0959 0.1172 @0811774 0.2280 0.1831 0.1314 0.6706

It can be noticed that Lg, diaGB, diaMoy, T_piet&,trim present a correlation
coefficient with residuals which is never signiftgalways smaller than 0.0959). U_trim,
Q_rgm, Q_rgm5, Q_rgm7 present a minimal value afetation to O because the pruning
algorithm, in some case has pruned these inputly. t@o inputs have always a significant
coefficient correlation with the residual: diaPBdaRQM. So, on the two discrete inputs,
T piece and RQM, the correlation coefficients stibat the dynamic of the first one is well
taken into account by the network when the RQM Batilar results can be obtained on the
validation data set. These results are very simii#tn those obtained on the validation data
set.

Moreover, these two data (RQM and T_piece) arereliscones. So, the correlation
test is not the most significant. Figure 10 presemt example of the residuals in function of
RQM. It can be thus noticed that two different desils exist depending of the value of RQM.
These two residuals are biased. This fact imphasthis model introduces a systematic error.
So, in order to estimate the influence of RQM om rissidual the best approach is to compare

these two samples.
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For this, two tests can be performed. The first isnthe T Student test which tests if
the two samples of megn and, have the same mean. The null hypothesis (HO) &nd i

alternative (H1) are:

HO: py-H2 =0 (6)
H1: p;-po %20

The second test is the F Fisher test which isdtie of the two variances?,,, and

o2, of the samples. The null hypothesis (H0) andlter@ative (H1) are:

HO: O%ax/cﬁﬂn =1 7)
H1: G,Znax/orznin>1
The table 3 presents the results of these two vasiisa confidence of 95% and 99%
for the two variables RQM and T_piece for the 3@rak models constructed with the
different initial sets of weights on the validatidata set. The results on the learning data set

are very similar. The data T_piece can take 3 waltypel; type2 and type3. So, the F test

and the T test have to be performed two by two.



Table 3. Results of the Fisher and Student tests

RQM T piece 1-2 T_piece 2-3 T_piece 1-3
F test T test F test T test F test T test sk te T test
Threshold 95%1.092 1.961 1.070 1.961 1.077 1.961 1.070 1.961
Reject HO 100% 100% 96.67% 73.33% 43.33% 76.67%96.67% 66.67%
Threshold 99%1.130 2.583 1.101 2.583 1.127 2.583 1.101 2.583
Reject HO 100% 100% 93.33% 60% 10% 63.33% 90% 6.6736

These results show that RQM has an important infleeon residual. Even with a
confidence level of 99% no relation can be fountveen residuals obtained with RQM=4
and RQM=5. This is not the case with the T_pieda té@cause the hypothesis of equality of
mean (T test) is often not rejected and even thmtmesis of equality of variance (F test) is
accepted to 90% between T_piece type2 and typel avitonfidence level of 99%. In
conclusion, it seems that the residuals surrourledircle figure 9 are due to cause ii):
neural network does not succeed to learn some dgsaine to not taken into account root

causes. In order to compensate this, a secondagpi® proposed.

b. Second approach

Here, two neural models have to be learned by usisigectively the RQM=4 data only and
the RQM=5 data only. These two neural networks Havmputs: Lg; diaGB; diaMoy;
diaPB; T_piece; Q_trim; U_trim; Q_rgm; Q_rgm4; Qm% Q_rgm7. The learning begins
with a structure usingi#®10 hidden neurons (5) which corresponds to 13amaters. 30
different sets of initial weights are used. Thddabpresents the mean and the standard
deviation of the residuals obtained on the learming the validation data sets by using only

RQM=4 data and RQM=5 data.



Table 4. Mean and standard deviation of the retsduaecond approach

RQM =4 RQM =5
Learning residual Validation residual Learningideal Validation residual
Mean (s) StD Mean (s) StD Mean (s) StD Mean (s) tD S
Meanl2.36 478.00 8.40 528.33 7.22 332.80 7.75 335.54
StD 13.15 66.30 13.88 64.08 19.99 42.64 19.35 281
Min -3.68 352.33 -19.55 376.15 -39.92 29157 7.28 291.83
(abs)0.17 0.33 0.02 1.02
Max 35.09 620.01 34.28 678.21 33.48 485.03 33.95 824

Table 5. Coefficients correlation between resicunal inputs — second approach — RQM = 4
Lg diaGB diaMoy diaPB T piece Q trim U trim Q rgm® rgm4 Q rgm5Q_rgm7
Mean 0.0225 0.0366 0.0371 0.0225 0.0257 0.0263 80.0D.0135 0.0157 0.0283 0.0168
StD 0.0313 0.0262 0.0262 0.0237 0.0227 0.0174 ©02D0134 0.0132 0.0216 0.0106
Min  0.0005 0.0007 0.0020 0.0011 0.0000 0.0016 G000.0005 0.0003 0.0002 0.0011
Max  0.1305 0.0854 0.0870 0.1093 0.1123 0.0653 (@O7®0397 0.0451 0.0798 0.0398

Table 6. Coefficients correlation between residural inputs — second approach — RQM =5
Lg diaGB diaMoy DiaPB T piece Q trim U trim Q rgn® rgm4Q rgm5Q_rgm7
Mean 0.0135 0.0195 0.0227 0.0189 0.0405 0.0501 76.0D.0770 0.0722 0.0623 0.0530
StD 0.0257 0.0213 0.0272 0.0314 0.0453 0.0566 @.02650682 0.0695 0.0609 0.0445
Min 0.0009 0.0009 0.0002 0.0000 0.0000 0.0012 @G00@.0000 0.0000 0.0020 0.0005
Max 0.1058 0.0760 0.1053 0.1326 0.1330 0.2267 ©@0922211 0.1847 0.2349 0.1577

The line (abs) presents the minimum of the meabsolute value. It can be noticed
that these values are very close to 0 to be cordpaité the results presented table 1 where
the mean value is always greater than 12.35s. Tiesséts show that neural models present
very similar residuals. In particular, the meanhsf residuals is in the worst case, to 35.09s
for the RQM=4 data and to 33.95s for the RQM=5 daékeese results are to be compared
with those presented table 1 where the mean aketiduals moves from 12.35s to 213.08s
and where only 10% of the cases in learning an@726.of the case in validation give a mean
lower than 30s. In order to determine if some dyicarpresent in the data are not taken into
account by the learning of the two neural modélks,dorrelation between the different inputs

and the residuals can be performed on the leadateyset for the RQM=4 data (table 5) and



for the RQM=5 data (table 6). Similar results carobtained on the validation data set. The
tables 5 and 6 present the mean, standard deviatiormal and maximal values of the
absolute value of the correlation coefficients ol#d between the 30 residuals and the 11
inputs on the learning data set for the RQM=4 newstwork and the RQM=5 neural network
respectively. It can be noticed that, for the tveoiral models, no input is significantly
correlated with the residual. In the worst case,dbrrelation coefficient obtained between
Q_rgmb5 input and the residual for the RQM=5 nenedWork is of 0.2349. However, for this

input, in 76.67% of the cases, the correlation focieht is lower than 0.01.

7. Conclusion and future work

The use of neural network in order to build a redumodel of emulation is investigated here.
Within this framework, this paper focuses on theaat of discrete data on the learning
results of the neural model.

The results have shown that some discrete datadde)pare perfectly taken into
account without adaptation. This can be explainethb fact that, even if, these discrete data
are useful for the comprehension of the systeny, doenot produce some very different
behavior and a unique neural model can explaiitsadivolution. However, some discrete data
(RQM) implies that some different behaviors of gnecess occur. These data imply that
different models should be used in order to mote¢ha system.

The perspectives of this work are to investigate kinuse these discrete data in the
best way. Besides, the proposed reduction emulatmhel approach must be applied to the
modeling of one flexible manufacturing system idearto validate this approach for discrete

events systems.



In addition, the system modeled may be changinthithcase, it may be interesting to
use an on line learning rule in order to adaptingral model to the evolution. Another
perspective will be to investigate the advantagesdisadvantages of this reduction model
algorithm comparatively to a complete model. Thepating times will be particularly

studied.
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