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Abstract 

The UGU term was used as a model of the UGT term and its evaluation by numerical quadrature was  

examined systematically with a training set of eight molecules. Minimum numbers of points have been 

determined for radial Gauss-Legendre and angular Lebedev quadratures that preserve the accuracy 

needed for practical applications. These quadratures are recommended for efficient calculation of 

electron scattering by polyatomic molecules.  

____________________________________________________________________________________ 

1. Introduction 

In many technological applications of plasmas, astrochemistry, DNA research, and some other domains 

of applied physics and chemistry, the processes initiated by electron impact have been recognized as an 

important reaction channel.  Modeling these processes requires information on elastic and inelastic 

scattering cross sections of the primary reaction components, intermediates and products. The interest of 

theoretical physicists has shifted therefore considerably from atoms, diatomics and triatomics to larger 

molecular targets.  However, the existing software does not meet actual needs because the calculations 

for somewhat more extended systems are technically difficult, unless the rigor of the theory is sacrificed 

and some approximations are introduced. Also, in contrast to electronic structure calculations, for 

scattering calculations there is no availability of standard and widely used computational methods and 

software. A standard evaluation of the UGT and UGU terms in ab initio calculations of electron 

scattering by polyatomic molecules is numerical quadrature (see for example Winstead et al 1995, 

Rescigno et al 1995). However, in contrast to electronic structure calculations, there are no universal 

tools, such as standard basis sets, that could be applied to different target molecules. The problem of 

numerical quadrature is that the radial points corresponding to high momenta cannot be excluded from 

the integration. These high-momentum radial points require very high angular quadratures, making the 

calculations cumbersome. We and the others have solved (Ingr et al 2000, Čársky and Čurík 2006) this 
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problem by a stepwise extension of the size of quadrature, both radial and angular, hoping  that the 

convergence in calculated cross sections will be achieved before the capacity of available computational 

resources would be exhausted. Success of such an approach depended on the particular molecular target. 

However, the procedure was time consuming and required considerable human effort. The aim of this 

paper is to suggest a more practical and well defined procedure that is based on a moderately large 

quadrature ensuring sufficient accuracy and applicability to large molecules.  

 

2. Computational details 

Our search for the optimum numerical quadrature is based on the assumption that the integrand in the 

UGT term behaves similarly as the integrand in the second-Born terms, and that the optimum numerical 

quadrature found for the latter may also be used for  the former. It is also assumed that for the purpose of 

examination of the numerical quadrature, it is justifiable to calculate the second-Born terms in the static 

(st) approximation because it requires larger numerical quadratures than the exchange part of the 

potential. Hence, the task is to find the optimum quadrature of the principal value of the integral 
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for which we have used the substitution 
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The calculations were performed for a training set of eight molecules: H2O, CH4, CF4, ethylene, propane, 

cyclopropane, benzene and uracil. The optimized geometries, molecular orbital and density matrices 

were obtained by Hartee-Fock calculations with the valence-shell DZP basis set (Dunning and Hay 

1977). Static-potential integrals were calculated by means of density fitting as described previously 

(Čársky 2007 and Čársky 2009).  Integrations were performed with the Gauss-Legendre radial and 
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Lebedev angular quadratures. All calculations were performed for the electron energies of 1, 5, 10 and 

20 eV. 

 

3. Quadrature for the radial coordinate 

Our first task is to find a suitable quadrature with a minimum number of  radial points for the function 

  

F(x) = ∫f(x,Ω)dΩ                                                                                                                                         (5) 

 

defined by Eq. (1). For each radial point in the range -1 ≤  x ≤ 1  and the grid of 0.002 we have used the 

Lebedev angular quadrature with 5810 points (Lebedev and Laikov 1999). This size should guarantee 

that the integration over angular coordinates is of sufficient accuracy for any radial point. In Fig.1 we 

present a plot of this function for the benzene molecule.  
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Figure 1. Plot of the function F(x) defined by Eqs. (1) and (5) for the benzene molecule and the electron 

energy of 10 eV, k1 ║ x and k2 ║ y in the molecular plane xy. The yz plane passes through atoms 1  

and 4.  

 

At the first sight it is seen that in the high-energy range of its argument,  F(x) is not a function suitable 

for numerical integration. Also unfavourable is that the higher x is, the higher should be the number of 
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points in the angular quadrature. However, the uppermost high energy range of x may be disregarded 

because it holds 
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which implies that the integration range can be reduced to -1 + d <  x < 1 - d without any appreciable loss 

in accuracy if d is chosen sufficiently small. We adopted such a truncation of the integration ranges by 

using a new substitution 
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instead of Eqs. (3) and (4).  By setting a larger than 1, the integration range over the radial coordinate is 

reduced from (0,∞) to (kmin, kmax) and the minimal and maximum values of k are given as  
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We assumed nine values for kmax, 100000, 100, 20, 15, 12 ,10, 8, 6 and 5 au, and for each integration 

range (kmin, kmax) we integrated the F(x) function numerically by Simpson method for 1000 radial points.  

Integration was performed for pairs of  k1 and k2 vectors oriented along the x, y and z axes. The principal 

values so obtained were squared and averaged  for  nonequivalent  pairs of  k1 and k2 to give quantities 

resembling differential cross sections (dcs) for scattering angles of  0, 90 and 180º. For H2O,   propane 

and uracil molecules only scattering angles of 90 and 180º  were assumed for testing because for 

molecules with a nonzero dipole moment the differential cross section for forward scattering is not well 

defined in the static approximation.  The error introduced by setting a > 1 was evaluated as 100.(dcs(a = 

1) – dcs(a > 1))/dcs(a = 1). For a values presented in Table 1 this error was less than  1 % for all three 

assumed scattering angles and all eight target molecules from the training set.  
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Table 1 Recommended truncation of the integration range in the Gauss-Legendre radial numerical 

quadrature and number of radial points (Nrad)   

 
 Molecule        k0 (eV)             a         kmin (au)       kmax ( au)       Nrad 

    H2O                1       1.07015          0.009           8        24 

                         5       1.12907          0.037          10        18 

                      10       1.15388          0.061             12        20 

                      20       1.22478          0.122          12        18 

    CH4                1       1.07015          0.009           8        10 

                         5       1.16398          0.046           8        10 

                      10       1.15388          0.061             12        12 

                      20       1.17587          0.098          15        10 

    CF4                1       1.07015          0.009           8        26 

                         5       1.12907          0.037          10        30 

                      10       1.12124          0.049             15        26 

                      20       1.17587          0.098          15        22 

    ethylene              1       1.07015          0.009           8        14 

                         5       1.12907          0.037          10        14 

                      10       1.18754          0.073             10        12 

                      20       1.17587          0.098          15        14 

cyclopropane          1       1.09466          0.012           6        14 

                         5       1.12907          0.037          10        18 

                      10       1.18754          0.073             10        14 

                      20       1.22478          0.122          12        12 

    propane              1       1.09466          0.012           6        14 

                         5       1.12907          0.037          10        18 

                      10       1.18754          0.073             10        20 

                      20       1.27594          0.147          10        18 

    benzene              1       1.09466          0.012           6        18 

                         5       1.10641          0.031          12        20 

                      10       1.24005          0.092              8        18 

                      20       1.27594          0.147          10        18 

    uracil                1       1.09466          0.012           6        18 

                         5       1.12907          0.037          10        38 
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                      10       1.18754          0.073             10        38 

                      20       1.27594          0.147          10        18 

 

As expected, the value of kmax increases with the increasing value of k0, though the optimum a depends 

on the particular molecule and with some molecules the increase in kmax is not monotonous. Still, Table 1 

can be used for an educated guess for a particular molecule and k0 if the optimization of a by numerical 

integration is to be skipped.  Fig. 2 and entries of Table 1 show that setting kmax = 10 au is a good 

compromise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figure 2. Plot of the recommended kmax for cyclopropane and different energies of the incident electron  

 

The next task was to determine the minimum number of radial points for each integration range  

(kmin, kmax) that would preserve accuracy of integration to within a preselected threshold. Second-Born 

principal values P calculated with the number of angular points Nang = 5810 and the number of radial 

points Nrad = 80 were taken as standard. Preserving Nang = 5810 for any radial point, the number of radial 

points was stepwise increased up to Nrad = 40. The principal values so obtained were squared and 

averaged  for  nonequivalent  pairs of  k1 and k2 to give quantities resembling differential cross sections 

(dcs) for scattering angles of  0, 90 and 180º. Again, the k1 and k2 vectors were oriented along x, y, and z 
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axes. The error introduced by radial quadratures with a particular  Nrad was evaluated as 100.(dcs(Nrad = 

80) - dcs(Nrad)/ dcs(Nrad = 80). For H2O and uracil, the molecules with a high dipole moment, the forward 

scattering was disregarded for testing. In Table 1 we present minimal radial quadratures so that the 

defined error was less than 1 % for all pairs k1 and k2 vectors at the three assumed scattering angles and 

all eight target molecules from the training set. The size of the radial quadrature depends strongly on the 

particular molecule. As expected, a higher number of radial points  is needed when a high variation of 

charge density can be expected along the radial coordinate, as it is demonstrated by the pair of molecules 

CH4 and CF4. A high number of radial points for the H2O molecule can be explained by its high dipole 

moment. From the entries of Table 1 it can also be concluded that the number of radial points increases 

with the size of the molecule.  

       The test calculations indicate that the thresholds of 1% for the determination of a and  the number of 

radial points give  results close to the “static-exchange limit”. However, for larger molecules the required 

number of  points in the numerical quadrature may be too high  for calculations to be feasible. Hence, for 

uracil we tested softer thresholds both for the radial and angular quadratures to determine if a less 

rigorous calculation can maintain its predictive power (see below).   

 

4. Angular quadrature  

Having had determined the integration ranges for different electron energies and the minimal numbers of 

radial points, the next  task was to determine the minimal number of angular points for each radial point  

in the integration ranges (kmin, kmax) listed in Table 1. The data obtained with the largest available 

Lebedev quadrature with Nang = 5810  for all radial points were taken as standard against which the 

performance of smaller angular quadratures were tested. The principal value in Eq.(1) was squared and 

averaged  for  nonequivalent  pairs of  k1 and k2 giving the quantities dcsp(Nang = 5810) resembling the 

differential cross sections for scattering angles of  0, 90 and 180º. For H2O and uracil scattering angles of 

only 90 and 180º were assumed. Then for each single radial point p the angular quadrature was 

performed separately for Lebedev quadratures with 38, 50, 80, 110, 146, 194, 302, and 974 points and 

with Nang = 5810 for all points other than p. The principal values were squared and averaged as before 

giving the values dcsp(Nang,p). For each radial point p we required that the error defined as  

)5810(dcs
|)(dcs)5810(dcs|
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p
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p                                                                          (12)              

be smaller than 1 %.  For propane and benzene this requirement was satisfied with the minimum angular 

quadratures presented graphically in Figures 3 and 4.  
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Figure 3.  Graphical representation of angular Lebedev quadratures recommended for propane for 

electron energies of 1 and  5 eV (top)  and 10 and 20 eV  (bottom). The radial quadratures used are those 

given in Table 1. 

 

 

 

 

 

 

 



 9

 
Figure 4.  Graphical representation of angular Lebedev quadratures recommended for benzene for 

electron energies of 1 and  5 eV (top)  and 10 and 20 eV  (bottom). The radial quadratures used are those 

given in Table 1. 

 

These plots show some trends that could be expected. A higher number of angular points is required as 

the radius of the sphere (determined by x and the energy of the incident electron) is increased.  With 

H2O, CH4, CF4, and propane the number of angular points increases with x gradually, with ethylene, 

cyclopropane, benzene and uracil high angular quadratures are also needed for spheres close to k0 (x = 

0). Obviously, each molecule requires a special treatment. Still the overall pattern of plots of Nrad vs. x  

for a particular molecule seems to be preserved for the four energies assumed. This allows to guess 

angular quadratures for different energies.  A low number of angular points can be expected with 

molecules  of a near spherical shape, as is the case of the  CF4 molecule. For the electron energy of 10 
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eV a rather high number of  radial points is needed (see Table 1) but the number of angular points 

needed for 26 radial points is rather low : 12×38, 50, 5×86, 110, 194, 302,  434, 3×974, 434. 

         For the residue radial point k0 , x=0,  a meaningful choice is to use the same number of  angular 

points as for the two neighbouring points with the lowest |x|. 

        For the angular quadratures to be determined as described above, one may expect for total principal 

values (Eq.(1))  errors smaller than 1% owing to a partial cancellation of errors in individual shells. This 

indicates that somewhat softer thresholds could be assumed for fixing the number of points for the 

numerical quadrature. With the uracil molecule we retained the (kmin, kmax) ranges but we relaxed the 

thresholds to 2, 3 and 4% both for radial and angular quadratures. In Fig.5 we present angular 

dependences for the three respective angular quadratures.  The dashed line represents probably the most 

accurate calculation reported so far (Winstead and McKoy 2006) for elastic electron scattering by uracil. 

There is good agreement with our calculation with the largest quadrature. In contrast to our calculation  

 
Figure 5.  Angular dependence of differential cross section for uracil at the electron energy of 10 eV and 

the three numerical quadratures with the total numbers of 10 762 points (solid line), 7946 (dashes and 

dots) and 4202 points (dotted line). The dashed line represents the SEP calculation (Winstead and 

McKoy 2006). 
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their calculation includes polarization, which explains the difference in the range of 40 to 80º, where the 

largest effect of polarization can be expected.  Also the shift of the maximum at 100º  can be assigned to 

polarization. The difference at small scattering angles can be explained by a correction for long-range 

scattering by the dipole (Čársky and Čurík 2006) which was included in our calculation but not in the 

calculation by Winstead and McKoy (Winstead 2009).  

    

5. Summary 

Optimum radial Gauss-Legendre and angular Lebedev quadratures were determined for a training set of  

8 molecules.  Optimization was done by the following procedure. 

1. Use the second-Born term (Eq.(1)) in the static approximation for fixing the optimum quadrature. 

2. Reduce stepwise the integration range for the radial coordinate from (0,∞) to (kmin, kmax) so that the 

error is less than the preselected threshold.  

3.  Fix the highest angular quadrature available (5810 points) for each radial point and increase stepwise 

the radial quadrature until the error in the averaged squares of principal values given by Eq.(1) is less 

than a preselected threshold (1 % in this paper). 

4. For this radial quadrature fix the angular quadrature as described in Section 4.  

5. The threshold of 1%  for radial and angular quadratures gives results close to the ”static-exchange 

limit”.  Softer thresholds of 2 or 3% may be more practical, especially for large molecules.   

          The performance of these fixed quadratures is  tested for elastic and vibrationally inelastic 

scattering in the second  paper of this series (Čársky 2010). The second paper also presents a more 

efficient evalution of exchange integrals. The third paper of this series (Čurík and Šulc 2010) deals with  

a more sophisticated inclusion of polarization by means  of  density functional theory. 
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