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Abstract.
We consider propagation of optical beams under the interplay of dispersion and

Kerr non-linearity in optical fibres with impurities distributed at random uniformly
on the fibre. By using a model based on the non-linear Schrödinger equation we
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1. Introduction

In this article we consider the evolution of a complex electric field u(x, t) in a non-

linear Kerr media which has constant dispersion and losses and, in addition, impurities

at certain points xn, xn < xn+1, which occur randomly on the fibre. We suppose that

these loss elements cause the “input” signal u(x−
n , t) to abruptly decrease to an “output”

value u(x+
n , t) = e−γnu(x−

n , t), where e−γn < 1 measures the dimming ratio and u(x−
n , t),

say, denotes the limit value from the left. Assuming the validity of the self-focusing

non-linear Schrödinger (NLS) equation (see [1]) as a model of ideal transmission of one-

dimensional beams under the paraxial approximation ‡ we find that the above situation

must be described by a perturbed NLS equation which written in dimensionless units

reads

iux + utt + 2|u|2u = i

[
−Γu +

∑

n

(e−γn − 1)δ(x − xn)u(x−
n , t)

]
, (1)

where the Dirac-delta terms account precisely for the amplitude decrease at impurities;

further Γ ≥ 0 is the normalized loss coefficient. For the sake of avoiding extra

mathematical difficulties we do not consider a compensated loss mechanism; this will

be the subject of a future publication. We also remark that with minor changes our

results may be applicable to other physically interesting systems such as Bose-Einstein

condensates or propagation of optical beams in a nonlocal Kerr media.

It appears that while the effect of continuous random noise —or white noise—

on NLS solitons has been well studied in the literature (see [3, 4, 5, 6, 7]) far less

is known as regards the effects of sudden, discrete random perturbations. We intend

to clarify how these inhomogeneities —which may be relevant for long-distance fibre-

optic communication systems— affect the evolution of the pulse. We remark that

perturbations involving delta masses also appear related to erbium-doped amplifiers

and dispersion management, see [8, 9, 10]. In such a context, the positions of the

amplifiers xn are deterministic and periodically disposed, xn ≡ nx1, while the strengths

are constant and negative, γn = −Γx1. Kodama and Hasegawa [11] generalize the latter

ideas to a random context but, unlike us, maintain the amplifier interpretation and

consider the distribution of the “intensity” of the signal only in the limit when both ∆n

(here ∆n ≡ xn−xn−1 > 0 is the distance between impurities) and γn tend to zero. Thus

while these ideas have some bearing with our work both the physical interpretation and

the mathematical model are quite different.

We begin the study of equation (1) by analyzing first the case when there are

no deterministic losses: Γ = 0, which from a mathematical viewpoint is simpler to

understand. We show that upon performing a change of dependent variable the resulting

formula can be piecewise related to the unperturbed NLS equation. Let us recall here

‡ see also [2] for a good discussion on the Kerr effect and the validity of NLS to model pulse propagation
in non-linear optical fibres
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that the classical NLS equation

iΘx + Θtt + 2|Θ|2Θ = 0, Θ(0, t) = ϕ(t), (2)

was first derived by Zakharov [12] as an equation of slowly varying wave packets of

small amplitude. He showed that despite its non-linear character the corresponding

initial value problem (IVP) can be reduced to a linear problem (the Zakharov-Shabat

spectral problem) by the so called inverse scattering transform (IST) —see [13, 14] for

general background on NLS equation and the IST method. Its interest has been further

underlined by the realization that it also models the evolution of the complex amplitude

of an optical pulse in a non-linear fibre [1]. Applications of NLS equation to optical

communications and photonics are nowadays standard [1, 8, 15, 16].

We devote section 2 to the study of the non-linear dynamics of the classical solitary

waves within this regime, and we show how impurities result in the appearance of

radiation and general broadening of the signal. In particular, we find that solitons may

be destroyed by the action of just one impurity.

When Γ 6= 0 equation (1) is no longer solvable in analytic way by IST; however

we find —see section 3— that the evolution of intensity, momentum and position of

the pulse can be described precisely and that, under certain natural assumptions,

their average values decrease exponentially due to the “impurities”: concretely, we

suppose that positions and strengths of impurities are statistically independent between

themselves; we also suppose that in any interval [0, x] impurities are uniformly

distributed (provided its number is given). Nevertheless the frequency and position

of the pulse are not affected.

In section 4 we study the mean distance for the signal’s intensity to attenuate to

a given level due to the impurities. In applications, this level could be a recommended

threshold value for reliability, say. To this end we formulate a linear integral equation

that this distance satisfies and, by means of a Laplace transform, solve it. Results are

discussed.

2. Method of solution and the loss-less case

Here we solve (1) given arbitrary sequences xn and γn with 0 < xn < xn+1 and γn > 0.

We perform the change of variable u(x, t) = ζ(x)υ(x, t) where we require that ζ(x)

depends only on space and has jump discontinuities at xn and that υ(x, t) be continuous.

By substitution we find that these functions must solve the equations

iυx + υtt + 2ζ2|υ|2υ = 0, (3)

dζ(x)

dx
+ Γζ(x) +

∑

n

(1 − e−γn)δ(x − xn)ζ(x−
n ) = 0. (4)

It follows that ζ(x) is continuous on the intervals (xn, xn+1) wherein it solves equation

(4) with no delta terms; further, it has jump discontinuities at the random points x = xn
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at which ζ(x+
n ) = e−γnζ(x−

n ). Hence if N(x) is the number of defects on [0, x] we have

that

ζ(x) = e−S(x), where S(x) ≡ s + Γx +

N(x)∑

j=1

γj. (5)

Alternatively, S(x) = s + Γx +
∑n

j=1 γj, if xn ≤ x < xn+1. (By contrast, for erbium-

doped fibre amplifiers S(x) = −Γx−nΓx1 if nx1 ≤ x < (n+1)x1, see [9].) Thus S(x) is

a piece-wise linear function with initial value s and jumps at the random points x = xn,

i.e., a pure random point process with drift, well known in the physics literature. For

convenience we take s = 0 hereafter, and until section 4. There we will need to consider

a more general situation where the starting value S(0) is free. In figure 1 we plot a

sample of both S(x) and ζ(x) for a particular choice of the parameter set under this

assumption.
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Figure 1. A sample path of ζ(x) (in red) and S(x) (green line) versus distance (in
Km) showing the distance x for the energy to dissipate to half its initial value. We take
a fibre with mean impurities distance < ∆n >= λ−1 = 1 km, a loss rate 0.02dB/Km
and dispersion distance 50 km, i.e., Γ = 0.1 —which accounts for the seemingly linear
behaviour between jumps.

We shall now focus our attention in the main equation (3). Due to the factor ζ2(x)

this is a generalized NLS equation with x-dependent coefficients and generically non-

integrable. We first consider the simpler case when the loss vanishes: Γ = 0. It turns

out that, even though the resulting equation has random discontinuous coefficients, it

can be piecewise reduced to an integrable equation whereupon we show how to obtain

the evolution of an initial pulse (see [17] for related considerations). The reasoning
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in the rest of this section is essentially independent of the sequences ∆n ≡ xn − xn−1

and γn. Nevertheless we shall suppose that both are sequences of positive, independent,

equally distributed random variables and that ∆n and γm are also independent for all

n, m. Note that all these assumptions are physically well founded as they imply, say,

that the knowledge of the position of a given impurity does not provide any information

on the location of the remaining ones. The further assumption that ∆n is exponentially

distributed: Pr
(
∆n ≥ x

)
= e−λx where λ ≡< ∆n >−1 is a certain parameter, is

natural from physical principles. It has several fruitful consequences as then there

follows that the number N(x) of impurities that occur on [0, x] has Poisson distribution

with parameter λx and that they are uniformly distributed on the interval. It further

implies the memory-less property: the distribution of impurities on (x, x + ∆x] remains

unaffected given that none was observed on [0, x]. By contrast, we consider here a

general probability density function (PDF) h(y) of γn: Pr (y < γn ≤ y + dy) = h(y)dy.

For the sake of being specific let us consider the case when the initial data is

that corresponding to the classical solitary wave pulse (or soliton), namely υ(0, t) =

2η sech (2ηt) e2iξt ≡ ϕ(0)(t) where the real parameters η and ξ give, up to a constant,

the wave’s amplitude and the carrier velocity. † Note that up to the first impurity

υ(0)(x, t) ≡ υ(x, t), 0 ≤ x ≤ x1, solves the IVP

iυ(0)
x + υ

(0)
tt + 2|υ(0)|2υ(0) = 0, υ(0)(0, t) = ϕ(0)(t). (6)

This is the standard IVP for NLS equation and hence the solution for 0 ≤ x ≤ x1 is the

classical soliton

u(x, t) = υ(0)(x, t) = 2η sech (2η(t − 4ξx)) ei[2ξt+4(η2−ξ2)x]. (7)

As commented, we continue this solution to the interval x1 ≤ x ≤ x2 by requiring υ(x, t)

to be continuous at x = x1. This requirement fixes υ(1)(x, t) ≡ υ(x, t), x1 ≤ x ≤ x2, to

satisfy the non-linear partial differential equation

iυ(1)
x + υ

(1)
tt + 2e−2γ1 |υ(1)|2υ(1) = 0, with

υ(1)(x1, t) = 2η sech (2η(t − 4ξx1)) ei[2ξt+4(η2−ξ2)x1].

Remarkably this equation can be reduced again to NLS: by using both temporal and

translational invariance of NLS equation one can prove that

eγ1u(x, t) = υ(1)(x, t) = e4i(η2+ξ2)x1+γ1Θ(x − x1, t − 4ξx1),

where where Θ is the solution to NLS (eq.(2)) with data Θ(0, t) = e−γ1ϕ(0)(t).

Thus the solution u(x, t) to Eq. (1) with data u(0, t) = ϕ(0)(t) is given for

x1 ≤ x ≤ x2 in terms of the solution Θ(x, t) to the NLS equation (2) with data

Θ(0, t) = e−γ1ϕ(0)(t). Notice that, unlike υ(x, t), u(x, t) is not continuous at x = x1.

The determination of the specific form of this last function Θ(x, t) requires solving a

linear spectral problem. The procedure is awkward but fortunately the solution’s main

† We adopt the convention and terminology of standard NLS theory wherein t is space and x a temporal
variable, a situation opposite to that that occurs in Optics.
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features may to a large extent be determined avoiding these complexities. We note

that the solution that evolves from data Θ(0, t) = e−γ1ϕ(0)(t) is no longer a soliton

but a complicated pulse that contains radiation, in addition to the soliton. The former

component has a much weaker rate of decay than the later; concretely, it decays as the

corresponding solution for the linearized Schrödinger equation (i.e. as x−1/2, see [13]).

The prediction of the exact form of the solution past the first impurity is a difficult

matter; however we may say that this pulse will contain radiation and, at most, one

soliton, which will be traveling in the midst of the radiation cloud and interact with the

background. Further, if γ1 & 1.41 the arriving soliton at x = x1 —cf. equation (7)— is

destroyed by the action of the fist impurity after x1. ‡ Hence the resulting configuration

for x > x1 consists solely of radiation. To be specific, suppose that the jump PDF h(·)
has exponential distribution with mean 1/σ. Then, after the first impurity the soliton

disappears with probability bounded below by Pr(γ1 ≥ y) = e−σy, where y = 1.41.

Finally, we mention that by using similar ideas one can extend the solution to

x > xn by solving (3) with data υ(n−1)(x−
n , t), where as before υ(n)(x, t) denotes the

general solution υ(x, t) restricted on xn−1 ≤ x ≤ xn. Translation invariance allows

one to reduce this to NLS equation with new data which involves a contraction factor

e−(γ1+...+γn). Eventually, this dimming of the initial signal results in a disappearance

of the starting solitons into radiation, an indication that, as a result of impurities,

broadening of the signal takes place. We skip the mathematical details.

3. General case with deterministic loss and impurities

When Γ > 0 equation (3) can be mapped into the so called dispersion-managed

NLS equation, which, unfortunately, is not solvable in analytic way, neither by using

IST nor by any other method. It is then remarkable that the evolution of the main

physically observable functionals can be discerned in an exact way. Consider the

following quantities

M(x) ≡
∫ ∞

−∞
|u(x, t)|2 dt,

P (x) ≡ i

∫ ∞

−∞
ū(x, t)ut(x, t) dt, and

Q(x) ≡
∫ ∞

−∞
t|u(x, t)|2 dt,

where M(x) and P (x) are the (accumulated) intensity and momentum of the signal

at a position x, while Q(x)/M(x) ≡ T (x) is the pulse position. The functional

P (x)/M(x) ≡ Ω(x) is interpreted as the pulse-centre frequency. The singular nature

of the delta terms prevent us from determining the relevant evolution by manipulating

‡ This stems from the fact that the condition Ξ2I0 (2Ξ) < 1 on the initial data guarantees that no
solitons will be formed upon evolution [13, 18]. Here I0(·) denotes the modified Bessel function of zero
order and Ξ ≡

∫ ∞
−∞ |Θ(0, t)|dt = πe−γ1 .
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equation (1). Nevertheless, one can rely again in the decomposition u(x, t) = ζ(t)υ(x, t)

and use equation (3). Then, proper manipulation of the latter expressions yields that

M(x) = M(0)e−2S(x),

P (x) = P (0)e−2S(x), and

Q(x) = [Q(0) − 2P (0)x] e−2S(x).

Thus the effect of the presence of impurities results in the addition of a multiplicative

random factor e−2S(x) in both intensity and momentum. Note however that Ω(x) = Ω(0)

and T (x) = [T (0) − 2Ω(0)x], and hence that inhomogeneities have no effect whatsoever

on position and frequency, a fact that accords with the physical intuition.

It is therefore of interest to evaluate the mean amplitude’s decrease. We do so

by first assuming that previously n defects have occurred: N(x) = n. Let E denote

statistical averaging and E
(
ζ2(x)|N(x) = n

)
be the mean value of ζ2(x) knowing that

exactly n jumps have occurred on [0, x]. Note that given this information one has

S(x) = Γx +
∑n

j=1 γj: i.e., only the uncertainty regarding the value of the γj’s remains

but not that associated with the number of summands N(x). In view of the assumed

statistical independence we have that the mean factorizes as

E
(
ζ2(x)

∣∣N(x) = n
)

= E

(
e−2Γx

n∏

j=1

e−2γj

)

= e−2Γx
n∏

j=1

E
(
e−2γj

)
= e−2ΓxQn

2 ,

where Qr ≡ E [exp ( − rγj)] =
∫∞
0

e−ryh(y)dy < 1 is the Laplace Transform of the

jump-size PDF. The mean intensity is obtained by further averaging with respect to the

number of impurities:

E[M(x)] = M0E[ζ2(x)]

= M0

∞∑

n=0

(λx)ne−λx

n!
E
(
ζ2(x)

∣∣N(x) = n
)

= M0e
−[2Γ+λ(1−Q2)]x, (8)

where M(0) ≡ M0 and we used that if ∆j has exponential distribution, i.e., if

Pr(∆j ≥ x) = e−λx for some λ > 0, then N(x), the number of defects on [0, x], is

Poisson distributed: Pr (N(x) = n) = (λx)ne−λx/n!. Hence we obtain that the existence

of defects implies an exponential decrease in the field’s intensity and momentum at a

rate 2λ(1 − Q2), an effect which might result in the degradation of the bit patterns.

This additional decrease is in agreement with the results of section 2 wherein it was

proved that when Γ = 0 impurities dim the initial’s signal amplitude exponentially

which eventually results in the disappearance of the solitons into radiation.

4. Mean half life

A natural related problem of interest is determining the distance x at which M(x)

dissipates from a starting value M0 to a given level M1, i.e., such that M(x) = M1. For
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convenience we set M1 ≡ M0e
−2b and hence require S(x) = b. This distance could be

considered as a threshold value below which the signal is no longer reliable (it gives the

mean half life of the signal if M0 = 2M1). In the deterministic case (λ = 0) this distance

follows inverting M1 = M0 exp ( − 2Γx) as x = 1
2Γ

log M0

M1
. When inhomogeneities are

present x is a random variable whose mean is not obtained by inverting equation (8)

—as it might have been naively thought. Instead, we reason as follows: call xs, see

figure 1, the (random) distance that takes for the generalized process S(x) with initial

value S(0) = s —cf. equation (5)— to go beyond the level b. It turns out (see the

appendix) that X(s) ≡ E(xs) satisfies the linear integral equation

X(s) =
1 − e−λ%

λ
+

λ

Γ

∫ b−s

0

dle
λ
Γ
(s+l−b)

∫ l

0

dyX(y + b − l)h(y), (9)

where % ≡ b−s
Γ

and we recall that h(x) is the density of γn.

This equation can be solved in a closed form by Laplace transformation. We

consider again the case corresponding to a jump PDF also exponential with mean

σ−1 ≡< γn >, i.e., h(x) = σe−σx where σ > 0. If κ = λ + σΓ, Laplace transformation

yields the solution to (9) as

X(s) =
σΓ%

κ
+

λ

κ2

(
1 − e−κ%

)
.

The mean distance for the amplitude to decrease to M1 follows letting s = 0 and

b = 1
2
log M0

M1
as

E(x) ≡ X(0) =
1

2(Γ + λ/σ)
log

M0

M1
+

λ

κ2

[
1 −

(
M1

M0

) κ
2Γ

]
. (10)

Note how our analysis corrects in a significant way the situation corresponding to an

impurities-free medium where x = 1
2Γ

log M0

M1
—a formula which is recovered by setting

λ = 0. Another interesting limit is that of vanishing deterministic loss rate, Γ = 0.

The mean attenuation distance can only be accounted to the presence of impurities and

reads E(x) = 1
λ

+ σ
2λ

log M0

M1
. The first term is the mean time for the first jump at x1 to

happen; the logarithmic correction corresponds to the mean time to go beyond the level

b after the first jump. Actually, this rate rules the mean dissipation distance whenever

M0 >> M1 and λ/σ >> Γ. In figure 2 we perform a plot of this function. Note how,

by contrast, the distance implied inverting equation (8), namely

E(M(x)) = M0 exp

[
−2x

(
Γ +

λ

σ + 2

)]
, and therefore (11)

x =

[
2

(
Γ +

λ

σ + 2

)]−1

log
M0

M1
, (12)

deviates from the correct result, equation (10), and fails to capture the sharp behaviour

occurring for M1 ≈ M0. The error increases as Γ decreases.
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Figure 2. Mean distance in terms of M0/M1 for λ = 2.0, σ = 3.0 while Γ = 0.5 (red
line) and Γ = 0.05 (blue one) as follows from (10). Note how in the latter case X(0)
jumps an amount < ∆n >= 0.5 right after the origin. The green and magenta curves
are the (incorrect) mean distances implied by equation (12) with the above parameters.

5. Conclusions

We have analyzed how the existence of randomly distributed impurities affects the

evolution of an optical pulse in a non-linear Kerr media with constant dispersion and

loss Γ. We suppose that the unperturbed situation is described by NLS equation. When

the deterministic loss vanishes it is shown by changing the dependent variable that the

resulting equation can still be piecewise related to the unperturbed NLS equation. The

effect of impurities in the non-linear propagation is pinpointed. In particular we address

the issue of how they affect the initial solitons and the possibility to dissipate them

into radiation. In the general, non-solvable Γ 6= 0 case we show that while impurities

do not influence the frequency and position of the signal they induce an exponential

decrease of the main physical observables intensity and momentum and hence a general

degradation. We also determine the mean half life or mean distance for the signal to

dissipate to a given threshold value. We find that this distance satisfies a certain integral

equation. Its analysis shows that impurities result in an important decrease in the mean

dissipation distance. To overcome these effects the addition of amplifiers is in order. The

introduction of such a device and the relevant statistical implications will be considered

in a future publication.
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6. Appendix

We sketch the derivation of integral equation (9) (see [19] for similar ideas in a financial

context with Γ = 0). With S(0) = s there are three possibilities for the future evolution:

If the first jump satisfies x1 > % then S reaches the level b at x = %. If this is not the

case and if the jump at x1 satisfies s + Γx1 + γ1 ≥ b then the process goes past b at

x = x1. Otherwise the process still remains within [0, b) at x = x1 and starts afresh

with an initial value S(x1) = s + Γx1 + γ1 < b (hence the process will exit [0, b) at

x1 + xs+Γx1+γ1). Upon appropriate rearrangement this reasoning leads to

xs = %θ(x1 − %) +x1θ(%−x1)+xs+Γx1+γ1θ(b− s−Γx1 − γ1)θ(%−x1).(13)

Averaging this relationship yields first

E
(
%θ(x1 − %) + x1θ(% − x1)

)
=

∫ %

0

e−λldl =
1 − e−λ%

λ

Further by taking an average in the last term of Eq. (13) and conditioning in an

appropriate way one can prove that

E
(
xs+Γx1+γ1θ(b − s − Γx1 − γ1)θ(% − x1)

)
=

λ

Γ

∫ b−s

0

dle
λ
Γ
(s+l−b)

∫ l

0

dyX(y + b − l)h(y)
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