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1. Introduction

Rydberg atoms are – amongst others – highly susceptible to external fields and
show a strong mutual interaction [1]. Combining the extraordinary properties of
Rydberg atoms, which originate from the large displacement of the valence electron
and the remaining ionic core, with the plethora of techniques known from the
preparation and manipulation of ultracold gases enables remarkable observations
such as the excitation blockade between two single atoms a few µm apart [2, 3].
Moreover, interacting Rydberg atoms serve as flexible tools for various purposes.
For example, their strong dipole-dipole interaction renders Rydberg atoms interesting
candidates for the realization of two-qubit quantum gates [4,5] or efficient multiparticle
entanglement [6–8]. In fact, only very recently a cnot gate between two individually
addressed neutral atoms and the generation of entanglement has been demonstrated
experimentally by employing the Rydberg blockade mechanism [9, 10].

Other proposals utilize the peculiar properties of an ensemble of interacting
Rydberg atoms by employing an off-resonant laser coupling that dresses ground state
atoms with Rydberg states. For example, a method has been proposed of creating a
polarized atomic dipolar gas by coupling to an electrically polarized Rydberg state [11].
The resulting long-ranged dipole-dipole interaction in such gases are predicted to give
rise to dipolar crystals and novel supersolid phases [12, 13]. In a similar manner, the
Rydberg dressing of ground state atoms is expected to entail a roton-maxon excitation
spectrum in three-dimensional Bose-Einstein condensates [14] and collective many-
body interactions [15]. Here, we discuss a further application for the use of Rydberg
states, namely, how they can be employed for substantially manipulating the trapping
potentials of magnetically trapped 87Rb atoms in a controlled manner.

Inhomogeneous magnetic trapping fields are omnipresent in experiments dealing
with ultracold atoms. Constituting a promising alternative to optical approaches,
even one- and two-dimensional lattices of magnetic microtraps have been realized
experimentally [16–19]. The issue of trapping Rydberg atoms in magnetic traps –
primarily of Ioffe-Pritchard kind – has been studied extensively, demonstrating that
Rydberg atoms can be tightly confined [20,21] and that one-dimensional Rydberg gases
can be created and stabilized by means of an additional electric field [22]. In particular,
the authors demonstrated in a previous work that the trapping potentials of 87Rb
Rydberg atoms in low angular momentum electronic states (i.e., l ≤ 2) considerably
deviate from the behavior known from ground state atoms [23]. This effect is due to
the composite nature of Rydberg atoms, i.e., the fact that they consist of an outer
valence electron far apart from the ionic core.

In the present work we demonstrate how the peculiar properties of the Rydberg
trapping potential can be utilized to manipulate the trapping potential for the ground
state. To this end, an off-resonant two-photon laser transition is employed that dresses
the ground state atoms by their Rydberg states. We thoroughly discuss the coupling
scheme previously employed in [24] and systematically study the resulting dressed
potentials. In particular, it is demonstrated how the delicate interplay between
the spatially varying quantization axis of the Ioffe-Pritchard field and the fixed
polarizations of the laser transitions greatly influences the actual shape of the trapping
potentials – a mechanism that has been been employed also very recently to create
versatile atom traps by means of a Raman type setup [25]. Moreover, the employed
scheme allows us to map the Rydberg trapping potential onto the ground state.

In detail, we proceed as follows. Section 2 briefly reviews the properties of
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Rydberg atoms in a magnetic Ioffe-Pritchard trap as derived in [23]; the resulting
trapping potentials are contrasted with the ones belonging to ground state atoms.
Section 3 then introduces the off-resonant two-photon laser coupling scheme that
dresses the ground state with the Rydberg state. In section 4 we establish a simplified
three-level scheme (opposed to the 32-level scheme that is needed to fully describe
the excitation dynamics) that allows us to derive analytical expressions of the dressed
potentials. Section 5 finally contains a thorough discussion of the dressed ground
trapping potentials for a variety of field and laser configurations.

2. Review of the Rydberg Trapping Potentials

Let us start by briefly recapitulating the results from [23] concerning the trapping
potentials of alkali Rydberg atoms in their nS, nP , and nD electronic states. As
the basic ingredient for magnetically trapping Rydberg atoms, we consider the Ioffe-
Pritchard field configuration given by B(x) = Bc + Bl(x) with Bc = Be3, Bl(x) =
G [x1e1 − x2e2]. The corresponding vector potential reads A(x) = Ac(x) + Al(x),
with Ac(x) = B

2 [x1e2 − x2e1] and Al(x) = Gx1x2e3; B and G are the Ioffe field
strength and the gradient, respectively. The mutual interaction of the highly excited
valence electron and the remaining closed-shell ionic core of a Rydberg atom is modeled
by an effective potential which depends only on the distance of the two particles.
After introducing relative and center of mass coordinates (r and R) and employing
the unitary transformation U = exp

[
i
2 (Bc × r) · R

]
, the Hamiltonian describing the

Rydberg atom becomes (atomic units are used unless stated otherwise)

H = HA +
P2

2M
+

1
2
[L + 2S] ·Bc + S · Bl(R + r)

+ Al(R + r) · p + Hcorr . (1)

Here, HA = p2/2 + Vl(r) + Vso(L,S) is the field-free Hamiltonian of the valence
electron whose core penetration, scattering, and polarization effects are accounted
for by the l-dependent model potential Vl(r) [26] while L and S denote its orbital

angular momentum and spin, respectively. Vso(L,S) = α2

2

[
1 − α2

2 Vl(r)
]−2

1
r

dVl(r)
dr L·S

denotes the spin-orbit interaction that couples L and S to the total electronic angular
momentum J = L + S; the term

[
1 − α2Vl(r)/2

]−2 has been introduced to regularize
the nonphysical divergence near the origin [27]. Hcorr = −µc · B(R) + 1

2Ac(r)2 +
1
2Al(R + r)2 + 1

M Bc · (r ×P) + U†[Vl(r) + Vso(L,S)]U − Vl(r) − Vso(L,S) are small
corrections that are neglected in the parameter regime we are focusing on; the
magnetic moment of the ionic core is connected to the nuclear spin I according to
µc = − 1

2gII, with gI being the nuclear g-factor. In order to solve the resulting coupled
Schrödinger equation, we employ a Born-Oppenheimer separation of the center of mass
motion and the electronic degrees of freedom. We are thereby led to an electronic
Hamiltonian for fixed center of mass position of the atom whose eigenvalues Eκ(R)
depend parametrically on the center of mass coordinates. These adiabatic electronic
surfaces serve as trapping potentials for the quantized center of mass motion.

For fixed total electronic angular momentum J = L+S, approximate expressions
for the adiabatic electronic energy surfaces can be derived by applying the spatially
dependent transformation Ur = e−iγ(Lx+Sx)e−iβ(Ly+Sy) that rotates the local
magnetic field vector into the z-direction of the laboratory frame of reference. The
corresponding rotation angles are defined by sin γ = −GY/

√
B2 + G2(X2 + Y 2),
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sin β = −GX/
√

B2 + G2X2, cos γ =
√

B2 + G2X2/
√

B2 + G2(X2 + Y 2), and
cosβ = B/

√
B2 + G2X2. In second order perturbation theory, the adiabatic electronic

energy surfaces read

Eκ(R) = E(0)
κ (R) + E(2)

κ (R), (2)

where

E(0)
κ (R) = Eel

κ +
1
2
gjmj

√
B2 + G2(X2 + Y 2) (3)

represents the coupling of a point-like particle to the magnetic field via its magnetic
moment µ ∝ J = L + S; κ represents the electronic state under investigation, i.e.,
|κ〉 = |njmj ls〉, gj = 3

2 + s(s+1)−l(l+1)
2j(j+1) its Landé g-factor, and Eel

κ the field-free atomic

energy levels. E
(0)
κ (R) is rotationally symmetric around the Z-axis and confining for

mj > 0. For small radii (ρ =
√

X2 + Y 2 � B/G) an expansion up to second order
yields a harmonic potential

E(0)
κ (ρ) ≈ Eel

κ +
1
2
gjmjB +

1
2
Mω2ρ2 (4)

with the trap frequency defined by ω = G
√

gjmj

2MB while we find a linear behavior

E
(0)
κ (ρ) ≈ Eel

κ + 1
2gjmjGρ when the center of mass is far from the Z-axis (ρ � B/G).

The second order contribution E
(2)
κ (R) stems from the composite nature of the

Rydberg atom, i.e., the fact that it consists of an outer Rydberg electron far apart
from the ionic core. It reads

E(2)
κ (R) = CG2X2Y 2 , (5)

where the coefficient C depends on the electronic state κ under investigation. Since C
is generally negative [23], a de-confining behavior of the energy surface for large center
of mass coordinates close to the diagonal (X = Y ) is found. For a detailed derivation
and discussion of the Rydberg trapping potentials (2-5) we refer the reader to [23].

Trapping Potentials of Ground State Atoms

When considering the trapping of ground state atoms, the coupling mechanism relies
on the point-like interaction of the atomic magnetic moment µ with the external field.
Since the hyperfine interaction easily overcomes the Zeeman splitting for the regime
of magnetic field strengths we are interested in, we include the hyperfine interaction
in our theoretical considerations and assume the atom to couple via its total angular
momentum µ ∝ F = J + I to the magnetic field (I being the nuclear spin). The
ground state trapping potentials correspondingly read

Eκ(R) = Eel
κ +

1
2
gF mF |B(R)| , (6)

where Eel
κ includes the hyperfine as well as spin-orbit effects, and

gF = gj
F (F + 1) + j(j + 1) − I(I + 1)

2F (F + 1)
. (7)

Let us note that for Rydberg atoms the hyperfine interaction Hhfs = AI·J only plays a
minor role since the hyperfine constant A scales as n−3 [28]. For a wide range of field
strengths it is therefore sufficient to treat the hyperfine interaction perturbatively,
giving rise to a mere splitting of the Rydberg trapping potentials (2) according to
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Whfs = Amimj [29]. Correspondingly, we continue to label the Rydberg states by
their j, mj , and mI quantum numbers rather than the F , mF ones. In particular,
for characterizing the Rydberg trapping potentials the j, mj quantum numbers are
sufficient. In our numerical calculations, on the other hand, we fully incorporated
the hyperfine interaction Hhfs of the Rydberg state. Moreover, we also included the
coupling of the magnetic moment of the ionic core, µ ∝ I, to the field. Finally, we
remark that – except for the electronic energy offset Eel

κ – the zeroth order Rydberg
trapping potential E

(0)
nS1/2,mj=1/2(R) and the 5S1/2 ground state energy surface are

identical for F = mF = 2.

3. Off-Resonant Coupling Scheme

In this section, we discuss the coupling scheme of the ground- and Rydberg state
that arises for a two-photon off-resonant laser excitation in the presence of the Ioffe-
Pritchard trap. The off-resonant coupling results in a dressed ground state atom
to which the Rydberg state is weakly admixed. In this manner, the ground state
atom gains properties that are specific for the Rydberg atom. In particular, the
peculiar properties of the Rydberg trapping surfaces can be exploited for substantially
manipulating the trapping potentials of ground state atoms.

We investigate the excitation scheme that is frequently encountered in
experiments [30, 31]: Laser 1, which is σ+ polarized, drives the transition s → p
detuned by ∆1 while a second, σ− polarized laser then couples to the Rydberg state
n ≡ nS1/2, mj = 1/2, mI = 3/2, with s denoting the ground state 5S1/2, F = mF = 2
and p the intermediate state 5P3/2, F = mF = 3. Both lasers are propagating along
the e3-axis in the laboratory frame of reference; the complete two-photon transition is
supposed to be off-resonant by ∆2. A sketch of the whole scheme is provided in figure
1(a). In a Ioffe-Pritchard trap, however, the quantization axis is spatially dependent
and the polarization vectors of the two excitation lasers are only well defined as σ+

and σ− at the trap center. As we are going to show in the following, in the rotated
frame of reference, i.e., after applying the unitary transformation Ur, contributions of
all polarizations emerge and the excitation scheme becomes more involved.

In the dipole approximation, the interaction of the atom with the laser fields is
given by

HAF = −
2∑

i=1

d · Ei(t) =
2∑

i=1

r · Ei(t) , (8)

where the sum runs over the two applied excitation lasers. The electric field
vectors Ei(t) can be decomposed into their positive- and negative-rotating components
according to E(+)

i (t) and E(−)
i (t),

Ei(t) =
Ei0

2
(
εie

−iωt + ε∗i e
iωt

)
(9)

≡ E(+)
i (t) + E(−)

i (t) , (10)

i.e., E(±)
i ∝ e−i(±ω)t. The electric field amplitude Ei0 is connected to the intensity

Ii of the ith laser via Ei0 =
√

2Ii/cε0. We distinguish three different polarization
vectors ε of the excitation lasers, namely, ε± = (e1 ± ie2)/

√
2 and ε0 = e3 for σ±-

and π-polarized light, respectively.
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Figure 1. (a) Idealized level scheme for an off-resonant two photon coupling of the
ground- and Rydberg state of 87Rb. In a Ioffe-Pritchard trap, additional atomic
levels and polarizations contribute away from the trap center, see text. Note
that the hyperfine splittings of the Rydberg level are included in the calculation
although not shown in this figure. (b) Atomic energy level scheme of the 5S1/2

and 5P3/2 states of 87Rb including the hyperfine splittings.

In order to solve the time-dependent Schrödinger equation, the Hamiltonian for
the atom in the Ioffe-Pritchard trap and the laser interaction must be expressed in
the same frame of reference. Hence, the unitary transformations of the previous
section must be applied to HAF as well. The first one, U = exp

{
i
2 (Bc × r) · R

}
,

leaves the interaction Hamiltonian (8) of the atom with the lasers unchanged. The
transformation Ur = e−iγJxe−iβJy into the rotated frame of reference, on the other
hand, yields

UrrU†
r =




x cosβ + y sin γ sin β − z cos γ sin β
y cos γ + z sin γ

x sin β − y sin γ cosβ + z cos γ cosβ


 . (11)

That is, the σ+ and σ− laser transitions that are depicted in figure 1(a) become

ε± · UrrU†
r =

1√
2

[
x cosβ + y sin γ sin β

− z cos γ sinβ ± i(y cos γ + z sin γ)
]
. (12)

Equation (12) can be rewritten in terms of the polarization vectors ε̃± and ε̃0 defined
in the rotated frame of reference. To this end, we rotate the polarization vector ε and
leave the position operator r unchanged: ε · UrrU†

r → (Rε) · r with R denoting the
rotation matrix associated with the transformation Ur. Rε can then be decomposed
into the components ε̃± and ε̃0, i.e., Rε =

∑
i=±,0 ciε̃i with ci = ε̃∗i · Rε. Employing

Rε± =
1√
2




cosβ
sin γ sin β ± i cosγ
− cosγ sinβ ± i sin γ


 (13)

finally yields

ε+ · UrrU†
r =

[
1
2
(cos γ + cosβ − i sin γ sin β)ε̃+
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− 1
2
(cos γ − cosβ − i sin γ sin β)ε̃−

− 1√
2
(cos γ sin β − i sin γ)ε̃0

]
· r , (14)

ε− · UrrU†
r = (ε+ · UrrU†

r )∗. (15)

Thus, in the rotated frame of reference contributions of all polarizations emerge away
from the trap center. In particular, the 5S1/2, F = mF = 2 ground state can also
couple to mF < 3 magnetic sublevels of the 5P3/2 intermediate state. Moreover, two-
photon couplings between the 5S1/2, F = mF = 2 and 5S1/2, F = 2, mF < 2 levels
via the hyperfine levels of the 5P3/2 intermediate state emerge if the first excitation
laser gains a significant contribution of the σ−- or π-polarization in the rotated frame
of reference. On the Rydberg side, also mj = −1/2 states become accessible. As a
results, the simple three-level excitation scheme s ↔ p ↔ n is in general not sufficient
and all relevant hyperfine levels must be included in the theoretical treatment. In
detail, these are the F = 1 and F = 2 hyperfine levels of the 5S1/2 ground and the
nS1/2 Rydberg state. For the intermediate 5P3/2 state we have F ∈ {0, 1, 2, 3}. Of
course, for each F there are in addition 2F +1 magnetic sublevels with |mF | ≤ F . Note
that the intermediate 5P3/2, F < 3 states are split considerably below the 5P3/2, F = 3
levels because of the hyperfine interaction, see figure 1(b). An even stronger splitting
is encountered for the F = 1 and F = 2 hyperfine levels of the 5S1/2 electronic state.
Nevertheless, all these states are taken into account in our numerical calculations,
yielding in total 32 states. Other electronic states are far off-resonant and thus do not
contribute in the excitation dynamics.

The resulting multi-level excitation scheme is solved by employing the rotating
wave approximation while adiabatically eliminating the intermediate states by a strong
off-resonance condition. This procedure results in an effective coupling matrix for the
ground and Rydberg states whose diagonalization yields a dressed electronic potential
energy surface for the center of mass motion of the ground state atom. In the next
section, we derive the coupling matrix for the illustrative example of a simplified three-
level system. The generalization to the full level scheme is straightforward, although
laborious.

4. Simplified Three-Level Scheme

In this section, we restrict ourselves to the three-level system s ↔ p ↔ n, i.e., including
from the transformed dipole interaction (14-15) only the σ+ and σ− part for the first
and second laser, respectively. Such a simplification allows us to derive analytical
solutions of the time-dependent Schrödinger equation and therefore constitutes a
particularly illustrative example. It is expected to be valid for large Ioffe fields B
and/or small gradients G when the quantization axis only shows a weak spatial
dependence and the nS1/2, mj = 1/2, mI = 3/2 Rydberg state is predominantly
addressed via the 5P3/2, F = mF = 3 intermediate state. For higher gradients, the
polarization vector significantly changes its character throughout the excitation area
such that the contributions of other states cannot be neglected anymore.

The three-level system can be further simplified by adiabatically eliminating the
intermediate state p by a strong off-resonance condition, i.e., assuming |∆1| � ωps

and |∆1 − ∆2| � ωnp with ωps and ωnp being the single-photon Rabi frequencies of
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the first and second laser transition, respectively:

ωps =
1
2
(cos γ + cosβ − i sin γ sin β) · ω(0)

ps = ω∗
sp , (16)

ωnp =
1
2
(cos γ + cosβ + i sin γ sin β) · ω(0)

np = ω∗
pn . (17)

ω
(0)
ps = E1,0〈p|ε̃+ · r|s〉 and ω

(0)
np = E2,0〈n|ε̃− · r|p〉 denote the single-photon Rabi

frequency at the trap center. We remark that in the regime of strong Ioffe fields, where
the simplified three-level scheme is valid, the spatial dependencies of (16-17) are largely
negligible. Hence, the single-photon Rabi frequencies are to a good approximation
given by their values ω

(0)
ps and ω

(0)
np at the origin. Employing in addition the rotating

wave approximation, quasidegenerate van Vleck perturbation theory [32] provides us
an effective two-level Hamiltonian for the ground state s and the Rydberg state n:

H2l =
(

∆2 + Ẽn + Ehfs + Vn Ω/2
Ω∗/2 Ẽs + Vs

)
. (18)

Here, Ehfs includes the energy shift due to the hyperfine splitting of the Rydberg state
as well as the Zeeman shift of the nuclear spin. For a detailed derivation of Hamiltonian
(18) we refer the reader to the appendix of this work. Ẽn ≡ 1

2 |B(R)| + C · G2X2Y 2,
Ẽs ≡ 1

2 |B(R)|, and Ẽp ≡ |B(R)| are the trapping potentials of the individual energy
levels. Note that the Rydberg state n experiences the same potential energy surface as
the ground state s, plus the perturbation E

(2)
nS1/2

(R) due to its non-pointlike character.
The laser detunings are defined by ∆1 = Eel

p −Eel
s −ω1 and ∆2 = Eel

n −Eel
s −ω1−ω2.

The effective interaction between the ground- and Rydberg state is given by the two-
photon Rabi frequency

Ω =
ωpsωnp

4

[
1

Ẽs − Ẽp − ∆1

+
1

Ẽn − Ẽp + ∆2 − ∆1 + Ehfs

]
. (19)

On the diagonal of Hamiltonian (18) we find the contributions

Vn = −1
4

|ωnp|2

Ẽp − Ẽn + ∆1 − ∆2 − Ehfs

, (20)

Vs = −1
4

|ωps|2

Ẽp − Ẽs + ∆1

, (21)

which are the light shifts of the Rydberg and ground state, respectively. In the limit
∆1 � ∆2 and neglecting the energy surfaces Ẽi – which means looking at the trap
center – one recovers Ω = −ωpsωnp/2∆1, Vn = −|ωnp|2/4∆1, and Vs = −|ωps|2/4∆1.

The diagonalization of Hamiltonian (18) yields the dressed Rydberg (+) and
ground state energy surfaces (−),

E±(R) =
1
2

[
Ẽs + Vs + Ẽn + Vn + ∆2 + Ehfs

±
√

(Ẽn + Vn − Ẽs − Vs + ∆2 + Ehfs)2 + Ω2

]
, (22)

that serve as trapping potential for the external motion. Here, we are mainly interested
in the dressed potential for the ground state. For large detunings ∆2 � Ω one can
approximate

E−(R) ≈ Ẽs + Vs −
Ω2

4∆2
+

Ω2

4∆2
2

(Ẽn + Vn − Ẽs − Vs) , (23)



Dressing of Ultracold Atoms by their Rydberg States in a Ioffe-Pritchard Trap 9

i.e., the contribution of the Rydberg surface Ẽn to the dressed ground state trapping
potential E−(R) is suppressed by the factor (Ω/∆2)2. Note that any spatial variation
in the light shift Vs and in the Rabi frequency Ω will effectively alter the trapping
potential experienced by the dressed ground state atom.

5. Dressed Ground State Trapping Potentials

In this section, we investigate the dressed ground state trapping potentials arising from
the two-photon coupling described in Section 3. Since the actual shape of these energy
surfaces is determined by the interplay of the various parameters belonging to the field
configuration (B and G) as well as to the laser couplings (ω(0)

ps , ω
(0)
np , ∆1, and ∆2), there

is a plethora of possible configurations. Nevertheless, one can distinguish basically
two relevant regimes based on the magnetic field parameters. First of all, there
is the regime where the ground state trapping potential is substantially influenced
by the admixture of the Rydberg surface. This regime is usually encountered for a
Ioffe dominated magnetic field configuration combined with a relatively strong laser
coupling. In contrast, the second regime is obtained for strong gradient fields. In this
case, the resulting spatially inhomogeneous light shift determines the characteristics
of the ground state trapping potential and the contribution of the Rydberg surface is
of minor importance. Exemplary dressed energy surfaces belonging to both regimes
are discussed in the following. We stress that for determining the dressed trapping
potentials the full 32-level scheme is solved. Comparisons with the analytically
obtained result (22) are provided. Concerning the choice of the Rydberg state n,
a principal quantum number of n = 40 is considered throughout this section.

5.1. Dressed Trapping Potentials of the mF = 2 State

Let us start by investigating the dressed potential arising for the 5S1/2, mF = 2 state
of the rubidium atom. As mentioned before, in zero order this state gives rise to the
same trapping potential as the nS1/2 Rydberg state. Hence, when going from the
non-dressed to the dressed potential, any changes that arise can be mapped directly
to either the higher order properties of the Rydberg trapping potential or the influence
of a spatially dependent light shift.

In Figures 2(a)-(b) the trapping potential of the dressed ground state atom is
illustrated for the configuration B = 25 G, G = 2.5 Tm−1, ω

(0)
ps = 2π × 100 MHz,

ω
(0)
np = 2π × 130 MHz, ∆1 = −2π × 40 GHz, and ∆2 = −2π × 1.5 MHz. In this

strongly Ioffe field dominated case, the contribution E
(2)
40S(R) to the Rydberg trapping

potential E40S(R) is very strong, cf. (2). As a result, the Rydberg potential energy
surface is extremely shallow and does not confine even a single center of mass state
[23]. According to (23), this strong deviation from the harmonic confinement of the
ground state, E5S(R) ∝ 1

2Mω2ρ2, is consequently mirrored in the dressed ground
state potential: Along the diagonal (X = Y ), where the effect of E

(2)
40S(R) is most

pronounced, the trapping potential is gradually lowered compared to the harmonic
confinement of the non-dressed ground state, cf. figure 2(b). Along the axes (X = 0
or Y = 0), on the other hand, E

(2)
κ (R) vanishes and the non-dressed Rydberg and

ground state energy surfaces coincide. As a consequence, the continuous azimuthal
symmetry of the two-dimensional ground state trapping potential is reduced to a
four-fold one, see figure 2(a).
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Figure 2. (a) Contour plot of the dressed ground state trapping potential

for B = 25 G, G = 2.5 Tm−1, ω
(0)
ps = 2π × 100 MHz, ω

(0)
np = 2π × 130 MHz,

∆1 = −2π×40GHz, and ∆2 = −2π×1.5 MHz. (b) Cut along the diagonal X = Y
of the same surface (solid line); the short-dashed line which is on top of the solid
black curve corresponds to the analytical solution (22) of the simplified three level

system. For comparison, the cut along the axis X = 0 – where E
(2)
40S(R) does

not contribute – is also illustrated, which corresponds to the trapping potential
E5S(R) of the ground state (dashed line). (c) and (d) Same as in subfigures (a)
and (b), respectively, but for B = 1 G. In this case, all three curves coincide on
the scale of figure (d). The energy scale of all subfigures is given by the ground

state trap frequency ω =
p

G2/MB.

In addition to the full numerical solution, in figure 2(b) the results of the simplified
three-level scheme according to (22) are illustrated as well (short-dashed line). Since in
the Ioffe-field dominated regime the spatial variation of the quantization axis is minor,
(22) agrees very well with the solution of the full 32-level problem (solid line). This
allows us to recapitulate the above made observations on grounds of the analytical
expressions available within the reduced level scheme. For this reason, let us first
consider the single photon Rabi frequencies as given by (16-17). Because of the strong
Ioffe field, they experience only a weak spatial dependence and are therefore essentially
defined by their values ω

(0)
ps and ω

(0)
np at the origin. As a consequence, also the light

shifts Vn and Vs [cf. (20-21)] as well as the effective two-photon Rabi frequency Ω [cf.
(19)], can be approximated by their values at the origin. Hence, these quantities are
not contributing to the particular shape of the dressed ground state energy surface.
Omitting in this manner all contributions from (23) that merely yield a constant
energy offset, one arrives at

E−(R) = Ẽ5S(R) +
Ω2

4∆2
2

E
(2)
40S(R) + const. (24)

That is, the deviation of the dressed ground state surface from its non-dressed
counterpart is given by

E−(R) − E5S(R) =
Ω2

4∆2
2

E
(2)
40S(R) . (25)

This complies with the observations made before: E
(2)
κ (R) possesses the envisaged

discrete azimuthal symmetry (C4v) and contributes mostly close to the diagonals of the
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two-dimensional trapping surface while vanishing on the axes. Moreover, E
(2)
40S(R) < 0

which agrees with the lowering of the energy surface. Hence, the regime of strong Ioffe
fields in combination with a strong laser coupling allows us to map the specific features
of the Rydberg trapping potential onto the ground state.

In Figure 2(c)-(d) the same dressed trapping potential as before is illustrated,
but now for B = 1 G. The reduction of the Ioffe field strength has basically two
effects. First of all, considering the same spatial range as before the variation of
the quantization axis is stronger. Consequently, the simplified three-level approach
starts to slightly deviate from the exact solution, as can be observed in figure 2(d).
Secondly, decreasing the Ioffe field influences the dressed potential by altering the
Rydberg surface. For B = 1 G, G = 2.5 Tm−1, the Rydberg trapping potential is not
quite as shallow as for B = 25 G, G = 2.5 Tm−1 and now supports a few confined
center of mass states [23]. Consequently, the deviation between the Rydberg and the
ground state surface is not as strong as in the previous case, resulting in a reduced
lowering of the energy surface along the diagonal. Considering the two-dimensional
trapping potential, the azimuthal symmetry is thus nearly recovered. In view of (24)
this can be understood as follows. While the contribution E

(2)
40S(R) is identical for

both cases (it depends only on the magnetic field gradient G rather than on the Ioffe
field strength B), the spatial dependence of E5S(R) is stronger in the case of the
weaker Ioffe field. Hence, for a decreasing Ioffe field the importance of E

(2)
40S(R) is

diminished and the original behavior of the ground state trapping potential E5S(R)
is more and more recovered. Note that this does not imply a smaller contribution of
the Rydberg level to the dressed state. This regime is thus particularly useful if any
change of the trapping surface due to the Rydberg dressing is not desirable but the
admixture of the Rydberg character is still wanted.

Regarding the magnetic field parameters, the previous example represents the
intermediate regime between the Ioffe dominated and the gradient dominated case; the
latter let us investigate in the following. To achieve a strong gradient Ioffe-Pritchard
configuration, we further reduce the Ioffe field to B = 0.25 G and leave the magnetic
field gradient G = 2.5 Tm−1 unchanged. An important aspect of the strong gradient
regime is the contribution of E

(2)
40S(R) to the dressed ground state energy surface.

Already in the case of figures 2(b)-(d) it was indicated that the influence of E
(2)
40S(R)

is diminished if the gradient field becomes more important. Indeed, for the present
field parameters the deviation of the Rydberg trapping potential from the ground
state potential is minor and many center of mass states can be confined. Thus in
the spatial domain we are considering, the continuous azimuthal symmetry of the
ground state trapping potential is conserved and we present in figure 3 only cuts
along the diagonal of the dressed ground state energy surface. The parameters of the
lasers are ω

(0)
ps = 2π × 750 MHz, ω

(0)
np = 2π × 100 MHz, ∆1 = −2π × 75 GHz, and

∆2 = −2π × 5 MHz.
The dashed line in figure 3(a) represents the non-dressed ground state trapping

potential, E5S(R). As one can observe, the two-photon dressing (solid line)
substantially alters this surface by significantly reducing the trap frequency, namely,
from 2π × 638 Hz to 2π × 381 Hz. Although the simplified three-level system derived
in Section 4 is not able to reproduce this result quantitatively, it nevertheless provides
us a qualitative understanding of the underlying physics, as we shall demonstrate in
the following. In the case of a strong gradient field, the light shift Vs experienced by
the ground state atom, (21), shows a strong spatial dependence and therefore cannot
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be omitted in (23). Specifically, it can be approximated for small center of mass
coordinates by

Vs ≈ V (0)
s ·

(
1 −

1
2

G2ρ2

B2

)
, (26)

where V
(0)
s = − 1

4

|ω(0)
ps |2

Ẽp−Ẽs+∆1
denotes the light shift at the origin. Except for constant

contributions, the dressed ground state surface then reads

E−(R) ∝ E5S(R) − 1
2

G2ρ2

B2
V (0)

s (27)

=
1
2
M(ω2 − G2

MB2
V (0)

s )ρ2, (28)

i.e., one encounters a reduced trap frequency ω̃2 ≡ ω2 − G2

MB2 V
(0)
s . Note that the

azimuthal symmetry of E−(R) is conserved; hence the dressed trapping potentials
experienced in this regime are qualitatively different from the one of figures 2(a)-(b).
We stress that (27) only serves for our qualitative understanding of the underlying
physics. In the given regime, it fails to quantitatively reproduce the dressed potentials.
The actual spatial dependence of the light shift is illustrated as the solid line in
figure 3(b). It has been calculated by solving the full 32-level system but without
the contribution of the Ioffe-Pritchard trapping potentials. The combination with the
confinement E5S(R) (dashed line) finally yields the surface of reduced trap frequency
(short-dashed line).

The short-dashed line in figure 3(a) represents the trapping potential for ω
(0)
np = 0,

i.e., in absence of the second laser that couples to the Rydberg state. Remarkably,
turning off the second laser hardly changes the dressed potential. Hence, for the given
example it is the interplay between the spatially varying quantization axis of the Ioffe-
Pritchard field and the fixed polarization of the first laser that determines the spatially
dependent light shift. As in the case of figures 2(c)-(d), this does not mean that the
Rydberg state does not contribute to the dressed state. Hence, in the strong gradient
regime we have two means to manipulate a ground state atom: With the first laser,
one can alter the trapping potential experienced by the dressed atom and with the
second laser we can in addition admix some Rydberg character to the atomic wave
function.

The configuration leading to figure 3 has one drawback: Since the influence of
the spatial dependent light shift on the trapping potential strongly depends on the
coupling strength to the intermediate state, the effective lifetime of the dressed state
is restricted. The issue of the finite lifetime is discussed in more detail in section 5.3.
For now, let us remark that for the particular case of figure 3 a lifetime of ≈ 1ms can
be achieved. Hence, the proposed scheme is suitable for scenarios where a short-term
manipulation of the trapping potential is needed, e.g., for the modulation of the trap
frequency on short timescales.

5.2. Dressed Trapping Potentials of the mF = 0 State

In the discussion above, we focused on the dressed ground state arising from the
mF = 2 magnetic sublevel of the 5S1/2, F = 2 electronic state. Since ultracold samples
of ground state atoms can nowadays routinely prepared and magnetically trapped in
this state, this is a sensible choice. Nevertheless, also different magnetic sublevels
merit a closer look. As an example, we consider in the following dressed states of the
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Figure 3. (a) Cut along the diagonal of the dressed ground state trapping

potential for B = 0.25 G, G = 2.5 Tm−1, ω
(0)
ps = 2π × 750 MHz, ω

(0)
np =

2π × 100 MHz, ∆1 = −2π × 75 GHz, and ∆2 = −2π × 5 MHz. Note that in
this strong gradient regime the trapping potential shows a continuous azimuthal
symmetry, hence the corresponding contour plot is not provided. The trap
frequency of the dressed surface (solid line) is greatly reduced compared to the
trapping potential E5S(R) of the ground state (dashed line). Turning off the

second laser, i.e., setting ω
(0)
np = 0 hardly changes the shape of the potential surface

(short-dashed line, on top of the black solid curve). (b) Spatially dependent light
shift (short-dashed line) that in combination with the energy surface of the ground
state (dashed line) leads to the trapping potential presented in subfigure (a) (solid
line). The energy scale of all subfigures is given by the ground state trap frequency

ω =
p

G2/MB.

mF = 0 state. Note that the latter is untrapped in a pure Ioffe-Pritchard trap, i.e.,
without the coupling lasers. Therefore, one can expect that the influence of the specific
features of the Rydberg trapping potential on the shape of the dressed surface is much
more pronounced than in the case of the mF = 2 dressed state. Both examples
that are presented in the following belong to the strong gradient regime where the
simplified three-level scheme is not valid anymore and the full 32-level system must
be considered.

In Figures 4(a)-(b) the trapping potential of the dressed mF = 0 ground state
atom is illustrated for the configuration B = 1 G, G = 10 Tm−1, ω

(0)
ps = 2π×100 MHz,

ω
(0)
np = 2π × 35 MHz, ∆1 = −2π × 14 GHz, and ∆2 = −2π × 10 MHz. The first thing

to note is that – in contrast to the non-dressed mF = 0 state – the atom experiences a
confining potential that is due to the spatially dependent light shift of the off-resonant
laser coupling. Moreover, Figure 4(a) reveals the four-fold symmetry known from the
Rydberg trapping potential E40S(R). Because the admixed Rydberg surface has not
to compete against a strong magnetic confinement of the ground state according to
µF · B(R), the anti-trapping effect of E

(2)
40S(R) becomes particularly visible in the

dressed potential of the mF = 0 state. In Figure 4(b) once more the cut along the
diagonal of the dressed potential is illustrated (solid line). As expected, the admixture
of the Rydberg surface eventually changes the character of the trapping potential from
confining to de-confining when going to larger center of mass coordinates. However,
for very large coordinates a weak confining behavior is recovered that can be explained
as follows. For such large center of mass coordinates, the contribution E

(2)
40S(R) shifts

the Rydberg state far off-resonant and thereby diminishes the contribution of the
Rydberg level to the dressed state. The slightly confining character of the dressed
potential in this regime is reminiscent of the spatially dependent light shift. Note that
the azimuthally symmetric dressed potential arising in absence of the second laser
(short-dashed line) coincides very well with the two-photon dressed potential along
the axes (dashed line). Hence, the first laser can be used to trap and prepare the atoms
in the mF = 0 ground state. By switching on the second laser, the Rydberg state gets
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Figure 4. (a) Contour plot of the dressed ground state trapping potential for

the 5S1/2, mF = 0 state. The parameters are B = 1 G, G = 10 Tm−1, ω
(0)
ps =

2π×100 MHz, ω
(0)
np = 2π×35 MHz, ∆1 = −2π×14 GHz, and ∆2 = −2π×10MHz.

(b) Cut along the diagonal X = Y (solid line) and along the axis with X = 0
(dashed line) of the same surface; the short-dashed line corresponds to the single-

photon dressing, i.e., ω
(0)
np = 0. For comparison, all curves are offset to zero

at the origin. (c) and (d) Same as in subfigures (a) and (b), respectively, but

for B = 0.1 G, G = 10 Tm−1, ω
(0)
ps = 2π × 150 MHz, ω

(0)
np = 2π × 50 MHz,

∆1 = −2π×15 GHz, and ∆2 = −2π×10 MHz. In subfigure (d) we refrained from
offsetting all curves to zero at the origin but rather applied a common offset such
that the joint asymptote of the solid and dotted line becomes evident. Note that
the detunings are defined in the same way as for the 5S1/2 ,mF = 2 case. The
energy scale in all subfigures is given in terms of the trap frequency. The latter
has been gained by a harmonic fit around the origin, yielding ω = 2π× 25 Hz and
ω = 2π × 187 Hz for the first and second configuration, respectively.

admixed, resulting in the above described significant change of the trapping potential
in the vicinity of the diagonals (X = Y ). Overall, the influence of the Rydberg surface
is much more distinct than in the case of the mF = 2 dressed states, cf. figure 2.

For comparison, we show in figures 4(c)-(d) the dressed trapping potentials of
the mF = 0 state for a more dominant gradient field. The actual parameters
are B = 0.1 G, G = 10 Tm−1, ω

(0)
ps = 2π × 150 MHz, ω

(0)
np = 2π × 50 MHz,

∆1 = −2π × 15 GHz, and ∆2 = −2π × 10 MHz. This configuration results in a much
tighter confinement (ω = 2π × 187 Hz compared to ω = 2π × 25 Hz for the previous
example) and a deeper trap along the diagonals. On the other hand, the revival of
the weak trapping character as previously observed in figure 4(b) for large center
of mass coordinates along the diagonal is lost since the light shift of the first laser
already reached a constant asymptotic behavior in this regime. As discussed for the
previous example, the contribution E

(2)
40S(R) shifts the Rydberg state far off-resonant

and thereby diminishes the influence of the second laser on the excitation dynamics.
Consequently, for large center of mass coordinates close to the diagonal the dressed
surface approaches the asymptotic of the single-photon dressing of the first laser [short-
dashed line in figure 4(d)]. In contrast, along the axes (dashed line) the potential
does not reach a constant asymptote but maintains a weak confining behavior. The
latter is due to the admixture of predominantly mj = 1/2 Rydberg states: Since we
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assumed the two-photon transition to be blue-detuned, the magnetic field interaction
∝ mj |B(R)| pushes the mj = 1/2 Rydberg state closer to resonance and in the same
manner repels its mj = −1/2 counterpart. Hence, the dressed state shows a stronger
admixture of trapped than anti-trapped Rydberg states, giving rise to a confining
energy surface. We remark that the dressed state not only shows contributions of the
Rydberg state. In fact, the first laser slightly mixes the 5S1/2, F = 2, mF = 0 state
with mF 6= 0 states of the same hyperfine level. However, the mF < 0 states are
admixed in the same degree as their mF > 0 counterparts such that their confining
and de-confining characters cancel.

We remark that, as in the case of figure 3, the effective lifetime of the dressed
mF = 0 states is restricted to a few ms due to the coupling to the intermediate state.
The latter is required for the confining light-shift potential of the otherwise untrapped
mF = 0 state.

5.3. Experimental Issues

Let us finish by commenting on the experimental feasibility of the above discussed
scheme. The proposed dressed states possess a finite lifetime due to the spontaneous
decay of the Rydberg state. The associated effective lifetime can be estimated by

τ =
τn

|cn|2
, (29)

cn being the admixture coefficient of the Rydberg state; within the simplified three-
level scheme it evaluates to |cn,3l|2 = [Ω/2∆̃2]2 with ∆̃2 = ∆2 + Vn − Vs + Ehfs. τn

denotes the radiative lifetime of the nS1/2 Rydberg atom and can be parameterized
as τn = τ ′(n − δ)γ where one finds τ ′ = 1.43 ns and γ = 2.94 for l = 0, τ ′ = 2.76
ns and γ = 3.02 for l = 1, and τ ′ = 2.09 ns and γ = 2.85 for l = 2 [33]. For the
40S1/2 Rydberg state, this yields τ40 = 58 µs. In table 1, the effective lifetimes for
the examples presented in this work are tabulated. Because the Rydberg state is only
weakly admixed (|cn|2 < 10−2 for all examples), effective lifetimes greater than ten
milliseconds are obtained. Besides the finite lifetime of the Rydberg state, one needs
in addition to account for the decay of the intermediate 5P3/2 level that possesses a
much shorter radiative lifetime of τp = 26 ns. The resulting effective lifetimes together
with the coupling coefficients are provided in table 1 as well. As it turns out, the
decay of the intermediate state constitutes the dominating loss channel, allowing for
lifetimes & 1 ms.

The resulting lifetimes need to be compared with the timescales emerging in
actual experiments. In case of figure 2(a), it is desirable to map the dressed potential
by the external motion. Given the trap frequency of ω = 2π × 63.8 Hz, this yields
a timescale of about 15 ms which is of the same order of magnitude as the effective
lifetime. For the remaining examples addressed in this work, the effective lifetime is
not quite sufficient to cover the timescale of the external motion. Hence, in these
cases the proposed scheme is more suitable whenever only a short term manipulation
of the trapping potential is required. Finally, we remark that the effective lifetime can
be further prolonged by coupling to Rydberg states with a higher principle quantum
number n and by substituting the intermediate 5P3/2 state by a more long-lived one
such as the 6P3/2 state.

Similar to the effective lifetime, the van der Waals interaction of two Rydberg
atoms is suppressed by |cn|4. The latter interaction results in an energy shift ∆vdW

that depends on the interparticle distance and effectively alters the detuning of the
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Table 1. Effective lifetimes of the dressed states considered in this section. The
lifetimes are determined according to (29) using the Rydberg admixture coefficient
cn of the full 32-level system. When applicable, the admixture coefficient cn,3l

of the simplified three-level system is provided for comparison. In addition, the
admixture coefficient cp of the intermediate state and the resulting lifetime are
given.

Configuration |cn,3l|2 |cn|2 τn(ms) |cp|2 τp(ms)

figure 2(a) 0.004 186 0.004 134 14.0 1.83 × 10−6 14.2
figure 2(c) 0.004 533 0.004 472 13.0 1.84 × 10−6 14.1
figure 3(a) − 0.001 433 40.5 25.2 × 10−6 1.03
figure 4(a) − 0.000 040 1457 12.8 × 10−6 2.03
figure 4(c) − 0.000 154 377 25.2 × 10−6 1.03

two-photon transition. In order to avoid any such effects, ∆vdW should be well below
the the excitation detuning ∆2. Taking cn = 0.1 and ∆vdW < 2π × 0.1MHz as an
(quite restrictive) example yields a minimum interparticle distance of ≈ 1 µm.

6. Summary

In the present work, we investigated a magnetically trapped rubidium atom that is
coupled to its nS Rydberg state via a two-photon laser transition. We studied the
off-resonant case where the ground state atom becomes dressed by the Rydberg state
and vice versa. By this procedure, the peculiar properties of Rydberg atoms become
accessible also for ground state atoms. In particular, we explored how the trapping
potential experienced by a ground state atom in a magnetic Ioffe-Pritchard trap can be
manipulated by means of such an off-resonant laser coupling. It is demonstrated that
in the limit of a strong offset field the four-fold azimuthal symmetry, which is inherent
for the trapping potential of the Rydberg atom, is mirrored in the dressed ground
state trapping potential. In this regime, a simplified three-level scheme is derived
that facilitates the interpretation of the observed results. In the opposite regime of a
strong gradient, the delicate interplay between the spatially varying quantization axis
of the Ioffe-Pritchard field and the fixed polarizations of the laser transitions greatly
influences the actual shape of the dressed trapping potentials. In this manner, the
trapping potentials of ground state atoms can be manipulated substantially.
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Appendix

In this appendix the two-level Hamiltonian (18) is derived. Within the rotating wave
approximation [34] our initial, time-independent Hamiltonian in the simplified three-
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level scheme reads

Hrwa =




∆1 + Ẽp 0 0
0 ∆2 + Ẽn + Ehfs 0
0 0 Ẽs




︸ ︷︷ ︸
≡H0

+




0 ωpn

2
ωps

2ωnp

2 0 0
ωsp

2 0 0




︸ ︷︷ ︸
≡V

.(A.1)

Here, Ẽn ≡ 1
2 |B(R)| + C · G2X2Y 2, Ẽs ≡ 1

2 |B(R)|, and Ẽp ≡ |B(R)| are the
trapping potentials of the individual energy levels and Ehfs includes the energy shift
due to the hyperfine splitting of the Rydberg state as well as the Zeeman shift of
the nuclear spin. The laser detunings are defined by ∆1 = Eel

p − Eel
s − ω1 and

∆2 = Eel
n −Eel

s −ω1−ω2. The second term, V , represents a perturbation that couples
the “model space” {n, s} consisting of the nS1/2 Rydberg and the 5S1/2, F = mF = 2
ground state via the single-photon Rabi frequencies ωps and ωnp, cf. (16-17), to the
one-dimensional orthogonal subspace {p ≡ 5P3/2, F = mF = 3} of the intermediate
level.

We are considering the regime where the intermediate level p is only weakly
coupled to both the ground state s and the Rydberg level n. Such a scenario
allows us to adiabatically eliminate the intermediate state p from the excitation
dynamics. Specifically, if |∆1| � ωps and |∆1−∆2| � ωnp, quasidegenerate van Vleck
perturbation theory provides us a unitary transformation e−G that block diagonalizes
Hrwa [32]. In this manner, the subspace {p} is decoupled from the dynamics of the
model space {n, s}, yielding an effective Hamiltonian H2l = H0+W for the latter. Our
goal is to determine the unitary transformation e−G and hence the effective interaction
W within the model space {n, s}.

The formalism to calculate G and accordingly W is derived in [32], which
we briefly summarize for our system in the following. As shown in (A.1), the
Hamiltonian Hrwa can be divided into a zero-order part H0 and a perturbation
V with zero-order eigenfunctions H0|t〉 = εt|t〉. The set of eigensolutions of H0

can be partitioned into two subsets {t, u, . . .} = {α, β, . . .} ∪ {i, j, . . .}, defining the
model space {α, β, . . .} = {n, s} and its orthogonal complement {i, j, . . .} = {p}.
The projection operator into the model space and its orthogonal complement read
P = |n〉〈n| + |s〉〈s| and Q = 1 − P = |p〉〈p|, respectively. Any operator A can
be partitioned into a block diagonal part AD and a block off-diagonal part AX ,
A = AD + AX . In our case, the perturbation V only possesses block off-diagonal
matrix elements, i.e., VD = 0 and we find HD = H0 and HX = VX .

Within the canonical form of van Vleck perturbation theory, we require G = GX ,
i.e., GD = 0 for the operator determining the unitary transformation e−G. Moreover,
G is an anti-Hermitian operator, G = −G†. It is defined order by order via

[H0, G
(1)] = − VX , (A.2)

[H0, G
(2)] = − [VD , G(1)] = 0 . (A.3)

For higher orders, see [32]; the zeroth order contribution vanishes, i.e., G(0) = 0. The
order-by-order computation of the effective interaction W follows as

W (1) = VD = 0 , (A.4)

W (2) =
1
2
[VX , G(1)] . (A.5)
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Explicit equations for the G(n) can be gained from (A.2-A.3) using the resolvent
formalism. In first order, one finds the matrix representation

G(1)
jα =

Vjα

εα − εj
. (A.6)

Note that per definition there are no block diagonal contributions, i.e., G(n)
αβ = 0. The

second order matrix elements of the effective interaction W correspondingly read

W(2)
βα =

1
2

∑

i

VβiViα

( 1
εα − εi

+
1

εβ − εi

)
(A.7)

=
1
8
ωβpωpα

( 1
εα − εp

+
1

εβ − εp

)
. (A.8)

Hence, the above described procedure provides us an effective two-level system whose
excitation dynamics are determined up to second order by the Hamiltonian

H2l = H0 + W(2) =
(

∆2 + Ẽn + Ehfs + Vn Ω/2
Ω∗/2 Ẽs + Vs

)
(A.9)

where the effective interaction between the ground- and Rydberg state is given by the
two-photon Rabi frequency

Ω =
ωpsωnp

4

[
1

Ẽs − Ẽp − ∆1

+
1

Ẽn − Ẽp + ∆2 − ∆1 + Ehfs

]
. (A.10)

The contributions

Vs = −1
4

|ωps|2

Ẽp − Ẽs + ∆1

, (A.11)

Vn = −1
4

|ωnp|2

Ẽp − Ẽn + ∆1 − ∆2 − Ehfs

, (A.12)

are the light shifts of the ground and Rydberg state, respectively, which stem from
the off-resonant laser dressing of the individual single-photon transitions [35].
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Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip. Phys.
Rev. Lett, 95:170405, 2005.

[17] M. Singh, M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford. One-dimensional
lattice of permanent magnetic microtraps for ultracold atoms on an atom chip. J. Phys. B,
41:065301, 2008 .

[18] R. Gerritsma, S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. Thiele, J. B. Goedkoop,
R. J. C. Spreeuw. Lattice of microtraps for ultracold atoms based on patterned magnetic
films. Phys. Rev. A, 76:033408, 2007.

[19] S. Whitlock, R. Gerritsma, T. Fernholz, R. J. C. Spreeuw. Two-dimensional array of microtraps
with atomic shift register on a chip. New J. Phys., 11:023021, 2009.

[20] B. Hezel, I. Lesanovsky, and P. Schmelcher. Controlling ultracold Rydberg atoms in the quantum
regime. Phys. Rev. Lett., 97:223001, 2006.

[21] B. Hezel, I. Lesanovsky, and P. Schmelcher. Ultracold Rydberg atoms in a Ioffe-Pritchard trap.
Phys. Rev. A, 76:053417, 2007.

[22] M. Mayle, B. Hezel, I. Lesanovsky, and P. Schmelcher. One-dimensional Rydberg gas in a
magnetoelectric trap. Phys. Rev. Lett., 99:113004, 2007.

[23] M. Mayle, I. Lesanovsky, and P. Schmelcher. Magnetic trapping of ultracold Rydberg atoms in
low angular momentum states. Phys. Rev. A, 80:053410, 2009.

[24] M. Mayle, I. Lesanovsky, and P. Schmelcher. Exploiting the composite character of Rydberg
atoms for cold-atom trapping. Phys. Rev. A, 79:041403(R), 2009.

[25] S. Middelkamp, M. Mayle, I. Lesanovsky, and P. Schmelcher. Creating versatile atom traps by
applying near-resonant laser light in magnetic traps. Phys. Rev. A, 81:053414, 2010.

[26] M. Marinescu, H. R. Sadeghpour, and A. Dalgarno. Dispersion coefficients for alkali-metal
dimers. Phys. Rev. A, 49:982, 1994.

[27] E. U. Condon and G. H. Shortley. The Theory of Atomic Spectra. Cambridge University Press,
Cambridge, England, 1935.

[28] W. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher. Millimeter-wave spectroscopy of cold
Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series.
Phys. Rev. A, 67:052502, 2003.

[29] L. Armstrong, Jr. Theory of the Hyperfine Structure of Free Atoms. Wiley-Interscience, 1971.
[30] R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, and T. Pfau.
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