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 by increasing the number of configurations in the calculations. Comparisons of the present calculations are made with other theoretical calculations..

Introduction

Ti IV is interesting because the 3p 6 3d ground state may be excited by one-electron excitations to the autoionizing (resonance) states 3p 5 3d 2 and 3p 5 3d 4s which lie above ionization potential of the ground state. These resonances increase the rates of photo-ionization (Schippers et al 2004) and electron ionization (Van Zoest et al 2004) of the 3p 6 3d ground state of Ti IV. They also enhance the rate of photo-recombination in Ti V (Nikolic et al 2009). Kingston and Hibbert have carried out a number of theoretical calculations on many of the basic parameters involved in these processes, such as transition energies, A-values and oscillator strengths. Kingston and Hibbert (2006) used the CIV3 computer code (Hibbert et al 1991) to obtain transition energies, A-values and oscillator strengths for transitions from the 3p 6 3d 2 D ground state of Ti IV to the 3p 6 np 2 P o (n = 4-7), nf 2 F o (n = 4-6), 3p 5 3d 2 2 P o , 2 D o , 2 F o and 3p 5 3d 4s 2 P o . These initial calculations only considered transitions to doublet states and were extended by Kingston and Hibbert (2009) to include transitions to the 3p 6 np 2 P o (n = 4-10), 3p 6 nf 2 F o (n = 4-10) and all of the doublet and quartet states generated from 3p 5 3d 2 and 3p 5 3d 4s functions. The results of these calculations are expected to be more accurate than the earlier calculations.

The 3p 6 4s 2 S excited state of Ti IV is similar to the 3p 6 3d ground state, in that the 3p 6 4s excited state may be excited by one-electron excitation of the 3p electron to the autoionizing (resonance) state 3p 5 3d 4s 2 P o which lies above ionization potential. In order to study this transition Kingston and Hibbert (2008) only used a ground state 3p 6 4s 2 S wave function constructed from orbitals generated by Kingston and Hibbert (2006) and with a variationally determined 4s orbital. The excited 3p 6 np 2 P o (n = 4 to 10), 3p 5 3d 4s 2 P o and 3p 5 3d 2 2 P o wave functions were constructed from orbitals generated by Kingston and Hibbert (2006) plus new 3p 6 np 2 P o (n = 8 to 10) functions. These calculations demonstrated that the transitions from the 3p 5 3d 1 P o 4s 2 P o (J = 1/2 and J = 3/2) states to the ground state 3p 6 4s 2 S have a large A-value of 1.84(11) s -1 . These A-values are in good agreement with the semi empirical calculations of Ryabtsev et al (2005). In the calculations of Kingston and Hibbert (2008) the primary aim was to obtain the A-values of these transitions. These calculations also gave A-values for the 4s to np (n = 4 to 10) transitions. By comparing the large differences between the length and velocity oscillator strengths given by these calculations for the 4s to np transitions it is clear that these particular calculations are not sufficiently accurate.

In the present paper the CIV3 code is used to calculate the length and velocity oscillator strengths and A-values for transition rates between 3p 6 ns 2 S (n = 4 to 10) to 3p 6 mp 2 P o (m = 4 to 10). As the number of configurations used in the present calculations is significantly larger than the number used in the calculations of Kingston and Hibbert (2008), these new calculations should also improve on the earlier calculations on the 3p 6 4s 2 S to 3p 6 np 2 P o (n = 4 to 10) transitions. Section 2 of the paper gives a brief description of the theoretical calculations and also gives the orbitals and configurations used in the calculations. Section 3.1 compares the unmodified calculated energy levels of the ns and np states with experimental values. This section also studies the convergence of the calculated oscillator strengths as the number of excited state functions is increased in the calculation. The oscillator strengths and A-values calculated in the present calculations are given in Section 3.2 where they are compared with earlier calculations. Section 3.3 shows that in certain circumstances the energy of a transition may be obtained directly from the length and velocity oscillator strengths. Finally in Section 4 future developments are discussed.

Theoretical Calculations

The calculations in this paper are similar to those in earlier papers on transitions from the ground 3d states and from the excited 4s state of Ti IV (Kingston andHibbert 2006, 2008). The calculations were carried out using the CIV3 computer code (Hibbert et al 1991). This code assumes that the wave functions Ψ are written in configuration interaction (CI) format which, in LSJ coupling, implies that

Ψ(J π) = = M i 1 a i i Φ (α i L i S i J π) (1)
where π denotes parity. In (1), α i denote other appropriate labeling of the configuration state functions (CSFs) i Φ , for example the orbital occupancy of the electrons. Relativistic effects are included through the following Breit-Pauli operators: spin-orbit, spin-spin, spin-other-orbit, mass correction and Darwin terms. The CI mixing coefficients a i are the eigenvector components of the Hamiltonian matrix with typical elements H i j = i Φ H Φ j , whose eigenvalues E i are the calculated energies of the system. The configuration state functions (CSFs) i Φ are constructed from one-electron orbital functions whose angular momenta are coupled to form total L i S i J in intermediate coupling and which take the form

u(r,σ) = r 1 P nl (r) l m l Y (θ ,φ) s m χ ( σ ) (2)
The radial functions of the one-electron orbitals are expressed as sums of Slater-type orbitals and are obtained variationally by minimizing an appropriate energy eigenvalue, on the basis of the variational principle (see for example Perkins 1965).

The electric dipole oscillator strengths between the 2 S e states and 2 P o states are calculated in both the length f l and velocity f v formulations where

( 2J+1 ) f l = 3 2 ∆E i j M l and ( 2J+1 ) f v = 3 2 M v /∆E i j
(3) ∆E i j ( in au) is the transition energy between the two states i and j. M l and M v are respectively the length and velocity line strengths where

M l = (Ψ i (J i,j π) r k Ψ j (J i,j π))  2 and M v = (Ψ i (J i,j π) ∇ k Ψ j (J i,j π) ) 2 (3.a).
The summation k is over all electrons. In theoretical calculations the difference between f l and f v is often used as an indication of the accuracy of the results. Generally it is assumed that ∆E i j is accurate and if the calculated values of f l and f v do not agree it is often assumed that M l and/or M v are inaccurate. However if M l and M v are calculated accurately, the calculated values of f l and f v would not be accurate if the transition energy is inaccurate.

In the present calculations for the CI wave functions Ψ in (1) of the states labeled 3s 2 3p 6 ns 2 S e (J =1/2) (n = 4 to 10), the LS functions 2 S e , 2 P e , 4 P e , 4 D e were employed. These functions were generated from the following configurations: -3s 2 3p 6 ns, 3s3p 6 ns 2 , 3s 2 3p 4 3d 2 ns, 3s 2 3p 4 ns 2 3d, 3s 2 3p 4 ns 2 4d, 3s 2 3p 4 3d 4d ns (n = 4 to 10) and 3s 2 3p 5 3d mp (m = 4 to 10). All of the orbitals used to generate these configurations, except the ns orbitals (n = 5 to 10), are described in an earlier paper (Kingston and Hibbert 2008). To obtain ns orbitals (n= 5 to 10), the 4s orbital was taken from the earlier paper and the 5s orbital was generated by minimizing the energy of the 3s 2 3p 6 5s function in a calculation which included 3s 2 3p 6 4s +3s 2 3p 6 5s functions. Similarly 6s orbital was obtained by minimizing the energy of the 3s 2 3p 6 6s function in a calculation which included 3s 2 3p 6 4s +3s 2 3p 6 5s + 3s 2 3p 6 6s functions. This process was repeated for the 7s, 8s, 9s, 10s orbitals.

For the 3s 2 3p 6 mp 2 P o (J = 1/2) (m = 4 to 10) states it is necessary to include in (1) the LS functions 2 S o , 2 P o , 4 P o , 4 D o and for the 2 P o (J =3/2) state to include the 2 P o , 2 D o , 4 S o , 4 P o , 4 D o , 4 F o functions. These functions were generated from the following configurations:-3s 2 3p 6 mp, 3s 2 3p 4 3d 2 mp, 3s3p 6 3d mp, 3s 2 3p 5 4f mp ( m = 4 to 10) ; 3s 2 3p 5 3d ns (n = 4 to 10) ; 3s 2 3p 5 3d 2 , 3s 2 3p 5 3d 4d, 3s 2 3p 5 4d 4s, 3s 2 3p 3 3d 4 , 3s3p 5 3d 3 , 3s 2 3p 4 3d 2 4f, 3s 2 3p 4 3d 4f 4s. The orbitals used to generate the 2 P o (J = 1/2) and 2 P o (J = 3/2) functions are described in an earlier paper on Ti IV (Kingston and Hibbert 2006).

Theoretical oscillator strengths and A-values

Preliminary calculations

The configuration interaction wave functions, described in the previous section, were used to calculate the transition energies between the 3p 6 ns 2 S e (J = 1/2) (n = 4 to 10) and the 3p 6 mp 2 P o (J = 1/2 and 3/2) (m = 4 to 10) states of Ti IV. The energy levels (in au) from the 3p 6 4s 2 S e (J = 1/2) state to the 3p 6 ns 2 S e (J = 1/2) (n = 5 to 10) and to the 3p 6 mp 2 P o (J = 1/2 and 3/2) (m = 4 to 10) states of Ti IV, calculated using these configuration interaction wave functions, are given in Table 1. They are compared with the experimental measurements of Ryabtsev et al (2005) and Swensson and Edlen (1974). The energy levels for the 3p 6 ns 2 S e (J = 1/2) (n = 9 and 10) states have not been measured. The energy levels for these states were obtained by extrapolating the 3p 6 ns 2 S e n = 6, 7 and 8 experimental energies.

Table 1 shows that the experimental and theoretical transition energy between 4s ground state and all of the ns excited states differ consistently by approximately 0.004 au but for the 4s to mp transitions the differences are approximately 0.025 au. In an earlier calculation on 4s to mp states (Kingston and Hibbert 2008) the difference between the experimental and theoretical transition energies was less than 0.01 au. This increase in the difference between the experimental and theoretical transition energies for the 4s-mp transitions is due to the introduction of 3s 2 3p 5 3d mp 2 S e functions in the calculations. The earlier paper was chiefly concerned with calculating the large A-values for the 4s to [3p 5 3d 1 P o 4s] 2 P o states; the present calculations do not change the value of those A-values significantly.

For transitions between highly excited states the differences between transition energies given by theory and experiment are relatively large. For example Table 1 shows that the transition energy for the 7s to 7p ( J = 1/2 to J = 1/2) transition obtained by these preliminary theoretical calculations is 0.0439 au which is almost twice as large as the experimental value of 0.0229 au.

For this transition the theoretical transition energy is inaccurate as it is obtained by subtracting two large numbers, the calculated total energy of the 7s state, -849.8457 au, and the calculated total energy of the 7p state, -849.8018 au these give a 7s-7p transition energy of 0.0439 au.

Tables 2 and3 contain length f l and velocity f v oscillator strengths obtained for some (J= 1/2 to J = 1/2) transitions using the wave functions described in the previous section. These calculations can be used to explore errors produced in oscillator strengths by the use of the inaccurate theoretical transition energies in Table 1. The calculations are also used to explore the convergence of calculated oscillator strengths for transitions between excited states, by using an increasing number of state functions in the configuration interaction wave functions (1) in the calculation of the oscillator strengths.

In configuration interaction calculations of the transition rates between excited states of Ti IV a number of different combinations of initial and final wave functions could be employed. For example in a calculation of the 4s to 4p transition rates, results could obtained using only the 4s and 4p state functions in (1), while perhaps more accurate results could be obtained for the 4s to 4p transition rates by including only 4s, 5s and 5p state functions or 4s and 4p, 5p functions or 4s, 5s, 6s and 4p, 5p functions etc. In calculations on the 10s to 10p transitions there are a very large number of different combinations of state functions that may have to be used in the configuration functions (1) to give accurate results.

In order to determine the combination of s state functions with p state functions which will give consistent values for the transition rates two different approaches was adopted. Table 2 gives the results for one approach in which all of the 4p, 5p, 6p, 7p, 8p, 9p and 10p state functions were used in the configuration interaction function of the p states. These configuration interaction functions were used in a series of seven calculations. In this table the first calculation , Type 1 a , only the 4s function was include with all of the seven p functions; in the second calculation , Type 1 b, only 4s and 5s functions were included; Type 1 c, included 4s, 5s and 6s functions; Type 1 d, included 4s, 5s, 6s and 7s functions; Type 1 e, included 4s, 5s, 6s, 7s and 8s functions; Type 1 f, included 4s, 5s, 6s, 7s, 8s and 9s functions; Type 1 g, included 4s, 5s, 6s, 7s, 8s, 9s and 10s functions. Table 2 gives length f l and velocity f v oscillator strengths for nine transitions obtained from these seven different types of calculation.

In an alternative approach (Table 3) all of the 4s, 5s, 6s, 7s, 8s, 9s and 10s state function were used in a series of seven calculations. In the first calculation, Type 2 a , only the 4p state function was include with all of the seven s functions; in the second calculation, Type 2 b, only 4p and 5p functions were included; Type 2 c, included 4p, 5p and 6p functions; Type 2 d, included 4p, 5p, 6p and 7p functions; Type 1 e, included 4p, 5p, 6p, 7p and 8p functions; Type 2 f included 4p, 5p, 6p, 7p, 8pand 9p functions; Type 2 g, included 4p, 5p, 6p, 8p, 7p, 9p and 10p functions. Table 3 gives length f l and velocity f v oscillator strengths for nine transitions obtained from these seven different types of calculation.

Table 2 shows that for almost all of the transitions considered the oscillator strengths f l tends to a constant limit as the number of s state functions is increased in the CI wave function (1) and similarly the f v oscillator strengths tend to a different limit as the number of s functions is increased. For example the limit of f l for the 7s to 7p transition is 1.33 but the limit of f v for the same transition is 3.47(-1). It is important to note that for this transition the large difference between the length and velocity calculations is not due to large errors in the calculation of the length M l and velocity M v line strength (3.a) but is in due to using an inaccurate transition energy ∆E i j given by these initial preliminary calculations in Table 1. If this inaccurate theoretical transition energy of ∆E i j = 0.0439 au for the 7s to 7p transition is replaced in (3) by the experimental transition energy 0.0229 au, the resulting oscillator strength f l is 0.694 and the resulting f v is 0.665. This suggests that the values of M l and M v for this transition are not greatly in error. Similarly for the 9s to 9p transition Table 2 which gives f l = 3.02 and f v = 0.271, by replacing the preliminary transition ∆E i j = 0.03033 au by the experimental energy ∆E i j = 0.00951 au gives f l = 0.946 and f v = 0.865 which give an estimate of the error in the line strengths M l and M v for this transition.

There are a number of interesting patterns in Table 2. For the 4s to 4p transitions f l and f v change very little as the number of ns state functions is increased in the 4s CI wave functions (1). This suggests that for these transitions there is very little increase in the spatial overlap between the 4s and mp states for m> 4. A similar situation arises for the 7s to 7p and 9s to 9p transitions, f l and f v change very little as the number of ns state functions in the CI wave functions (1) increases. This suggests that for these transitions there is very little increase in the spatial overlap between the ms and mp states for m> n. Similarly for two transitions involving the 9s state, 4p to 9s and 7p to 9s,the inclusion of the 10s state function has very little effect on the oscillator strengths. Also for the 4p to 7s transition the inclusion of 8, 9, and 10s state functions has very little effect on the oscillator strengths. For these six ns to mp transitions, in which all of the seven p state functions are used in the configuration interaction functions, the length and the velocity results do not change greatly if the (n+1)s state function is included.

The convergence of the f l calculations as the number of ns states are increased in the 4s to 7p, 9p and 7s-9p transitions is not as good as that for the other transitions studied in Table 2. Consider the large variation of the calculated f l values for one of these transitions, for example, the 4s to 7p transitions, as the number of ns state functions is increased. In these calculations the 7p CI wave function includes 4, 5, 6, 7, 8, 9, 10p state functions. The value of f l changes only a little from the Type 1a calculation to Type 1c calculations, as the number of s state functions is increased from one 4s function to three 4, 5, 6s functions. In calculation Type 1d the introduction of a 7s function greatly reduces the value of f l . The introduction of a 8s function ( Type 1e) increases the value of f l to a value which varies very little as 9s and 10s functions are included in the calculations. This suggests that for the 4s to 7p transition to obtain good overlap between 4s and 7p CI wave functions, it is necessary to include a 8s state function in the 4s CI wave function. This is due to the fact that for a given value on n, the np functions are larger than the equivalent ns function at large values of r and to get a good overlap it is necessary to increase the 4s CI wave function by including an 8s state function. These differences are also accentuated in the length calculations by the fact that the length calculations emphasize large values of r where the overlap between some s and p functions may be small. It is also seen that for these three calculations the velocity calculations converge more rapidly than the length calculations because the velocity matrix element emphasizing the smaller values of r where the s and p functions overlap.

The results given in Table 3 ( where all of the 4,5,6,7,8,9,10s functions are included) differ significantly from those in Table 2 ( where all of the 4,5,6,7,8,9,10p functions are included). The oscillator strengths f l and f v for the ns to mp transitions given in Table 3 all converged when np functions are included in the p CI wave function. For example both of the oscillator strengths f l and f v for the 4p-9s transition both converge if 9p functions are included in the p CI wave function. Table 3 also that, in general, where all seven s functions are available, the oscillator strength for a particular transition varies very little as the number of p functions is increased.

Comparisons of present calculations from other calculations

The results in the previous section suggest that many of the line strengths M l and M v obtained in the preliminary calculations are quite accurate and that the difference between the length and velocity oscillator strengths are due to inaccuracies in the transition energies. Replacing the calculated transition energies by the accurate experimental energies should give more accurate oscillator strengths for some transitions. In the present calculations of f-values and A-values, the calculated transition energy is replaced by a more accurate experimental transition energy by using the fine tuning process of Hibbert (1996). This is a variant of a procedure of Beck and Nicolaides (1977) (see also Nicolaides 2005). In this process, small adjustments are made in certain diagonal elements of the Hamiltonian matrix in order to bring calculated energy differences into close agreement with experimental energy differences. This ensures that the transition energies, used in this paper to calculate oscillator strengths and A-values, do not differ significantly from the experimental transition energies.

Tables 4 a, b, c, d, e, f, g present calculations of the oscillator strengths and A-values for transitions between the 3p 6 ns 2 S e states (n= 4 to 10) and the 3p 6 mp 2 P o (m = 4 to 10) states of Ti IV. The wave functions were adjusted using the fine tuning process so that the transition energies in the calculation do not differ significantly from the measurements of Ryabtsev et al (2005). Experimental transition energies are not available for the 9s and 10s state, so the transitions energies for these two states were obtained by extrapolating the energies given by Ryabtsev et al. Both the length f l and velocity f v oscillator strengths are given as the difference between the values of f l and f v is an indicator of the accuracy of the f-value calculations. Generally in Tables 4 a, b, c, d, e, f and g the values of f l and f v agree to approximately 5% for mp-ns transitions for n = m or n > m. The ratio of f l / f v for the ns to mp transitions decreases very rapidly for small values of n and large values of m. For example the ratio f l / f v for the 4s-5p and 4s-6p transitions is approximately 0.9 but for the 4s-9p and 4s-10p transitions the ratios are 0.5 and 0.03 respectively. For all of the ns to 10p transitions (except the 10s to 10p transition) f l and f v do not agree Due to the lack in convergence in the length calculations as demonstrated in Table 2 for the 4s to 9p transition, the f v results are to be preferred to f l results. The velocity calculations are also to be preferred, because for large values of m, the f v values decrease approximately as (I-∆E 4s--mp ) -1. 5 where I is the ionization potential of the 4s ion and ∆E 4s-mp is the excitation energy from the 4s state to the mp states. This hydrogenic behavior is similar to that found in high m calculations of oscillator strength. Because there are some large inaccuracies in some of the length calculations only the A-value obtained from the velocity calculations are given in Table 4.

Tables 4 a, b, c, d, e also compare the A-values calculated in this paper with recent calculations by Ryabtsev et al (2005) and Zhang et al (2008). Ryabtsev et al (2005) have measured the transition energies in Ti IV for transitions from the3p 6 4s 2 S e state to the 3p 6 mp 2 P o (m = 5 to 10) states and from the 3p 6 4p 2 P o state to the3p 6 ns 2 S e (n = 5 to 8) states. They have used these energies in a semiempirical calculation to obtain A-values for all of these transitions. Zhang et al (2008) employed the Weakest Bound Electron Potential Model (WBEPM) to obtain the A-values for the nine transitions between the 3p 6 ns 2 S e (n = 4, 5, 6) states and the 3p 6 mp 2 P o (m = 4, 5, 6) states.

Table 4 a also gives the f l and f v oscillator strengths for 4s to mp transitions obtained by Kingston and Hibbert (2008). This calculation did not include higher ns states and as demonstrated in Table 2 this gives inaccurate results at high values of m. There is much better agreement between f l and f v for 4s to mp transitions in the present calculations at small values of m; this is due to the introduction 3s 2 3p 5 3d mp 2 S e CI wave functions in the calculations There is some agreement among the A-values calculated in this paper and those calculated by Zhang et al and Ryabtsev et al. but there are also some major disagreements. The WBEPM A-values calculations given by Zhang et al follow the pattern similar to that found in the calculations given in Table 2. This table shows that in the preliminary calculations of the f-values for ns to mp transitions converge to their final converged value if n equals m. If n is not equal to m then in order to obtain a converged value of the oscillator strength it is necessary to include both s and p functions up to the greater of n and m. The present calculations and those of Zhang et al are in good agreement for the 4s-4p, 6s-6p and 6s-6p transitions where n = m. However for the 4s-5p and 4s-6p transitions where n is not equal to m the two calculations differ by a factor of 2 or more.

The difference between the present A-values and those of Ryabtsev et al for the transitions 4s-mp (m = 5 to 10) decreases continuously from approximately 30% for the 4s-5p transition, 20% for the 4s-7p transition to 4% for the 4s-10p transition (except for the 4s-8p transition where the A-value of Ryabtsev et al only differ slightly from their A-value for 4s-9p transition). There is a similar pattern for the 4p-ns (n = 5 to 8) transitions The difference in the present A-values and those of Ryabtsev et al decreases from 15% for the 4p-6s transition to 8% for the 4p-7s transition and to 2% for the 4p-8s transition. Since the methods used in the present theoretical calculations of A-values differ greatly from the methods used in the semiempirical calculations of Ryabtsev et al, it is very difficult to ascertain why the agreement between the two calculations is very good for transitions to highly excited states but the agreement is less good low lying states. One possible explanation is the inclusion in the present work of much more correlation contributions ;these are less important for the higher Rydberg states Although there is not complete agreement between the A-values given by the present calculations and those given by the semiempirical calculations of Ryabtsev et al (2005), the agreement is very satisfying, taking into consideration the very different methods used in the two calculations.

Comments on length and velocity oscillator strengths

The length f l and velocity f v formulation of the oscillator strengths are given by (3), where ∆E is the transition energy and M l and M v are the length and velocity line strengths. If ∆E and M l and M v are accurate f l and f v are equal and so the difference between f l and f v is often used as an indication of the accuracy of the calculated oscillator strengths. In most calculations it is assumed that the transition energy is calculated more accurately than the length and velocity matrix elements. However in the preliminary ab initio calculations (Section 3.1), it is seen that some of the very small transition energies did not agree with the experimental transition energies. Tables 2 and3 show that using the inaccurate energies given by the preliminary calculations can lead to some very large differences in the length and velocity oscillator strengths. However for many transitions there is very good agreement between the length and velocity calculations when these inaccurate transition energies are replaced by accurate experimental transition energies.

It is interesting to study the results that are obtained when inaccurate calculated energies are replaced by accurate experimental energies in calculated oscillator strengths. Consider a calculation in which it is assumed that the transition energy ∆E and the length and velocity oscillator strengths f l and f v are inaccurate but that the line strengths M l and M v are accurate. If the inaccurate transition energy ∆E in (3) is replaced by an accurate transition energy ∆E t in f l and f v , this would give accurate oscillator strengths f l a and f v a which are given by (2J+1)f l a = (2J+1)(∆E t /∆E)f l = so, since f l a and f v a are now equal

(∆E t /∆E) 2 = f v / f l or ∆E t = ∆E (f v /f l ) 1/2 (5).
Hence in a calculation in which M l and M v are accurate but ∆E is inaccurate, a more accurate value of the transition energy ∆E t may be obtained from the calculated values of f l and f v and the inaccurate ∆E, using (5). It is also seen that in such a situation the oscillator f t obtained using ∆E t with M l and M v is given by

f t = (f l f v ) 1/2 (6).
Table 5 gives the transition energies ∆E t and the oscillator strengths f t for J = 1/2 to J= 1/2 transitions in Ti IV between the ns and mp states, n = m and n = 4 to 10, and also the oscillator strengths for the mp to ns transitions with m= 4 to 9 and n = m+1. The expressions given in (5) for ∆E t and (6) for f t were obtained from the ∆E values and the oscillator strengths f l and f v given by the preliminary calculations discussed in Section 3.1. These calculated transition energies and oscillator strengths are compared with the experimental transition ∆E e and the calculated oscillator strengths f v c given in Tables 4 a, b, c, d, e, f, and g. The agreement, for example, between the experimental transition energy ∆E e and the transition energy given by (5) for the 9p to 10s transition is remarkable. In this case the ratio given by the initial calculation (Section 3.1) for f v /f l is 36620. This combines with transition energy given by the initial calculations ∆E = 0.0001092 au in (6) to give an energy ∆E t = 0.02089au which is in good agreement with the experimental energy ∆E e = 0.02082 au.

Conclusions

This paper gives calculated values of the transition energies and the length and velocity oscillator strengths for transitions between the ns and mp states of Ti IV for n = 4 to 10 and m = 4 to 10. The paper highlights a number of problems in these theoretical calculations. One of the major problems is the calculation of the very small transition energies which arise in ns to mp transitions in which n = m, or in which n and m are almost equal. For example the experimental transition energy ∆E(10s to 10p) is 0.00666 au but the transition energy obtained in these calculations is 0.02751 au. This problem can be overcome using the fine tuning process but without experimental transition energies these calculations would not have been possible. It would be interesting to use the results described in section 3.3 to explore the possibility of obtaining better theoretical transition energies if no experimental results are available.

The present calculations also indicate that if n is small the ns to mp length oscillator strengths decrease more rapidly than the velocity oscillator strengths as m increases. It may be possible to lessen this rapid decrease by using more C I functions or by using a single pseudo-state to take account of all higher states. Some experimental measurements of the A-values of any of the ns to mp transitions in Ti IV would be useful.

Table1. Experimental energy levels (in au) compared with preliminary ab initio theoretical energy levels (in au) from the 3p 6 4s 2 S e (J =1/2) to the 3p 6 ns 2 S e (J = 1/2) (n = 5 to 10) states and to the 3p 6 mp 2 P o (J = 1/2 and 3/2) (m = 4 to 10) of Ti IV.

∆E 

Table 2 .

 2 Length f l and velocity f v oscillator strengths calculated using all of the 4p, 5p, 6p, 7p, 8p, 9p and 10p functions. The preliminary ab initio calculated transition energies are used in these calculations. The Type of calculation is described in the text.

	Calculation	Type 1a	Type 1b	Type 1c	Type 1d	Type 1e	Type 1f	Type 1g
		4s	4,5s	4,5,6s	4,5,6,7s	4,5,6,7	4,5,6,7	
						,8s	,8,9s	

Table 3 .

 3 Length f l and velocity f v oscillator strengths calculated using all of the 4s, 5s,6s, 7s, 8s, 9s and 10s functions. The preliminary ab initio calculated transition energies are used in these calculations. The Type of calculation is described in the text.

	Calculation	Type 2a	Type 2b	Type 2c	Type 2d	Type 2e	Type 2f	Type 2g
		4p	4,5p	4,5,6p	4,5,6,7p	4,5,6,7		
						,8p		

Table 4c .

 4c Caption as for Table4but for the 3p 6 6s 2 S e ( J = 1/2 ) state.

				Present calculations		Zhang	Ryabtsev
						et al	et al
	2J+1	∆E	f l	f v	A-value	A-value	A-value

Table 4 d

 4 . Caption as for Table4but for the 3p 6 7s 2 S e ( J = 1/2 ) state.

				Present calculations		Zhang	Ryabtsev
							et al	et al
		2J+1	∆ E	f l	f v	A-value	A-value	A-value
	4p-7s	2-2	0.7521	9.51(-3)	9.70(-3 )	1.76(8)	1.62(8 )	1.75(8)
	4p-7s	2-4	0.7484	9.69(-3)	9.52( -3)	3.43(8)	3.26(8)	3.44(8)

Table 4 e

 4 . Caption as for Table4but for the 3p 6 8s 2 S e ( J = 1/2 ) state.

				Present calculations		Ryabtsev
							et al
		2J+1	∆ E	f l	f v	A-value	A-value
	4p-8s	2-2	0.8237	4.61(-3)	4.86(-3)	1.06(8)	-
	4p-8s	2-4	0.8200	4.74(-3)	4.75(-3 )	2.05(8)	2.08(8)
	5p-8s	2-2	0.3559	1.32(-2 )	1.32(-2 )	5.37(7)	
	5p-8s	2-4	0.3544	1.34(-2 )	1.31(-2 )	1.05(8)	

Table 4f .

 4f Caption as for Table4but for the 3p 6 9s 2 S e ( J = 1/2 ) state.

			Present calculations	
	2J+1	∆ E	f l	f v	A-value

Table 5 .

 5 The transitions energies ∆E (in au) and the length and velocity oscillator strengths f l and f v given by the preliminary calculations in Section 3.1. Using ∆E, f l and f v in ( 6 ) give theoretical transition energies ∆E t and also in (7) give oscillator strengths f t . These calculated values of ∆E t and f t are compared with the experimental transition ∆E e and calculated oscillator strengths f v c given in Tables 4 a, b, c, d, e, f, and g for 2-2 transitions.

	Transition 2J+ 1	∆E	f l	f v	∆E t	∆E e	f t	f v c
	4s-4p	2-2	0.23648	0.3089	0.2434	0.2099	0.2166	0.270 0.268
	5s-5p	2-2	0.10420	0.5576	0.3400	0.08136	0.08293	0.435 0.429
	6s-6p	2-2	0.06148	0.8619	0.3592	0.03965	0.04046	0.556 0.550
	7s-7p	2-2	0.04386	1.3266	0.3474	0.02245	0.02290	0.679 0.678
	8s-8p	2-2	0.03511	2.015	0.3120	0.01382	0.01416	0.793 0.776
	9s-9p	2-2	0.03033	3.023	0.2709	0.00908	0.00951	0.904 0.924
	10s-10p	2-2	0.02751	4.502	0.2270	0.00618	0.00666	1.011 0.936
	4p-5s	2-2	0.36900	0.1483	0.1648	0.3890	0.3849	0.156 0.158
	5p-6s	2-2	0.13942	0.2132	0.2787	0.1594	0.1606	0.244 0.242
	6p-7s	2-2	0.06203	0.2484	0.4435	0.08288	0.08326	0.332 0.331
	7p-8s	2-2	0.02755	0.2407	0.7476	0.04855	0.04865	0.424 0.423
	8p-9s	2-2	0.009915	0.1642	1.598	0.03093	0.03082	0.512 0.515
	9p-10s	2-2	1.092(-4)	3.113(-3)	1.140(2)	0.02089	0.02082	0.596 0.598

∆E t M l and (2J+1)f v a = (2J+1)(∆E /∆E t )f v =

M v /∆E t (4)
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Table 4. Transition energies ∆ E (in au ) and calculated length f l and velocity f v oscillator strengths for optically allowed transitions between the 3p 6 ns 2 S e ( J=1/2 ) (n= 4 to 10) states and the 3p 6 mp 2 P o ( J=1/2 and 3/2 ) (m =4 to 10) states of Ti IV. The A-values ( s -1 ) calculated using f v are also given. Where possible the present A-value calculations are compared with the calculations of Ryabtsev et al (2005) and Zhang et al (2008). In the tables the notation a(b) = a x 10 b is used. In these calculations the fine tuning process (Hibbert 1996) was used to ensure that the transition energies used in these calculations are in good agreement with the experimental transition energies.