
HAL Id: hal-00569802
https://hal.science/hal-00569802

Submitted on 25 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weakly bound (6s1/2 + 6p1/2)0g Cs2 levels analysed
using the vibrational quantum defect: detection of two

deeply bound (6s1/2 + 6p3/2)0g levels
L Pruvost, H Jelassi

To cite this version:
L Pruvost, H Jelassi. Weakly bound (6s1/2 + 6p1/2)0g Cs2 levels analysed using the vibrational
quantum defect: detection of two deeply bound (6s1/2 + 6p3/2)0g levels. Journal of Physics B:
Atomic, Molecular and Optical Physics, 2010, 43 (12), pp.125301. �10.1088/0953-4075/43/12/125301�.
�hal-00569802�

https://hal.science/hal-00569802
https://hal.archives-ouvertes.fr


cesiumZeroGmoinsv11 lundi 26 avril 2010 17:20 

1 

Weakly bound (6s1/2+6p1/2)0g
- Cs2 levels analysed 

using the vibrational quantum defect. Detection of 
two deeply bound (6s1/2+6p3/2)0g

- levels.  

L. Pruvost1 and H. Jelassi2  

1 Laboratoire Aimé Cotton, CNRS II, UPR3321, bat. 505, Campus d'Orsay, 91405 Orsay 
Cedex, France  

2 Centre National des Sciences et Technologies Nucléaires 2020 Sidi Thabet, Tunisie 

 

Abstract.  

We report on the analysis of the (6s1/2+6p1/2)0g
- weakly-bound levels of Cs2 detected by 

photoassociation spectroscopy. We compare three methods of analysis: the use of the 
LeRoy-Bernstein formula, the use of the improved LeRoy-Bernstein formula and the 
use of the vibrational quantum defect. We show that the vibrational quantum defect 
method is more sensitive than the other methods and allows us to detect two deeply-
bound levels of the (6s1/2+6p3/2)0g

- potential, which are not detected by the others 
methods. The binding energies of the levels are found to be 565.49 cm-1 and 591.43 cm-
1 below the (6s1/2+6p3/2) dissociation limit. 
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1 Introduction 

In the context of the formation of cold molecules prepared with cold atoms, many processes 
have been performed by photoassociation or magneto-association (Dulieu and Gabbanini, 
2009). The photoassociation (PA) is the process which is most often applied. A conventional 
scheme to form cold molecules starts with the PA of a pair of cold atoms to a molecule, in an 
excited state. The next steps to form molecules in an electronic ground state are either the 
spontaneous decay of the excited molecule or the laser induced forced decay. 

In any case, knowledge of the excited state is very important to understand the efficiency of 
the decay or to predict the best scheme to choose in order to form cold molecules. 

Among the efficient schemes, some use an excited molecule whose wavefunction presents 
two regions of large probability. One of them is at large internuclear distance, which favors 
the photoassociation process from atoms (free state) to the excited state (bound state). The 
other region of probability is at short distance, which favors the Franck-Condon factor for 
decay of the excited state to a ground state. Such excited states exist as a combination of 
states of two different molecular potentials, one mainly at long range and the other at short 
range. The combination is produced via a coupling between the two molecular potentials. The 
coupling can be due to the spin-orbit interaction in the molecule or to the hyperfine 
interaction. 

The spectroscopy of excited molecular levels provides data whose analysis allows one to 
detect coupling and therefore coupled states. In this context, PA spectroscopy (proposed in 
1987, and demonstrated in 1993) is one of the most accurate methods, providing accurate 
values of energy levels and of rotational constants (Jones et al. 2006) (Stwalley and Wang 
1999).  

In this paper we compare three methods – the use of the LeRoy-Bernstein formula, the use of 
the improved LeRoy-Bernstein formula and the use of the vibrational quantum defect - for 
analyzing the data (energy levels) of Cs2, obtained by Stwalley’s group, concerning the 0g

- 
levels lying close to the (6s1/2+6p1/2) dissociation limit (Pichler et al. 2004). We show that the 
method using the vibrational quantum defect is very sensitive and allows us to detect coupled 
states. With the available data, we have detected two regions with coupled levels. We have 
located the levels and determined the amplitude of the coupling and the wavefunction mixing. 
This paper completes data analyses presented in the two papers (Pichler et al. 2004, Pichler et 
al. 2006), where the authors used the original LeRoy-Bernstein formula or compared energy 
spacing with numerically calculated energies. With such methods, the authors did not detect 
coupled states, even if the calculation in Pichler 2006 indicates perturbations in energy 
regions when we observed the variations of the vibrational quantum defect. 

The experimental data  

The analysis that we present in this paper concerns experimental spectroscopic data for the 
(6s1/2+6p1/2)0g

- state of Cs2, obtained by Stwalley’s group and reported in table II of reference 
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(Pichler et al. 2004). Stwalley’s group reports on 31 levels detected below the dissociation 
limit. The binding energies of these weakly-bound levels range from 0 to 50 cm-1. 

The energy positions of the levels have been obtained by photoassociation spectroscopy of 
cold cesium atoms provided by a vapor-cell magneto-optical trap. In the PA process, a laser 
excites a pair of cold atoms and creates a molecule in an excited level of the Cs2 molecule. 
This excited molecule decays very rapidly to a molecule in a level of the electronic ground 
state or to two hot atoms. In both decay processes, the products –a molecule or two hot atoms- 
are no longer trapped by the magneto-optical trap and, an atom loss is observed. The PA 
spectra are obtained by recording the atom loss (via the cloud fluorescence) while the laser 
wavelength is scanned. Due to selection rules in the PA process, three symmetries for 
molecular states are observed in the PA spectra starting from atoms in 6s1/2 state. Namely, 0g

-, 
0u

+ and 1g are observed. Due to the very low temperature of the atomic cloud, molecules are 
produced in levels with low J values (J=0 to 4). With the experimental resolution is 0.007 cm-

1 the J lines are resolved and the binding energy of the J=0 level is thus well determined. 

In this paper we consider the J=0 levels of the 0g
- series, and we have not considered any 

rotational effect. In a previous paper we analyzed the data of the 0u
+ symmetry (Jelassi et al. 

2008). Here, with a similar approach, we focus on the 0g
- one.  

A pre-treatment of the experimental data is required to check if the levels are correctly 
identified. We checked the progression of the vibrational levels by plotting the energy 
difference between two consecutives levels versus the energy (figure 1). We plot on the same 
graph the energy spacing to the second neighbor as open dots. The plot of figure 1 is regular 
with a spacing increasing as a power law as a function of the energy except for regions with 
missing levels and for some other levels discussed below. Missing levels are detected because 
the spacing between two consecutive levels is placed on the second plot (spacing to the 
second neighbor). Some levels with binding energy @ 0.788 cm-1, @1.786 cm-1, @4.41 cm-1 
and @ 38.740 cm-1 are not correctly consecutive in figure 1 . We think that these levels do not 
belong to the 0g

- series but probably to another one. We have thus suppressed them and 
considered the new set of 27 data which are listed in table I. The attributed v values given in 
reference (Pichler 2004) have been corrected.  
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Figure 1: difference of the energy between two consecutive levels (dots) and to the second 
neighbor (opened dots) versus the energy. The arrows indicate the levels suspected to belong 
to another series. 

Binding energy [cm-1] v Binding energy [cm-1] v 

0.94 
1.192 
1.49 
2.241 
2.704 
3.234 
3.842 
6.037 
6.923 
7.875 
9.95 
11.006 
12.086 
13.305 

11 
12 
13 
15 
16 
17 
18 
21 
22 
23 
25 
26 
27 
28 

14.63 
17.865 
19.638 
21.517 
23.682 
30.118 
32.395 
34.629 
37.199 
41.756 
44.551 
47.453 
50.498 

29 
31 
32 
33 
34 
37 
38 
39 
40 
42 
43 
44 
45 

Table I: levels exacted from (Pichler et al. 2004) used in this study. 
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2 Analysis using the LeRoy-Bernstein formula and the improved LeRoy-Bernstein 
formula 

2.1 The LeRoy-Bernstein formula. 

In 1970, LeRoy, Bernstein and Stwalley established the energy law for levels of a potential 
varying as -cn/R

n (R>0) (LeRoy and R. B. Bernstein 1970; Stwalley 1970), The result relies 
on the use of the WKB (Wentzel – Kramers – Brillouin) method, and the Bohr-Sommerfeld 
quantization. First they have calculated the density of states. They have shown that in the 
energy region close to the dissociation limit, the density of states is given by an analytical 
expression which is a power law formula versus the binding energy. Then, in that case, the 
binding energy of each level is deduced from the density of states by integration over the 
energy variable. Because of the restriction of the WKB method, the result is only valid for 
weakly-bound levels. If ε denotes the binding energy of the level numbered by v, one gets by 
the so-called LeRoy-Bernstein (LRB) formula  
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In formula (1), vD is a constant, whose integer part gives the number of states and En is a 
factor given by formula (2) and depending on the cn coefficient and the reduced mass µ. Γ 
indicates the gamma function. 

The LRB formula has been extensively used to analyze molecular spectroscopy in energy 
ranges close to dissociation limits. The analyses were mainly fits of data plotting v versus the 
energy of the levels - using this formula and providing the value of En, thus values of cn, for a 
given molecular series. 

2.2 Expected value for E6 of the 0g
- state  

For alkali-metal dimers, the asymptotic forms of the potentials are well-known because they 
are derived from the atomic dipole-dipole interaction. The form is –c3/R

3 or –c6/R
6 depending 

on the symmetry of the molecular state. In the Hund case (c), the 0g
- potential curve, 

converging to (6s1/2+6p1/2) dissociation limit is asymptotically described by  

V(R) = –c6/R
6        (3) 

Where R is the internuclear distance and c6 a coefficient given by  

3

2

3A

4C
=c 66

2
3

6

ΣΠ ++ CC
      (4) 
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In formula (4), A is an energy constant related to the fine structure of the cesium atom first p 
level by 3A/2=E(6p3/2)-E(6p1/2) and Cn coefficients are related to the atomic wavefunctions. 

For instance, C3 is given by 3/66
2

3 prsC = . 

The value of A can be calculated using Steck data tables (Steck http://steck.us/alkalidata) and 
references therein: A=1.68292×10-3 a.u. The value of C3 has already been discussed in 
reference (Jelassi et al. 2008), where we have compiled all the data available in the literature. 
Using 14 data we have concluded that C3=10.0391±0.0009 a.u. The first part of c6 is 4C3

2/3A 
= 79847.9 ±14.31 a.u. 

The values of C6
Π and C6

Σ, found in the literature are listed in the table II. With the values 
given in reference (Marinescu and Dalgarno 1995) (C6

Π=11830 a.u., C6
Σ=17390 a.u.) one 

obtains (2C6
Π+C6

Σ)/3 =13683 a.u. As a consequence, the value of c6 (the minimum one) is c6= 
93.531×103 a.u. and the value of E6 (the maximum one) is E6= 6.8966×10-4 cm-1.  

Including the dispersion of the values observed in table II (except the 1984 and 1985 results), 
we would obtain c6= (9.3732±0.0229) ×105 a.u and E6= (6.8825±0.0084)×10-4 cm-1. 

 

C6
Π (103 a.u.) C6

Σ (103 a.u.) c6 (105 a.u.) E6 (10-4 cm-1) reference 

13.21 19.81 9.5257 6.8338 (Vigné–Maeder, 
1984.) 

18.61 26.09 10.0951 6.6383 (Bussery and Aubert-
Frecon,. 1985) 

11.83 17.39 9.3531 6.8966 (Marinescu and 
Dalgarno, 1995) 

11.80  17.65  9.3598 6.8942 (Amiot et al.  2002) 

11.76  18.2  9.3754 6.8884 (Amiot et al.  2002). 

12.18 18.23 9.4045 6.8778 (Bouloufa, et al. 2007) 

11.8925 ±0.1930 17.8675 ±0.415 9.3732±0.0229 6.8825±0.0084 Mean value (95-07) 

13.2317±2.6912 19.5617±3.3069 9.5189±0.2893 6.8382±0.1006 Mean value (all)  

Table II: values of C6
Π and C6

Σ  found in the literature. Corresponding c6 and E6 values. 

2.3 Application of LRB formula to Cs2 0g
- data 

The data given in table I have been fitted using the LRB formula for n=6. In order to take into 
account an eventual energy shift, denoted ε0, due to an eventual uncertainty about the 
dissociation limit, the fitting formula used was  

3/1
0 )(

6

0

Evv εε −+=        (5) 
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The fitting procedure has been done in two cases, assuming either ε0=0 or not. Results of the 
fits are given in table III. Even though the fit #2 has a better χ2 value, the E6 parameter is not 
in agreement with the expected value, given in the previous section, and differs by about 30 
%. Such a discrepancy has already been observed for rubidium data (Jelassi et al. 2006a) and 
has been explained by an additional term in the LRB formula because of the incomplete 1970 
LRB model. We also notice oscillations in the fit  residual (see figure 2). The oscillations in 

the fit residual are also signatures of perturbation due to another series. In both figures 2 (a) 

and 2(b) (see next section) they occur in the vicinity of 11 cm
-1

 and 37 cm
-1

. We will show in 

section 3 that the positions are those of perturbing levels 
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Figure 2: (a) data of table I versus the binding energy (dots) fitted by the LRB formula (grey 
line), and the residual of the fit (bottom cirve). (b) the same using the improved LRB formula. 

 

 Fit #1 Fit #2 Fit #3 

χ2 0.0571 0.02729 0.01598 

E6 x10-4 cm-1 5.179±0.069 4.723±0.095 6.5502±0.0488 

v0 -1.48±0.14 -2.89 ±0.29 -0.113 ±0.588 

ε0 0 0.368±0.076 0.0466±0.094 

γ 0 0 0.04978±0.0109 

Table III: results of the fitting procedures  

2.4 Improved LRB formula. 

The reexamination of the LRB formula has first been done by Comparat (Comparat 2004), 
and then by our group, in a slightly different way (Jelassi et al. 2006, Jelassi et al .2008b). 
Both works show that an additional term has to be added to the LRB formula in order to 
include short range effect of the potential. The first additional term is linear with the binding 
energy. The improved LRB formula is thus  
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where γ is the slope parameter which characterizes the correction due to the potential at small 
R values. The relation between γ and the short range potential is described in reference 
(Jelassi et al 2006a) and illustrated with some models. 

The improved LRB formula has been successfully applied for alkali data, for instance 0g
- and 

0u
+ symmetries (Jelassi et al. 2006a; Jelassi et al. 2006b; Jelassi et al 2007; Jelassi et al. 2008). 

This model also explains the slope in the plot of the vibrational quantum defect versus the 
energy. 

We have used the improved LRB formula to analyze data of table I, and fitted them with the 
following formula 

)()( 0
3/1

0 6

0 εεγεε −++= −
Evv  

As indicated in table III, the fit is better than in the case of original LRB formula. The χ2 is 
reduced by a factor 2 compared to the previous fit. As shown in figure 2(b) the improved LRB 
formula allows us to reduce the residue of the fit for small and large binding energies. The 
value of E6 delivered by the fitting procedure is close to the expected one. It differs only by 
5% of the expected value calculated in section 3.2. Nevertheless, as it is shown in figure 2(b) 
the residue curve of the fitting procedure presents some oscillations. They are signatures of 
imperfections in the applied model. 

3 Analysis using the vibrational quantum defect 

3.1 Method 

The imperfections of the LRB model can be analyzed by using the vibrational quantum defect 
approach. This approach, described in reference (Jelassi et al 2006a), is similar to the quantum 
defect theory previously used for Rydberg states of atoms and molecules.  

The empiric use of the quantum defect approach consists first in converting the binding 
energy to an effective quantum number. For that, the levels are assumed to be described by a 
quantized energy law. In the case of Rydberg atoms, the law is the Rydberg one. In the case of 
vibrational long range levels, lying close to the dissociation limit, the law is the LRB one. In a 
second step, the effective quantum number is analyzed by its non integer part, which defines δ 
the quantum defect. The variation of δ is plotted versus the binding energy. The variation 
eventually shows the core effects or the presence of perturbing levels.  

In our case, the energy levels are first converted to an effective vibrational quantum number 
by the relation  

3/1)(*
6Ev ε=  
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which is the LRB law. Then the vibrational quantum defect is defined as the non-integer part 
of v* as  

*]int[* vv −=δ  

As soon as a set of data satisfied the LRB law, then the quantum defect is constant versus the 
energy and equal to int[vD]. Otherwise, the variation of δ versus the energy shows the 
discrepancies relative to the given law, here the LRB law. 

The application of the definition of v* requires a good knowledge of the binding energy, ε, 
and of the E6 parameter. As shown in section 3.2, the value of E6 is correctly known.  

Knowledge of the binding energy requires a correct definition of the dissociation limit. As we 
have already discussed in section E of reference (Jelassi et al. 2008), the dissociation limit has 
to be defined relative to the (6s1/2+6p1/2) limit. Taking into account the hyperfine splitting is 
thus necessary to adjust the binding energy to the correct potential. To respect this limit we 
have shifted the values of table I by 0.168 cm-1. This value is equal to 2∆hf1+∆hf2, where ∆hf1is 
the hyperfine shift of 6s1/2F=5 and ∆hf2 is the hyperfine shift of 6p1/2F′=4.  

The vibrational quantum defects extracted from table I (shifted by 0.168 cm-1) are plotted 
versus the energy in figure 3. For this figure we have defined the quantum defect using the 
modulo 3, and not modulo 1, as it is defined in the formula. Such a definition is helpful to 
exhibit the variation of δ. The plot exhibits three plateaus separated by two regions with a 
strong variation in the vicinity of 11 cm-1 and 35 cm-1. The plateaus are not exactly horizontal. 
Instead, the profile of the curve exhibits a linear increase, due to the linear term of the 
improved LRB formula. 
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Figure 3: vibrational quantum defect versus the binding energy. 

 

The rapid variations –steps- in such profiles are well-known in the physics of Rydberg states. 
They are the signatures of perturbing levels, belonging to another series which is coupled to 
the considered one. The steepness of the steps is connected to the coupling amplitude and to 
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the energy spacing of the coupled levels. Levels which are nearly resonant induce a steep step, 
even if the coupling is weak. 

In the present case, we believe that we observe the perturbations of the (6s1/2+6p1/2)0g
- levels 

due to levels (two levels) of the (6s1/2+6p3/2)0g
- series, which is coupled to the (6s1/2+6p1/2)0g

- 
levels due to the spin-orbit interaction. 

A similar observation is reported at the end of section 4, in the reference (Pichler et al 2006) 
for calculated energy levels. The authors mention that the potentials are not coupled at long 
range distance and propose an explanation of the coupling due to interaction at the inner 
repulsive wall. They have not observed the coupling in the experimental data by using a 
conventional method. The explanation for the coupling is reasonable because in the studied 
energy region, we explore deeply bound levels of the (6s1/2+6p3/2)0g

- potential. 

Our approach does not permit to identify the origin of the coupling - namely long or short 
range- or if the molecular potential converging to the (6s1/2+5d3/2) limit plays an important 
role or not. Our approach allows us to determine an effective value of the coupling in the 
considered energy range (see the next section) and also the location of the perturbing levels. 

3.2 Model to locate the perturbing levels  
Figure 4 shows a usual plot of δ versus the energy. In that representation, which is close to a 
Lu-Fano graph, δ is defined modulo 1 and varies from 0 to 1. The steps observed in figure 3 
appear as vertical lines in figure 4. 

To interpret the observed profile, to determine the location of the perturbing levels and to 
characterize the coupling between the series, several models of two coupled series are usually 
applied. The simplest one assumes two series of regularly spaced levels, the energy spacing 
being denoted ∆1 and ∆2, which are coupled via a coupling assumed to be constant and 
denoted V (Demkov and Ostrovsky 1995). Even though this model is very simple, it is the 
root of others, which are more complicated, but start from a similar idea. A mathematical 
development of the model, which is given in reference (Jelassi et al. 2008) leads to an 
expression of the coupled system by a coupling equation, 

21
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where ε is the energy, E1 and E2 are energies of unperturbed levels belonging respectively to 
the series 1 and 2. If V=0, the solutions are ε=E1+p∆1 and ε=E2+q∆2 (p and q being integers). 
For small values of V, the solutions for ε are close to these solutions, except when two levels 
(one of each series) are nearly resonant. 

The coupling equation is easily adapted if the levels are not regularly spaced. The quantity (ε-
E1)/∆1 is replaced by δ-µ, where δ is the quantum defect and µ the quantum defect at zero 
energy. In the situation where ∆2>> ∆1 the coupling equation can be applied locally, i.e. over 
an interval [E2- ∆2, E2+ ∆2]. Finally, the strength of the coupling is usually evaluated by 
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comparing V2 and ∆1∆2 (as in a two level problem) and is quantitatively given by a 
dimensionless parameter K=V/( ∆1∆2)

1/2, with a strong coupling corresponding to K~1.  

The coupling equation used to fit the plot of figure 3 is  

[ ] 22

2

2tan)(tan K
E πεπµδπ =








∆
−×−  

In addition, the linear variation (see the improved LRB model) of the quantum defect is 
considered by adding µ=µ0−γε. The fitting procedure, given by the grey line in the plot, 
provides the following values: µ0=0.645±0.022; γ=0.01345±0.0012; 2E =11.45±0.28 cm-1; 

∆2=25.94±0.58 cm-1; K=0.1716±0.01.  
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Figure 4: Vibrational quantum defect (dots) versus the energy, shifted by 0.12 cm-1 (note) 
Fitting curve (gray line) obtained with the parameters indicated in the text. 

 

Such a model and procedure allow us to locate two levels of the (6s1/2+6p3/2)0g
- series: 

@11.45 cm-1 and @37.39 cm-1 below the (6s1/2+6p1/2) dissociation limit. This result is in 
agreement with the observation done in the reference (Pichler et al. 2006). 

Adding the fine structure of the cesium atom, the two levels are respectively @565.49 cm-1 
and @591.43 cm-1 below the (6s1/2+6p3/2)0g

- dissociation limit. We have found no 
experimental data concerning molecular levels of (6s1/2+6p3/2)0g

- in this energy region. A 
calculation using the inner well of the potential curve would probably confirm our 
observation. Even if the positions of the two levels are not perfectly reproduced by the 
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calculation, it would be interesting to look at the spacing between them. We think that our 
observation could provide a way to adjust the depth of the (6s1/2+6p3/2)0g

- potential. 

3.3 Use of the fitting parameters to determine the wavefunction mixing. 

The model provides fitting parameters which characterize the non-perturbed series. The series 
denoted 1 has levels whose energies satisfied the (ε/E6)

1/3=i+µ0-γε where i is an integer. 
Concerning the series denoted 2, the approach has given the location of two levels, namely 
E2,1=11.45 cm-1 and E2,2=37.39 cm-1. The fitting procedure also provides the value of K, 
therefore the value of V. 

A matrix representing the coupled systems can be built as 



























=

...000

000

000

000

...0

...0

3

2

1

2,2

1,2

VV

VV

VV

VV

VVVE

VVVE

H

ε
ε

ε
 

Where εi are the solutions of (εi/E6)
1/3=i+µ0-γε. Because of the small value of γ, we can use 

the approximation εi≈E6(i+µ0-γE6(p+µ0)3)3. The diagonalisation of H provides the 
wavefunction mixing. 

In a crude approach, the wavefunction mixing were evaluated in a two level model, 
considering only one level of the series 1 and one level of the series 2. The matrix is then 
reduced to a 2x2 matrix (H11=E2,1; H12=H21=V; H22=ε1 for example). The eigenvalues are 
(E2,1+ε1)/2±[(E2,1-ε1)

2+V2]1/2 and the mixing is given by sin2θ where θ is defined by 
tan(2θ)=2V/(E2,1-ε1).  

In a more complete study, the wavefunction mixing were calculated in the frame of a 
multilevel model. We considered a more system composed by the two perturbing levels E2,1 
and E2,2 and a set of levels {εi}. The values of εi were calculated by the improved LRB 
formula using fitting parameters. We have included 28 levels corresponding to i varying from 
15 to 42 (energy range varying from 2.5 cm-1 to 51.5 cm-1). Each couple (E2,j, εi) is coupled 
via a corresponding Vi=K(∆1,i∆2)

1/2 where ∆2 is equal to the fit result and ∆1,i varies with each 
level i using ∆1,i=3E6(i+µ0)

2. Diagonalisation of the 30x30 matrix gives the eigenvalues and 
the corresponding eigenvectors. After diagonalisation, the new positions of the perturbing 
levels are found to be 11.843 cm-1 and 37.062 cm-1. We deduce the wavefunction mixing for 
each level and the projection of the vector to the state E2,1 or E2,2 measures the (6s1/2+6p3/2) 
character of each level. 

Both results – of the full diagonalisation and of the two-level approach- are given in figure 5. 
As expected, the multilevel model shows a more dilute coupling over a number of levels 
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larger than in the two-level-model. The (6s1/2+6p3/2) character of each level indicates that 
some levels would be adequate to be used in scheme of cold molecule formation. The spread 
of each shape in figure 5 shows that many levels of the (6s1/2+6p1/2)0g

- series have a non 
negligible (6s1/2+6p3/2) character. Typically 10 levels dispatched over 10 cm-1 are involved. 
Such a configuration would be adequate for processes using a chirped laser (Luc-Koenig et al. 
2004) to create cold molecules. 
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Figure 5: wavefunction mixing in a two-level approach (stars), and in the 30x30 matrix 
calculation (dots).Vertical lines (at E2,1 and E2,2) indicate the location of the perturbing levels 
being members of the (6s1/2+6p3/2)0g

- series. 

4 Conclusion 

We have shown that we detect two levels of the (6s1/2+6p3/2)0g
- series via their coupling to the 

(6s1/2+6p1/2)0g
- levels lying close to the dissociation limit. Using the standard methods of LRB 

formula or improved LRB formula the coupling is not detectable. The method, which consists 
in extracting the vibrational quantum defect of the experimental data and to plot the variation 
versus the binding energy, is an accurate method to analyze precisely data and permit to 
exhibit coupling even though it is weak. 

In the case of 0g
- of Cs2, studied here, we thus confirm observations in calculations presented 

in reference (Pichler et al. 2006). Furthermore, we locate the perturbing levels, evaluate the 
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coupling and deduce the wavefunction mixing. Such an approach is quite powerful to detect 
interesting mixing in the context of cold molecule physics. 
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