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ABSTRACT

We consider spatially homogeneous (but generally non-isotropic) cosmologies in the
recently proposed Hořava-Lifshitz gravity and compare them to those of general rel-
ativity using Hamiltonian methods. In all cases, the problem is described by an effec-
tive point particle moving in a potential well with exponentially steep walls. Focusing
on the closed-space cosmological model (Bianchi type IX), the mixmaster dynamics is
now completely dominated by the quadratic Cotton tensor potential term for very
small volume of the universe. Unlike general relativity, where the evolution towards
the initial singularity always exhibits chaotic behavior with alternating Kasner epochs,
the anisotropic universe in Hořava-Lifshitz gravity (with parameter λ > 1/3) is de-
scribed by a particle moving in a frozen potential well with fixed (but arbitrary) energy
E. Alternating Kasner epochs still provide a good description of the early universe for
very large E, but the evolution appears to be non-ergodic. For very small E there are
harmonic oscillations around the fully isotropic model. The question of chaos remains
open for intermediate energy levels.
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1 Introduction

General relativity predicts the existence of space-time singularities under some gen-
eral conditions, which in a cosmological context are space-like and correspond to the
initial singularity of the universe, [1], [2]. Studying the asymptotic behavior of Ein-
stein equations in the vicinity of space-like singularities provides the way that the
initial state of the universe is reached classically. A broad framework for this pur-
pose was developed in the seminal work of Belinskii, Khalatnikov and Lifshitz, [3],
[4], [5], who found that the spatial points decouple leading to dimensional reduction
of the field equations to one (time) coordinate. Then, the universe is described as a
point particle moving in an effective potential well, and, remarkably, the dynamical
equations are the same as in spatially homogeneous (but generally non-isotropic) cos-
mological models, in particular Bianchi IX for having a closed universe with spherical
topology. Thus, in this context, it becomes important to investigate the main features
of the homogeneous and anisotropic cosmologies in the small volume limit of the uni-
verse, where the matter sources are ignored.

The dynamics of Bianchi IX model in vacuum (also known as mixmaster universe)
has been thoroughly analyzed in the literature by Belinskii, Khalatnikov and Lifshitz,
[3], [4], [5], and independently by Misner who used Hamiltonian methods, [6], [7], [8],
[9], [10] (but see also the textbook [11] and the monograph [12]). The results can be
summarized in a nut-shell by saying that the evolution consists of alternating Kasner
epochs, acting as oscillations that permute the principal axes of the spherical spatial
slices, as the universe is approaching the initial singularity. A good picture of the
dynamics close to the singularity is then provided by a billiard motion in a finite re-
gion of Lobachevsky plane, which turns out to be chaotic. More general studies of the
chaotic behavior of the mixmaster universe have been carried out in the literature over
the years, [13], [14], [15], [16], and the whole subject is now well established and un-
derstood for general relativity in four space-time dimensions. Several generalizations
have also been considered in detail, in particular in the context of higher dimensional
Kaluza-Klein theories of gravity, [17], [18], where the billiard picture appears to be uni-
versal and the criteria for the appearance of chaos can be formulated in Lie algebraic
terms that depend on the dimensionality of space-time, [19], [20], [21] (but see also
[22] for a comprehensive review of these matters and references therein). In parallel,
there have also been studies of the same problem in higher curvature generalizations
of gravity, in particular in four dimensions, by adding R2 (and possibly other) cur-
vature terms to the gravitational action, where the chaotic behavior was found to be
absent, [23], [24], [25]. Thus, the subject is quite rich and interesting in all generally
covariant effective gravitational theories, including those that arise from string theory.

Recently, there has been a rather odd proposal in the literature to replace the rel-
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ativistic theory of Einstein gravity by a non-relativistic field theory of Lifshitz type
that is only applicable to the ultra-violet regime, [26], [27]. The resulting theory be-
came known as Hořava-Lifshitz gravity and it is by construction a higher derivative
modification of ordinary general relativity with anisotropic scaling in the space and
time coordinates. As such, its field equations contain second derivatives in time and
higher derivatives in space coordinates (actually up to six in four space-time dimen-
sions where the present work will focus). This proposal aims to provide a renormal-
izable theory of quantum gravity at short distances that flows to ordinary general
relativity in the infra-red domain of large distances. It is, however, quite different
in nature from the (more conventional) higher derivative generalizations of Einstein
gravity that have been considered so far, which remain fully covariant, whereas here
the modification by higher curvature terms affects only the spatial dimensions.

It should be said straight from the beginning that there are no general theorems for
the existence of singularities in Hořava-Lifshitz gravity, and under which conditions
these may be valid, in particular for the existence of an initial space-like singularity in
a cosmological context1. Furthermore, no analysis has been made so far on how these
singularities, if present, will be approached asymptotically at very early times (one
may phrase it by simply saying that the analysis "BKL for HL" is still lacking).

Remarkably, it can be seen that all spatially homogeneous (but generally anisotropic)
cosmological space-times, including, in particular, the Bianchi IX model, provide con-
sistent mini-superspace truncations of the field equations in Hořava-Lifshitz gravity,
as in general relativity. In this paper we begin studying these models in detail, first
because they are interesting in their own right, as they can provide a basis for compar-
ing the two different theories of gravity in the classical and (hopefully in the future) in
their quantum regime, and, second because they can also play a role in understanding
the evolution of the universe close to the initial singularity, as in general relativity. In
all cases, if the spatial points decouple close to the singularity, which is a reasonable
expectation in general, the closed universe will be effectively described by mixmas-
ter dynamics, viewed as point particle moving in a potential well whose structure
depends on the theory. The framework that will be adopted throughout this study
is that of Hamiltonian dynamics, since the action of Hořava-Lifshitz gravity is only
defined through the 3 + 1 ADM decomposition of the space-time metric.

The rest of this paper is organized as follows: Section 2 provides a brief overview

1The only case that has already been extensively studied in the literature is the analogue of Fried-
mann universe, which is an isotropic Bianchi IX model with suitable matter sources, and was found to
exhibit a bounce - rather than a singularity - in the past under some technical but rather general condi-
tions on the couplings of the theory, [28], [29], [30]. Such a bounce, however, might only be attributed to
the particular model, since the addition of shearing components, due to anisotropies, could circumvent
it and render it unstable. We will discuss more extensively this point later, in section 4, offering also
some simple anisotropic models that do not exhibit a bounce.
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of Hořava-Lifshitz gravity in 3 + 1 dimensions and introduces the necessary notions
in self-contained way. Section 3 explains why the homogeneous cosmologies are con-
sistent models in Einstein gravity as well as in Hořava-Lifshitz gravity and describes
mixmaster dynamics as an effective particle model moving in a potential well that
is applicable to both theories. The effective potentials are derived in each case sepa-
rately. Section 4 investigates the evolution of the universe close to the initial singular-
ity, where the problem simplifies considerably, but it still exhibits rich structure. Un-
like general relativity, where the potential vanishes for generic values of the anisotropy
parameters and the evolution towards the initial singularity proceeds in an oscillatory
fashion with alternating Kasner epochs, the universe in Hořava-Lifshitz gravity (with
parameter λ > 1/3) is described by a particle moving in a frozen potential well with
prescribed (but arbitrary) energy. The question of chaos in the corresponding mo-
tion is briefly addressed. Finally, section 5 contains our conclusions and discusses
some open questions and directions for further research. Two appendices are also
included at the end. The first contains useful formulas for the Bianchi IX model of
three-geometries, collecting, in particular, the expressions for its Ricci curvature and
Cotton tensors. The second contains a derivation of the bounce law from the expo-
nentially steep walls of the potential well that will be used in mixmaster dynamics.

2 Hořava-Lifshitz gravity

General relativity as well as Hořava-Lifshitz gravity are formulated in a similar fash-
ion using the ADM decomposition of the four-dimensional metric in space-time M4,
which is assumed to be topologically R × Σ3,

ds2 = −N2dt2 + γij(dxi + Nidt)(dxj + N jdt) . (2.1)

The three-dimensional slices Σ3 have metric γij and extrinsic curvature tensor

Kij =
1

2N

(
∂γij

∂t
−∇iNj −∇jNi

)
. (2.2)

The space of all three-dimensional metrics γij, which is known as Wheeler-DeWitt
superspace, is very important in this study. It is endowed with a metric, often called
DeWitt metric, [31], which is taken here to depend on a parameter λ in general. The
metric in superspace, and its inverse, are defined as usual,

G ijkl =
1
2

(
γikγjl + γilγjk

)
− λγijγkl , (2.3)
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and
Gijkl =

1
2
(
γikγjl + γilγjk

)
− λ

3λ − 1
γijγkl , (2.4)

so that
GijmnGmnkl =

1
2

(
δk

i δl
j + δl

i δ
k
j

)
. (2.5)

The DeWitt metric is positive definite for λ < 1/3 and indefinite for λ > 1/3, which
includes, in particular, the special value λ = 1 applicable to Einstein gravity.

The gravitational theories that will be considered in the sequel, using the ADM
formalism (see, for instance, the textbook [11]), admit a four-dimensional action

S = SK − SV , (2.6)

where SK is the kinetic part of the action with universal form

SK =
2
κ2

∫
dtd3x

√
detγ N KijG ijklKkl . (2.7)

The potential part of the action, SV, is given by

SV =
∫

dtd3x
√

detγ N V , (2.8)

where V is chosen according to the theory.

Ordinary general relativity corresponds to λ = 1 and has potential term

VGR = − 2
κ2 (R − 2Λ) (2.9)

that involves second derivatives in the space coordinates. Here, Λ is the cosmological
constant in M4, R is the Ricci scalar curvature of the three-dimensional metric γij and
κ2 = 32πG is expressed in terms of Newton’s constant in four space-time dimensions.
On the other hand, Hořava-Lifshitz gravity has a potential that involves higher or-
der terms, thus breaking relativistic invariance of the four-dimensional theory, [26],
[27]. These terms have a specific form, composed of several higher order (quadratic)
curvature corrections, which are designed to smooth out the ultra-violet behavior of
gravity. Also, the parameter λ is left undetermined in this context and may run with
the energy scale in quantum theory.

A particularly simple choice of V in Hořava-Lifshitz gravity, though by no means
unique, corresponds to the so called "detailed balance" condition, meaning

VHL =
κ2

2
EijGijklE

kl , (2.10)
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so that V is derived from a superpotential W in the sense

Eij =
1

2
√

detγ
δW
δγij

. (2.11)

In 3 + 1 dimensions that will be considered here, the superpotential is taken to be the
Euclidean action of three-dimensional topological gravity on Σ3 with cosmological
constant Λw (other than Λ),

W =
1

w2WCS + µWEH , (2.12)

where the first term refers to the gravitational Chern-Simons action, [32],

WCS =
∫

Σ3

d3x
√

detγ εijkΓl
im

(
∂jΓm

kl +
2
3

Γm
jnΓn

kl

)
, (2.13)

with ε123 = 1, and the second term is the corresponding three-dimensional Einstein-
Hilbert action

WEH =
∫

Σ3

d3x
√

detγ (R − 2Λw) . (2.14)

Thus, VHL with "detailed balance" follows by computing Eij varying the superpo-
tential functional W with respect to the metric γij. The result reads

Eij =
1

w2 Cij − µ

2
Gij , (2.15)

where Cij is the Cotton tensor of the metric γij defined as follows,

Cij =
1

2
√

detγ
δWCS

δγij
=

1√
detγ

εikl∇k

(
Rj

l −
1
4

δj
l R
)

. (2.16)

This is a symmetric and traceless tensor that vanishes if and only if the three-dimensional
metric is conformally flat. The second term is the familiar Einstein tensor on Σ3 with
three-dimensional cosmological constant Λw,

Gij = − 1√
detγ

δWEH

δγij
= Rij − 1

2
Rγij + Λwγij . (2.17)

Putting all together, the potential terms of Hořava-Lifshitz gravity in 3 + 1 dimen-
sions satisfying the "detailed balance" condition are

VHL = αCijC
ij + βCijR

ij + γRijR
ij + δR2 + εR + ζ (2.18)
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with coefficients

α =
κ2

2w4 , β = − µκ2

2w2 , γ =
µ2κ2

8
, δ = −µ2κ2(4λ − 1)

32(3λ − 1)
,

ε =
µ2κ2Λw

8(3λ − 1)
, ζ = − 3µ2κ2Λ2

w
8(3λ − 1)

. (2.19)

The last two terms are identical to the potential VGR of general relativity, with the
appropriate identifications of the coefficients ε and ζ, whereas the remaining ones are
higher order (quadratic) curvature corrections that apparently are suppressed in the
infra-red limit of the theory.

More general choices of VHL, other than "detailed balance", are also admissible
and correspond to the sum (2.18) with arbitrary coefficients; they are only subject to
the restriction that general relativity will emerge in the infra-red regime. The analysis
that will be performed in the sequel applies equally well to all such general choices of
potential in Hořava-Lifshitz gravity with or without "detailed balance".

Finally, it is important to note that the Hořava-Lifshitz theory of gravity is not
invariant under general coordinate transformations in space-time; this should be con-
trasted with other higher order theories of gravity that remain relativistic. Since M4

is topologically R × Σ3, it is only appropriate here to consider invariance of the action
under the restricted class of foliation preserving diffeomorphisms,

t̃ = t̃(t) , x̃i = x̃i(t, x) . (2.20)

Thus, the lapse function N associated to the freedom of time reparametrization is re-
stricted to be a function of t alone, whereas the shift vector Ni associated with diffeo-
morphisms of Σ3 can depend on all space-time coordinates.

3 Mixmaster dynamics

The mixmaster universe arises as mini-superspace model of gravity assuming that the
the three-dimensional slices Σ3 are homogeneous geometries with the topology of S3

and isometry group SU(2). Thus, by employing the Bianchi IX ansatz, as explained in
Appendix A, the four-dimensional metric is given in diagonal form2 by

ds2 = −N2(t)dt2 + γ1(t)σ2
1 + γ2(t)σ2

2 + γ3(t)σ2
3 , (3.1)

2More general non-diagonal metrics of the form ds2 = −N2(t)dt2 + γij(t)σiσj are also legitimate for
investigation, but they will not be considered at all in this paper.
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using the invariant 1-forms σi of SU(2). The metric coefficients are all taken to depend
only on the time coordinate t. This class of metrics provides consistent reduction of
vacuum Einstein equations to an autonomous system of ordinary non-linear differen-
tial equations for γi(t) that has been studied extensively in the literature in the past
fourty years. It provides a simple model of homogeneous, but generally anisotropic,
universe, which proves valuable for studying the chaotic behavior of general relativ-
ity close to the initial singularity. The same ansatz also works consistently for the
Hořava-Lifshitz gravity with or without "detailed balance" and gives rise to another
- though more complicated - system of ordinary non-linear differential equations for
the coefficients γi(t).

The purpose of this section is to describe in detail the mini-superspace reduction
of the field equations and transform them into an effective point particle model using
Hamiltonian methods, as outlined by Misner, [6], [7], [8], [9], [10] (but see also the
textbook [11] and the monograph [12]). Although our discussion is entirely confined
to the Bianchi IX case, it should be noted here that all homogeneous spaces arising in
the Bianchi classification of model three-geometries provide consistent reduction of
general relativity as well as Hořava-Lifshitz gravity. The details for all other homoge-
neous cosmologies in Hořava-Lifshitz gravity will not be included here.

3.1 Effective particle model

Hamiltonian methods for homogeneous cosmologies are most appropriate to use in
the ADM decomposition of space-time and they lead naturally to an effective point
particle model with appropriately chosen external potential. The method is applicable
to both general relativity and Hořava-Lifshitz gravity because the lapse function N is
taken to depend only on t in such cases.

Recall that the canonical momenta conjugate to γij are simply given by

πij =
δS

δ(∂γij/∂t)
=

2
κ2

√
detγ G ijklKkl (3.2)

given the dependence of the general gravitational action S = SK − SV upon the extrin-
sic curvature, whereas the momenta conjugate to N and Ni vanish. Then, the Hamil-
tonian form of the action is

S =
∫

dtd3x
(

πij ∂γij

∂t
− NH− NiHi

)
, (3.3)

where

H =
κ2

2
√

detγ
πijGijklπ

kl +
√

detγ V (3.4)
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and
Hi = −2∇jπ

ij . (3.5)

In ordinary general relativity H = 0 and Hi = 0 are the constraints of the theory
associated to general reparametrization invariance in the 3 + 1 decomposition of the
metric. In this context, N and Ni serve as Lagrange multipliers whose variation yields
the constraints. On the other hand, the invariance of Hořava-Lifshitz gravity under
the restricted class of foliation preserving diffeomorphisms leaves intact the momen-
tum constraints Hi = 0 and replaces the time constraint H = 0 with the much weaker
condition ∫

d3xH = 0 . (3.6)

For homogeneous cosmologies, H is only a function of t, and so is the lapse func-
tion N, and, therefore, there is no difference in the Hamiltonian description of the
two theories other than the form of the potential. Also, in these cases, the momen-
tum constraints are satisfied identically, since γij and πij are functions of t only and
the covariant derivative in Hi with respect to space coordinates reduces to an ordi-
nary derivative. Thus, one may consistently choose Ni = 0 and forget altogether the
momenta constraints.

Based on these observations, the Hamiltonian form of the gravitational action for
homogeneous cosmologies takes the following form

S = 16π2
∫

dt
(

πij dgij

dt
− NH

)
(3.7)

after performing the integration over space that accounts for the 16π2 factor. Here,

H =
κ2

2
√

detγ

(
πijπij −

λ

3λ − 1
(πk

k)2
)

+
√

detγ V (3.8)

depends only on t and it is constrained to vanish by varying S with respect to N.

At this point, one may employ the freedom of time reparametrizations t̃ = t̃(t) to
eliminate N from the variational problem. Any choice of N(t) inserted in equation
(3.7) leaves the action in canonical Hamiltonian form, but the content of the gauge
fixed action will be equivalent to the original one only if it is supplemented by the
constraint H = 0, which can no longer be derived from the variational principle. The
most convenient choice is

N(t) =
6
κ2

√
detγ(t) , (3.9)

which will be adopted from now on. Thus, we arrive at an effective point particle
Hamiltonian model for all homogeneous cosmologies; yet another formulation of this
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point particle model will be mentioned shortly.

Further simplification occurs by introducing the volume and shape moduli of the
three-geometry

γ1 = e2Ω+β++
√

3β− , γ2 = e2Ω+β+−
√

3β− , γ3 = e2Ω−2β+ , (3.10)

as explained in Appendix A, so that
√

detγ =
√

γ1γ2γ3 = exp(3Ω). Then, it is appro-
priate to parametrize the components of the momenta matrix πi

j, which is diagonal
as is the metric matrix, as follows,

pΩ = 2πk
k , pi

j = πi
j −

1
3

δi
jπ

k
k , (3.11)

and set

p1
1 =

1
6
(p+ +

√
3 p−) , p2

2 =
1
6
(p+ −

√
3 p−) , p3

3 = −1
3

p+ . (3.12)

It turns out that pΩ is the conjugate momentum to the volume moduli Ω and p± are
the conjugate momenta to the shape moduli β±. In terms of these variables, the gauge
fixed action S becomes

S = 16π2
∫

dt
(

pΩ
dΩ
dt

+ p+
dβ+

dt
+ p−

dβ−
dt

− H
)

, (3.13)

where t denotes now the specific time coordinate following the choice (3.9) and

H =
1
2

(
p2

+ + p2
− − 1

2(3λ − 1)
p2

Ω

)
+ V(β+, β−, Ω) = 0 . (3.14)

With the given choice of lapse, the effective potential of the model is

V =
6
κ2 e6ΩV . (3.15)

This is the final form of the action that will be used to study the mixmaster universe
in general relativity and Hořava-Lifshitz gravity and compare the results for the two
theories. Note that in writing H above we left undetermined the parameter λ of the
superspace metric in order to apply it to all cases of present interest.

Finally, as promised, we mention for completeness that there is an alternative for-
mulation of the same effective point particle model based on the reduced ADM action.
In this approach, which has been mostly used by Misner (and many others) in gen-
eral relativity, one eliminates Ω by solving the Hamiltonian constraint for pΩ and sets
t = Ω, choosing also N appropriately. The procedure is similar to going from the
quadratic form of the action of a relativistic particle to its square-root form. Then,
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the reduced variational problem corresponds to a point particle moving in two di-
mensions (provided by β+ and β− alone) under the influence of a time dependent
potential well. The reduced ADM formulation is only adequate for λ > 1/3, but it
will not be used here in any case.

Next, we will specialize the discussion to general relativity and Hořava-Lifshitz
gravity and derive, in each case separately, the effective potential of the mixmaster
universe that enters in the canonical Hamiltonian variational principle (3.13), (3.14).
Hamilton’s equations follow by varying Ω, β±, pΩ and p± and yield

d2β±
dt2 = − ∂V

∂β±
,

d2Ω
dt2 =

1
2(3λ − 1)

∂V
∂Ω

. (3.16)

We will not write down explicitly the resulting equations of motion - they cannot be
solved in any case - but focus only on the qualitative features of mixmaster dynamics,
following from the potential, which make it a valuable tool for exploring the behavior
of the universe as it approaches the initial singularity3.

3.2 General relativity

First, we consider the mixmaster dynamics in general relativity and present the form
of the effective particle potential for comparison later with Hořava-Lifshitz gravity. It
follows by expressing the three-dimensional Ricci scalar R, given in Appendix A, in
terms of Ω and β± and reads, [6], [7], [8], [9], [10],

VGR =
6
κ4 e4Ω

[
2e2β+

(
cosh(2

√
3β−) − 1

)
− 4e−β+cosh(

√
3β−) + e−4β+

]
+

24Λ
κ4 e6Ω .

(3.17)

The equations of motion that follow from the variational principle (setting also
λ = 1) cannot be solved exactly. However, they have been studied extensively in
the literature for many years and found to exhibit some very interesting qualitative
features close to the initial singularity, where the volume of the universe vanishes as
Ω → −∞. These features will be discussed in some detail later. It will also be helpful
in this context to have a good qualitative picture of the potential well.

The effective potential of mixmaster dynamics corresponds to a well shown in Fig.1
for fixed Ω. It has three canyon lines located at β− = 0 and β− = ±

√
3β+, where any

3In quantum cosmology one implements the Hamiltonian constraint by postulating the Wheeler-
DeWitt equation ĤΨ = 0 for the "wave-function" of the universe with the appropriate factor ordering
prescription. Some aspects of the problem have already been studied in the literature for the mixmaster
model of ordinary quantum gravity, [33], [34], [35], and similar considerations can also be applied to
the case of Hořava-Lifshitz canonical quantum gravity. We will postpone any further discussion of the
quantum aspects of early time cosmology to future publication.
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two γi’s become equal. The potential is bounded from below and exhibits discrete Z3

symmetry by permuting the principal axes of rotation of S3. Thus, it has the shape of
an equilateral triangle in the anisotropy space (β+, β−) and exponentially steep walls
far away from the origin. Very close to the origin the well is round, as can be seen by
expanding VGR up to quadratic order in β±.

Figure 1: The potential well of mixmaster dynamics and its three canyons

Another useful representation of the effective potential is shown in Fig.2 below by
drawing the equipotential curves.

Β+

Β-

Figure 2: Equipotential lines of the effective potential VGR(β+, β−)

As can be seen, they extend symmetrically between the canyon lines β− = 0 and β− =
±
√

3β+, which correspond to a partially anisotropic universe with axial symmetry
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(known as Taub space-time, [36]). The fully isotropic case corresponds to the origin
β+ = 0 = β−, where the potential attains its minimum.

The asymptotic form of the potential for very large values of anisotropy is inde-
pendent of the cosmological constant Λ and looks like

VGR ' 6
κ4 e4Ωe−4β+ , as β+ → −∞ (3.18)

and
VGR ' 72

κ4 e4Ωβ2
−e2β+ , as β+ → +∞ , |β−| << 1 . (3.19)

Then, the asymptotic structure of the potential is completely characterized by combin-
ing these two relations with the triangular symmetry of the model.

The effective point particle can only escape to infinity along the canyon lines where
the potential has the shape shown in Fig.3, keeping Ω fixed. The smallest deviation
from axial symmetry will turn the particle against the infinitely steep walls.

Β+

V

Figure 3: The form of the potential VGR(β+, β−) along the canyon line β− = 0

3.3 Hořava-Lifshitz gravity

Applying the same framework to Hořava-Lifshitz gravity, the effective point particle
potential is described by

VHL =
6
κ2 e6Ω

(
αCijC

ij + βCijR
ij + γRijR

ij + δR2 + εR + ζ
)

. (3.20)

The coefficients are left arbitrary so that the discussion can be made as general possible
without necessarily imposing the "detailed balance" condition. The only restriction we
put here is α > 0 for well-definiteness, so that VHL(β+, β−) stays bounded from below.
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Using the explicit expressions for Cij, Rij and R found in Appendix A and rewrit-
ing them in terms of the variables Ω and β±, we obtain the following results for the
individual terms entering in the effective potential of Bianchi IX cosmology:

CijC
ij =

1
2

e−6Ω
[
2e6β+

(
3cosh(6

√
3β−) − 3cosh(4

√
3β−) + cosh(2

√
3β−) − 1

)
−

2e3β+
(

3cosh(5
√

3β−) − cosh(3
√

3β−) − 2cosh(
√

3β−)
)

+

2
(

cosh(4
√

3β−) + 2cosh(2
√

3β−) − 3
)
−

4e−3β+
(

cosh(3
√

3β−) − cosh(
√

3β−)
)

+

e−6β+
(

2cosh(2
√

3β−) + 1
)
−

6e−9β+cosh(
√

3β−) + 3e−12β+
]

, (3.21)

CijR
ij = −e−5Ω

[
2e5β+

(
cosh(5

√
3β−) − cosh(3

√
3β−)

)

−2e2β+
(

cosh(4
√

3β−) − cosh(2
√

3β−)
)

+ e−4β+

−2e−7β+cosh(
√

3β−) + e−10β+
]

, (3.22)

RijR
ij =

1
4

e−4Ω
[
2e4β+

(
3cosh(4

√
3β−) − 4cosh(2

√
3β−) + 1

)
−

8eβ+
(

cosh(3
√

3β−) − cosh(
√

3β−)
)

+

4e−2β+
(

cosh(2
√

3β−) + 1
)
−

8e−5β+cosh(
√

3β−) + 3e−8β+
]

, (3.23)

R2 =
1
4

e−4Ω
[
2e4β+

(
cosh(4

√
3β−) − 4cosh(2

√
3β−) + 3

)
−

8eβ+
(

cosh(3
√

3β−) − cosh(
√

3β−)
)

+

4e−2β+
(

3cosh(2
√

3β−) + 1
)
−

8e−5β+cosh(
√

3β−) + e−8β+
]

(3.24)

13



and

R = −1
2

e−2Ω
[
2e2β+

(
cosh(2

√
3β−) − 1

)
− 4e−β+cosh(

√
3β−) + e−4β+

]
. (3.25)

The potential VHL(β+, β−) also has the shape of an equilateral triangle with ex-
ponentially steep walls when α > 0. Fig.1 and Fig.2 still provide a good qualitative
picture of it far from the origin in (β+, β−) parameter space. Only the bottom area
close to the origin has slightly different shape that depends on the relative coefficients
of the individual terms of the potential. The equations of motion that follow from
it provide the analogue of mixmaster dynamics in Hořava-Lifshitz gravity. We will
not attempt to solve them here but rather confine ourselves to study some qualitative
features that make the model useful for early time cosmology, as in general relativity.

For α > 0, which will be assumed from now on, the asymptotic form of the poten-
tial VHL for very large values of anisotropy is dominated completely by the quadratic
Cotton tensor term, which happens to contain the steepest walls of all terms, and one
has

VHL ' 9
κ2 αe−12β+ , as β+ → −∞ . (3.26)

Likewise, we have

VHL ' 576
κ2 αβ2

−e6β+ , as β+ → +∞ , |β−| << 1 . (3.27)

Thus, unlike general relativity, we note that the asymptotic form of the potential is
independent of Ω.

As before, the effective point particle can only escape to infinity along the canyon
lines β− = 0 and β− = ±

√
3β+ which arise for general choices of VHL.

Β+

V

Figure 4: The form of the potential VCotton(β+, β−) along the canyon line β− = 0
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Fig.4 shows only the plot of the quadratic Cotton term of the potential, VCotton, along
one of these lines, say β− = 0; it exhibits a local maximum at β+ = (log2)/3, where
γ1 = γ2 = 2γ3, and similar local maxima show up along the other two lines obtained
by permuting γi. As will be seen later VCotton is the only relevant term of VHL in early
time cosmology.

4 Approach to the initial singularity

In this section we examine the dynamical behavior of the universe close to the initial
singularity, where Ω → −∞, using the Bianchi IX model in vacuum. In this context, it
is important to have anisotropic models with general parameters β±, since, otherwise,
the universe will not be able close up to S3 without radiation or matter sources. First,
we will make some general - though crude - remarks about the existence of the initial
singularity and then study the problem in question for the two different theories of
gravitation.

4.1 General considerations

The isotropic Bianchi IX case in vacuum corresponds to a closed Robertson-Walker
space-time

ds2 = −N2(t)dt2 + e2Ω(t)dΩ2
3 , (4.1)

with N(t) = (6/κ2)exp(3Ω). Note, however, that this metric cannot remain isotropic
more than instantaneously; consistency of the dynamics also requires the presence
of some shearing components provided by space anisotropy in vacuum - beyond the
pure dilation - or suitable sources and combinations thereof.

In general relativity, this follows from the form of the potential assuming β+ =
0 = β− for all time. Since the potential

Visotropic
GR (Ω) = − 6

κ4

[
3e4Ω − 4Λe6Ω

]
(4.2)

is always negative for small volume, irrespective of Λ, it fails to satisfy the Hamilto-
nian constraint (setting λ = 1),

1
8

p2
Ω = 2

(
dΩ
dt

)2

= Visotropic
GR (Ω) . (4.3)

Adding sources, in the form of perfect fluid, remedies the situation and yields the
Friedmann universe. Recall in this case that the potential density VGR is modified by
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adding the (positive) contribution of the energy density ρ of the fluid, so that4

2
(

dΩ
dt

)2

= VGR + µ eν Ω , (4.4)

where the contribution of non-relativistic matter sources corresponds to ν = 3 (since
ρ ∼ V−1) and that of radiation to ν = 2 (since ρ ∼ V−4/3) with V = exp(3Ω). Clearly,
the radiation term provides the dominant contribution in the small volume limit and
one obtains an expanding isotropic and homogeneous universe with initial singular-
ity at T = 0. If deviations from isotropy are subdominant in the small volume limit,
compared to radiation, the initial singularity will persist in the presence of sources.
This argument only applies to the anisotropy terms of the potential VGR that depends
on the volume as exp(4Ω) via the curvature. The anisotropy, however, introduces ad-
ditional (positive definite) terms in the Hamiltonian constraint, namely the kinetic en-
ergy of the anisotropy parameters (dβ+/dt)2 + (dβ−/dt)2 if one considers the Bianchi
IX model, which completely dominate the evolution close to the initial singularity -
essentially trying to "avoid" it by oscillations - as will be discussed later. In all cases,
the universe can come to a singular state at T = 0 satisfying the field equations.

In Hořava-Lifshitz gravity, the isotropic potential does not receive contribution
from the Cotton tensor, since Cij vanishes identically. Thus, the potential given in
general by equation (3.20), without necessarily assuming "detailed balance" condition,
becomes

Visotropic
HL (Ω) =

3
2κ2

[
3(γ + 3δ)e2Ω + 6εe4Ω + 4ζe6Ω

]
. (4.5)

The first term arises from the combined effect of RijRij and R2 and dominates the
dynamics for small volume. The Hamiltonian constraint now reads

1
4(3λ − 1)

p2
Ω = (3λ − 1)

(
dΩ
dt

)2

= Visotropic
HL (Ω) (4.6)

and cannot be possibly fulfilled when

(3λ − 1)(γ + 3δ) < 0 . (4.7)

This inequality, which is certainly satisfied for in the case of "detailed balance" con-
dition (see the choice of coefficients (2.19)), means that the quadratic curvature terms
correspond to "dark radiation" (since they effectively have "ν = 2"), but with negative

4This is one of the Friedmann equation in standard cosmology with pΩ being the Hubble parameter.
Also, to compare with the more standard form of these equations, it is appropriate to use another
time frame defined as dT = N(t)dt, where the Robertson-Walker metric takes the more familiar form
ds2 = −dT2 + a2(T)dΩ2

3 with a = expΩ. Then, the initial singularity occurs at some finite past proper
time, say T = 0, instead of t = −∞.
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energy density. It also implies that the universe cannot evolve isotropically in vacuum
without turning on some shearing components, as in general relativity.

Adding sources, in the form of perfect fluid, leads to an interesting possibility
when inequality (4.7) is fulfilled with λ > 1/3. In analogy with the previous anal-
ysis one obtains

(3λ − 1)
(

dΩ
dt

)2

= VHL + µ eν Ω (4.8)

and the dominant contribution in the small volume limit is provided by the quadratic
Ricci curvature terms and the matter sources with suitable ν. Then, isotropic evolution
becomes possible, leading to a Friedmann universe in Hořava-Lifshitz gravity. When
ν > 2, there can be a bounce in Ω that replaces the initial singularity of the universe,
[28], [29], [30], as can be easily seen by neglecting the contribution of the curvature
R and the cosmological constant term. This is the only case for which the energy
density of "dark radiation" can grow with respect to the regular matter energy5. Note,
however, that possible deviations from isotropy will become dominant in the small
volume limit, since the quadratic Cotton tensor term, which is independent of Ω, kicks
in VHL and washes away the effect of the previously thought relevant terms. The
kinetic energy of the anisotropy parameters also contributes on equal footing. This
indicates that the cosmological bounce is unstable against anisotropy, and, generically,
the universe can come in a singular state at T = 0 satisfying the field equations. The
validity or not of inequality (4.7) becomes irrelevant in the presence of anisotropy.
Consistency also requires λ > 1/3, otherwise the Hamiltonian constraint cannot be
possibly satisfied in the small volume limit in the presence of anisotropy; by the same
token, the universe can only remain still in an isotropic state when λ < 1/3, and,
therefore, this possibility will not be considered further.

Although the argument above does not provide a rigorous proof for the existence
of an initial singularity in Hořava-Lifshitz cosmology, and under which general con-
ditions this may be possible, it seems sufficient for the purposes of the present work6.
Thus, in the following, we will use mixmaster cosmology to explore the approach to
the initial singularity, as in general relativity.

5This condition by itself is quite restrictive since it rules out regular radiation before the bounce.
6Another example for having an initial singularity - rather than a bounce - is provided by the

anisotropic Bianchi I model (also known as Kasner solution), although the reasoning is slightly different
here. This is a common solution to general relativity and Hořava-Lifshitz gravity in vacuum because Σ3
is a flat three-dimensional space and all components of the Ricci curvature and Cotton tensor vanish.
In this case, the only contribution to the Hamiltonian constraint (neglecting the cosmological constant
term for small volume) is provided by the kinetic energy of the anisotropy parameters and the universe
can evolve towards the initial singularity without reaching a minimum volume. Thus, the bounce in
the Friedmann model does not appear to be generic, in particular in the presence of anisotropy.
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4.2 General relativity

The potential VGR appears to vanish as one approaches the initial singularity. This
is true for generic values of the anisotropy parameters β± implying Kasner behavior
of the universe close to the singularity, which is taken to occur at the beginning of
cosmic time, [3], [4], [5], [6], [7], [8], [9], [10]. In fact, since the Ricci scalar curvature
of the homogeneous space Σ3 vanishes in this limit, the space is effectively flat, as in
Bianchi type-I cosmology, and it is more appropriate to use Cartesian dx, dy and dz
instead of the 1-forms σi of SU(2).

More precisely, when the potential vanishes, all momenta are constant satisfying
p2

Ω = 4(p2
+ + p2

−) by the Hamiltonian constraint (with λ = 1). Then, it is convenient
to introduce the following parametrization of the constant momenta,

n1 =
1

3pΩ

(
pΩ − 2p+ − 2

√
3p−

)
, n2 =

1
3pΩ

(
pΩ − 2p+ + 2

√
3p−

)
,

n3 =
1

3pΩ
(pΩ + 4p+) , (4.9)

so that
n1 + n2 + n3 = 1 = n2

1 + n2
2 + n2

3 . (4.10)

The remaining equations dβ±/dt = p± and dΩ/dt = −pΩ/4 (so that dβ±/dΩ =
−4p±/pΩ) can be easily solved to yield the metric coefficients γi(t) = T2ni with re-
spect to a time frame T defined by absorbing the lapse function as dT = N(t)dt. Then,
the metric takes the familiar Kasner form

ds2 = −dT2 + T2n1 dx2 + T2n2 dy2 + T2n3dz2 , (4.11)

which describes an expanding flat universe with linearly varying volume element,√
detγ = T.

Thus, the mixmaster dynamics close to the initial singularity appears to follow
the Kasner evolution with some fixed parameters (n1, n2, n3). The Kasner universe
is anisotropic as it always contains a direction, say z, along which distances contract
rather than expand; this follows from the algebraic conditions (4.10), which imply that
one of the ni’s, say n3, is lying in the interval −1/3 ≤ n3 ≤ 0. We may order the Kasner
exponents as

−1/3 ≤ n3 ≤ 0 ≤ n2 ≤ 2/3 ≤ n1 ≤ 1 (4.12)

without loss of generality. The axially symmetric case corresponds to the choice of
parameters n1 = n2 = 2/3 and n3 = −1/3 (and permutations of the axes thereof).

This description is valid at generic points of (β+, β−) parameter space, but it can
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break down far away from the origin when the effective point particle experiences
the exponentially steep walls of the potential VGR. For example, when the parti-
cle approaches one of the triangular walls arising at β+ → −∞, as it moves within
the wedge |β−| < −

√
3β+, the dominant term of the potential is proportional to

exp[4(Ω − β+)], as can be seen from the asymptotic behavior (3.18), and will become
sufficiently large to influence the motion if dβ+/dΩ > 17. In the simplest case of
axially symmetric evolution towards the wall, so that β− stays zero along the trajec-
tory and the Kasner exponents are n1 = n2 = 2/3 and n3 = −1/3, it is clear from
the Hamiltonian constraint (dβ+/dΩ)2 + (dβ−/dΩ)2 = 4 that dβ+/dΩ = 2 and the
inequality for having a bounce is satisfied. More generally, when the particle moves
within the wedge |β−| < −

√
3β+ against the wall, we have

dβ+

dΩ
= 1 − 3n3 (4.13)

and the inequality dβ+/dΩ > 1 is always satisfied since n3 < 0. Similar considera-
tions also apply to all other walls by the triangular symmetry of the model. Thus, the
point particle will always bounce against the walls of the potential.

Summarizing, close to the initial singularity, the evolution of the universe is accu-
rately described by Kasner dynamics until the particle hits the walls and enters into
a new Kasner phase (with different parameters, in general) after the bounce8. The
bounce repeats itself again and again, in general, leading to an oscillatory behavior
of S3 that alternates its three principal axes, while the universe is approaching the
initial singularity, [3], [4], [5], [6], [7], [8], [9], [10]. It appears that almost all solutions
obtained by successive bounces come arbitrarily close to the corners of the well associ-
ated to the special values of Misner parameter s = 0 or s = ±3 (by triangular symme-
try). Then, the space-time metric comes close to ds2 = −dT2 + dx2 + dy2 + T2dz2 (up

7The rate dβ+/dΩ is positive because β+ decreases as Ω decreases while the particle is heading
towards the wall in its descent towards the singularity.

8The bounce law for the Kasner parameters, ni → n′
i, has been worked out in the literature (but see

also Appendix B). For a bounce against the wall at β+ → −∞, it is most easily described as s/3 → 3/s,
using Misner’s parametrization, [6],

n1 =
2s(s − 3)
3(s2 + 3)

, n2 =
2s(s + 3)
3(s2 + 3)

, n3 = − (s − 3)(s + 3)
3(s2 + 3)

.

An alternative parametrization has been provided by Belinskii, Khalatnikov and Lifshitz, [3], [4], [5].
The axially symmetric case n1 = n2 = 2/3 and n3 = −1/3 (corresponding to s = ∞) is special
as the particle heads to the corner of the triangular well after the bounce, following the canyon line
β− = 0 with Kasner parameters n′

1 = n′
2 = 0 and n′

3 = 1 (corresponding to s = 0); this is also
apparent from equations (4.9), since p− = 0 all the time and p+ only reverses sign relative to pΩ after
the bounce. The fixed points of the bounce law arise for s = ±3 and correspond to Kasner parameters
(1, 0, 0) and (0, 1, 0) that describe the evolution of the particle along the canyon lines β− = ±

√
3β+

without bounce. The bounce law from the other two walls follows by permutation of the axes, which
is equivalent to replacing s by (s ± 3)/(s ∓ 1), and amounts to (s + 3)/3(s − 1) → 3(s − 1)/(s + 3) or
(s − 3)/3(s + 1) → 3(s + 1)/(s − 3) with fixed points s = 0 and 3 or s = 0 and −3 respectively.
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to permutations of the axes), which is equivalent to the flat metric ds2 = −dη2 + dξ2 +
dx2 + dy2 by the transformation ξ = T sinhz and η = T coshz. A new era of alternat-
ing Kasner epochs subsequently starts by permuting the axes, and so on. Actually, this
motion can be formulated as billiard in a finite region of hyperbolic two-dimensional
space, obtained by appropriate transformation of (β+, β−) parameter space, and, as
such, it is chaotic (for an overview and history of the developments in the subject
see, for instance, [10] and references therein); it also provides the origin of the chaotic
behavior exhibited by mixmaster dynamics in general, [13], [14], [16].

The intuitive characterization of having chaos in early time cosmology is that when
the universe starts with a well-defined state, it will evolve towards the singularity by
going through almost all possible anisotropic stages by changing shape, as it does in
general relativity.

4.3 Hořava-Lifshitz gravity

In this case, as one approaches the initial singularity, where Ω → −∞, the potential
does not vanish for generic values of β±, contrary to what happens in general relativ-
ity. Instead, it is well approximated by

VHL = VCotton ≡ 6α

κ2 e6ΩCijC
ij , as Ω → −∞ . (4.14)

This term can be alternatively written (in more compact form) as

VCotton =
α

κ2

[ ( ∂W
∂β+

)2

+
(

∂W
∂β−

)2 ]
, (4.15)

where the corresponding superpotential is

W = e3β+
(

cosh(3
√

3β−) − cosh(
√

3β−)
)
− cosh(2

√
3β−) −

e−3β+cosh(
√

3β−) +
1
2

e−6β+ , (4.16)

and it is positive definite when α > 0. Clearly, this applies to all models of Hořava-
Lifshitz gravity, with or without "detailed balance". Consistency with the Hamiltonian
constraint requires that λ > 1/3, which we assume in the following.

This is not surprising in retrospect because the quadratic Cotton tensor term is
marginal in the gravitational action and it is expected to dominate in the ultra-violet
regime of the theory. Furthermore, since VCotton is independent of Ω, the scale factor
of the universe will evolve as a free particle with fixed (but arbitrary) momentum
pΩ, so that the volume of space diminishes linearly at early times (in the appropriate
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time coordinate T). As for β± that determine the shape of the universe, they will keep
changing all the time following the motion of a particle in a frozen (time-independent)
well

E =
1
2

(
dβ+

dt

)2

+
1
2

(
dβ−
dt

)2

+ VCotton(β+, β−) (4.17)

with fixed energy level9

E =
1

4(3λ − 1)
p2

Ω . (4.18)

Thus, the dynamics appears more complicated now, compared to general relativity,
and the universe will no be - in general - in a Kasner epoch before bouncing off the
walls.

Solving this effective point particle problem is not an easy task, but one can exam-
ine some qualitative features of the motion depending on the energy E. When E is
very large, the potential can be approximated by zero for generic values of β±, since
the particle looks insensitive to the small bumps at the bottom of the well10. Thus,
only in this case, which resembles general relativity, the universe will be in a Kasner
epoch far away from the walls (recall that the Kasner model is a common solution to
the two theories and it is insensitive to the cosmological constant in the small volume
limit). Note, however, that the bounce law is modified11 compared to general relativ-
ity and resumes its standard form, as can be seen in Appendix B. But the qualitative
picture remains the same: after the bounce the universe will enter into another Kasner
epoch and so on, as in general relativity.

The picture of a billiard is also very useful here. For very large E we have a very

9We must require E > 0 so that the universe is anisotropic. Then, for small E, Ω diminishes slowly
towards the initial singularity, whereas for large E it diminishes very fast.

10Actually, this is an assumption which can be safely made only for short time development of the
system, based on intuition. In general, one should also prove that these bumps, no matter how small
they are compared to E, do not influence much the long time development of the system after several
iterations. Such non-perturbative results, which go back to Poincaré and fall within the classic theory
of Kolmogorov, Arnol’d and Moser (KAM theory), [37] (but see also [38] and [39] for comprehensive
exposition), are rather difficult to establish in classical mechanics and they will not be considered in
detail in the present work. They should be properly investigated, however, as they might change the
physical picture we are about to present after a very long time.

11A bounce against the steady wall occurring at β+ → −∞, follows the rule of ordinary reflections,
namely the incidence and reflection angles are equal. It is neatly described as s/

√
3 →

√
3/s, using the

same parametrization of the Kasner parameters in terms of a single variable s as in general relativity.
It should be compared to the bounce law s/3 → 3/s that governs the mixmaster universe in general
relativity. In the present case, the fixed points arise at s = ±

√
3 with associated Kasner exponents

n1 = (1 ∓
√

3)/3, n2 = (1±
√

3)/3 and n3 = 1/3, respectively. As can be seen from the corresponding
expressions in Appendix B, p+ = 0 in this case and the point particle moves parallel to the wall (the
two signs refer to the two directions of motion), until it hits the other walls. The bounce from the
other two walls follows by permutation of the axes, as usual, which is equivalent to replacing s by
(s ± 3)/(s ∓ 1). Then, the bounce law yields the other fixed points s = 3± 2

√
3 and s = −3± 2

√
3 that

describe a particle moving parallel to the other two walls in either direction. Clearly, one can have a
closed orbit forming equilateral triangle, which does not seem possible in general relativity.
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large region on the plane (β+, β−) bounded by an equilateral triangle inside which
the particle moves freely with very large velocity. By simple rescaling, one can refor-
mulate this problem as a particle moving freely inside an equilateral triangle of finite
size with finite energy. The motion takes place on the plane following the standard
rule of equal incidence and reflection angles. It is easy to prove that such a billiard is
not ergodic. In fact, billiards in any triangular domain on the plane are non-ergodic
when the angles of the triangle are rational multiples of 2π, since, then, all possible
reflection angles along a given path of the particle assume only a finite set of values
(see, for instance, [40]).

This should be contrasted with the ergodic behavior of the triangular billiard with
moving walls that arises in general relativity, which can be viewed as a fixed triangu-
lar billiard with non-standard bounce law. The equivalent formulation of this problem
in general relativity, as billiard in a compact domain of Lobachevsky plane with stan-
dard reflection rules, is another way of establishing ergodicity in that case, since the
geodesic flow on surfaces with negative constant curvature is the prime example of
ergodic behavior in Hamiltonian systems, [41] (but see also [40] for an overview).

In summary, for very large E, the motion of the effective point particle in Hořava-
Lifshitz gravity is not chaotic, provided, of course, that the small bumps of the po-
tential do not affect much the long time behavior of the system after many bounces.
It is an immediate and important consequence of the KAM theory that small pertur-
bations of non-degenerate Hamiltonian systems, like ours, are not ergodic12. Thus,
in this case, if the universe starts with a well-defined state, it will evolve towards the
singularity by changing shape but without passing through all possible anisotropic
stages.

On the other hand, for intermediate E, the landscape of the bottom of the potential
becomes visible to the particle and the bumps can no longer be ignored even for short
time. Thus, the evolution between the walls becomes more complicated and (unfor-
tunately) it cannot be described in simple terms. Also note that the canyon lines now
exhibit a small bump, as shown in Fig.4, and, therefore, below a threshold,

E? =
9α

16κ2 , (4.19)

the particle cannot exit the well and head towards its corners. For E < E? the motion
remains bounded, provided that the anisotropies are relatively small, and the particle
oscillates around the origin (fully isotropic model). Thus, for intermediate E, the dy-

12At a given energy level, however, the invariant non-resonant (Kronecker) tori in phase space form a
Cantor set, which has no interior points. Therefore, it is impossible to tell with finite precision whether a
given initial position falls on an invariant torus or in a gap between such tori. In such cases, according
to KAM theory, one can only make probabilistic statements for a chosen orbit to be on an invariant
torus, and, hence, be stable.
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namics of the universe close to the singularity is very different and complex and it is
not yet clear if it remains non-ergodic. If a second integral of motion exists, the system
will be integrable, but we have not been able to find such thing.

Finally, for very small values E and relatively small anistropies, the particle moves
around the minimum of the potential as a two-dimensional isotropic oscillator,

E =
1
2

(
dβ+

dt

)2

+
1
2

(
dβ−
dt

)2

+
81α

κ2 (β2
+ + β2

−) , (4.20)

which follows by expanding VCotton up to quadratic order around β+ = 0 = β−. In
such case the motion is integrable and chaos is obviously absent. The universe still ex-
hibits oscillatory behavior by changing shape in its descent towards the initial singu-
larity, but the evolution is not Kasner-like. The universe passes through the isotropic
model periodically with cyclic frequency 9

√
2α/κ.

The problem is certainly very rich and should be investigated in more detail, in-
cluding numerical studies, in order to be able to make more conclusive and safe state-
ments about chaos in the motion for general values of E. In fact, a Hamiltonian system
like (4.17) can be ergodic at certain energy levels and non-ergodic at other levels. Here,
there are also intermediate energies E separating into phases the behavior of mixmas-
ter dynamics close to the initial singularity of the universe.

It is instructive to compare this behavior with the absence of chaos in fully co-
variant higher curvature generalizations of Einstein gravity, [23], [24], [25], where the
reasoning is different. In the general context of f (R) gravity in four space-time di-
mensions, there is a well known conformal relationship between the vacuum higher
derivative theory and ordinary general relativity coupled to a scalar field

ϕ = log f ′(R) (4.21)

with potential

V(ϕ) =
1

2 f ′2
(R f ′ − f ) , (4.22)

where prime denotes the derivative with respect to the four-dimensional scalar Ricci
curvature. In the simplest case, the Einstein-Hilbert Lagrangian is replaced by f (R) =
R + αR2, but f (R) can also assume more general forms. The mixmaster universe pro-
vides a consistent mini-superspace model of f (R) gravity, which is still described by
a point particle that bounces off the walls of a triangular potential in the small volume
limit. There is also an analogue of the Kasner solution in general relativity coupled to
a scalar field, which is appropriate to use in this case. However, the effect of the scalar
field ϕ is to slow down the speed of the point particle relative to the moving walls and
the particle will bounce back only if it moves not too oblique relative to the walls; it
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should be contrasted to general relativity without scalar field, where the point particle
can hit the moving wall, say the one located at β+ → −∞, from anywhere within the
wedge |β−| < −

√
3β+. As a result, a few collisions are sufficient to make it so oblique

that it will not bounce off another wall. So, the universe will enter quickly in a definite
Kasner trajectory and stay there all the time in its approach to the singularity. Thus,
the evolution is not chaotic in these theories.

5 Conclusions

We have shown that the homogeneous cosmologies provide consistent truncations of
Hořava-Lifshitz gravity in vacuum and investigated them using Hamiltonian meth-
ods with emphasis on the closed space universe of Bianchi IX type. The field equations
reduce to an autonomous system of ordinary differential equations describing the mo-
tion of a point particle in a potential well with Z3 symmetry. In general, the potential
depends on time, through the volume moduli, but when the universe approaches the
initial singularity it freezes, as it becomes independent of time. Then, for λ > 1/3,
the universe flows to the singularity by continuous changes of its shape, as in ordi-
nary mixmaster cosmology, rolling like a particle in the well with fixed (but arbitrary)
energy E. The main difference from general relativity is that the potential does not
vanish for generic values of the anisotropy parameters, and, thus, the evolution of the
early universe is not described by the Kasner solution away from the steep walls. The
dynamics is more intricate now, but, still, the shape of the potential far away from the
origin resembles that of general relativity and the particle can bounce off the walls.
In a certain limit (large E), the motion appears to be non-ergodic, and, thus, chaos
is absent. The same thing applies to very small values of the energy E, though for
a different reason. However, it remains to be seen if the motion is chaotic for more
general values of the parameter E, as in general relativity, and compare it further with
mixmaster dynamics in fully covariant higher curvature generalizations of Einstein
gravity. More work is certainly required in this direction and we hope to return to it
elsewhere.

This work should be considered as the beginning of a more general investigation in
Hořava-Lifshitz gravity. First, the most pressing open question is to revisit the singu-
larity theorems of general relativity and examine under which general conditions they
remain valid in theories with anisotropic scaling. In this context, we will also be able
to see whether the matter bounce of the Friedmann model has more general value be-
yond the homogeneous and isotropic case. Assuming, however, that the occurrence of
space-like singularities is generic in Hořava-Lifshitz gravity, it will be very important
to examine how the singularity is approached by extending the standard analysis of
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Belinskii, Khalatnikov and Lifshitz. If the spatial points decouple from the dynamics,
which is a reasonable expectation even for theories with anisotropic scaling in space
and time, then, the homogeneous cosmologies considered here will prove valuable
tool for understanding the behavior of the universe near the initial singularity.

Second, it is interesting to consider the canonical quantization of Bianchi IX cos-
mology (or any other homogeneous model for that matter) as mini-superspace mod-
els to Hořava-Lifshitz gravity. This can provide a tractable way to compare it with
Einstein gravity in the quantum regime. The Wheeler-DeWitt equation for the "wave-
function" of the universe appears to be more manageable here because the walls of the
effective potential are frozen in time in the domain of validity of quantum cosmology.
On the contrary, in ordinary quantum gravity, the Bianchi IX model is more difficult to
treat and interpret canonically because the corresponding potential is not inert to the
evolution, but scales with time. We plan to address these issues in detail elsewhere.

Third, it should be noted that there is an intimate connection between the Eu-
clidean version of Hořava-Lifshitz gravity with "detailed balance" and the theory of
geometric flows. Namely, the gradient flow of the metric derived from the functional
(superpotential) W yields a continuous deformation of the geometry on Σ3 that is first
order in time and trivially satisfies the higher order equations of motion of the theory.
This was first pointed out in the original works, [26], [27], focussing, in particular, in
2 + 1 dimensional gravity with anisotropic scaling and its connection to theory of Ricci
flows on two-dimensional surfaces. In 3 + 1 dimensions, the analogous deformation
theory is provided by the so called Cotton flow of three-geometries, since the variation
of the Chern-Simons term in the functional W is the Cotton tensor. This, then, pro-
vides the leading order term of the flow, which is third order in space, and it should
also be augmented with the Ricci curvature terms that come about by varying the
three-dimensional Einstein-Hilbert term in W . Remarkably, the Cotton flow admits
consistent truncation to an autonomous system of ordinary differential equations for
all homogeneous three-geometries, [42], and the same thing applies to the Ricci flow,
[43]. In a forthcoming paper we discuss solutions of the combined Cotton-Ricci flow
for Bianchi IX geometries, which can be thought as gravitational instanton solutions
in the 3 + 1 Hořava-Lifshitz gravity, [44]. These configurations might also have im-
portant role in quantum gravity, in the spirit of the Hartle-Hawking proposal for the
construction of the "wave-function" of the universe, using Euclidean path integrals.
Thus, in this context, it is natural to expect that the theory of geometric flows will con-
nect naturally to the problem of quantization of non-relativistic theories of gravitation,
in general, and for the Bianchi IX mini-superspace model, in particular.

Finally, among other things, we mention the interesting possibility of higher di-
mensional generalizations. In such cases, the theory is still defined using the ADM
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decomposition of the metric, as in 3 + 1 dimensions, but the potential contains even
higher curvature terms depending on the space dimension. For example, in 4 + 1 di-
mensions, we can have spatial derivative terms up to order eight, which follow from a
superpotential W that involves in its integrand the square of the Weyl tensor CijklCijkl

and the square of Ricci curvature R2, assuming the "detailed balance" condition, [27];
one can also add the corresponding Einstein-Hilbert term to W , with cosmological
constant, to insure that the theory flows to five-dimensional Einstein gravity at large
scales . In such case, the Bach tensor of the four-dimensional spatial geometry, which
is obtained by varying the square of the Weyl tensor in W , replaces the Cotton tensor
that was featuring earlier in the 3 + 1 dimensional theory; if an R2 term is also present
in W one has to add its contribution, which scales in the same way. Then, the leading
term of the potential VHL (at least when the volume of the five-dimensional universe is
very small) is provided by the square of the Bach tensor, plus possible additional con-
tributions coming from R2 in W , and it is scale invariant. In analogy with the previous
analysis, this term will dominate the cosmological evolution at early times and lead
to a frozen potential well, irrespective "detailed balance", where the effective point
particle rolls. Similar considerations apply to all higher dimensional cases. In view
of the results obtained in the literature for higher dimensional homogeneous string
cosmology models, [17], [18], [19], [20], [21], it is also important here to explore the
universal features of dynamics close to the singularity and expose their dependence
on space-time dimensionality.
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A Bianchi IX model geometry

The Bianchi IX model describes a homogeneous (but generally non-isotropic) three-
dimensional geometry with the topology of S3 and isometry group SU(2). The line
element is constructed using the corresponding left-invariant 1-forms σi,

σ1 = sinψsinθdφ + cosψdθ , (A.1)

σ2 = cosψsinθdφ − sinψdθ , (A.2)

σ3 = cosθdφ + dψ (A.3)

and takes the form
ds2 = γ1σ2

1 + γ2σ2
2 + γ3σ2

3 . (A.4)

The 1-forms σi satisfy the defining SU(2) relations

dσi +
1
2

εijkσj ∧ σk = 0 , (A.5)

whereas the angles range as 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤ 4π, since ψ

is extended to the double covering of the rotation group. The space integration is
carried out using

∫
σ1 ∧ σ2 ∧ σ3 =

∫
sinθ dθ ∧ dφ ∧ dψ = (4π)2 . (A.6)

Next, we present the expressions for the Ricci curvature and Cotton tensors of
Bianchi IX metrics that will be used in the main text. Proper discussion requires the
use of ei =

√
γi σi and the corresponding connection 1-forms ωi

j satisfying the zero
torsion relations dei + ωi

j ∧ ej = 0. Then, the curvature 2-forms are computed as

Ri
j = dωi

j + ωi
k ∧ ωk

j (A.7)

and the Ricci 1-forms are
(Ric)i = ikRk

i . (A.8)

The Ricci curvature scalar is R = ik(Ric)k. Also, the Cotton 2-form is given by

Ci = dYi + ωi
j ∧ Y j , (A.9)

where Y j are simply given by

Y j = (Ric)j − 1
4

Rej . (A.10)
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With these explanations in mind, the non-vanishing components of the Ricci cur-
vature tensor take the following form

R11 =
1

2γ2γ3

[
γ2

1 − (γ2 − γ3)2
]

, (A.11)

R22 =
1

2γ1γ3

[
γ2

2 − (γ1 − γ3)2
]

, (A.12)

R33 =
1

2γ1γ2

[
γ2

3 − (γ1 − γ2)2
]

(A.13)

and, therefore, the Ricci scalar curvature is

R = − 1
2γ1γ2γ3

(
γ2

1 + γ2
2 + γ2

3 − 2γ1γ2 − 2γ2γ3 − 2γ1γ3

)
. (A.14)

Also, the non-vanishing components of the Cotton tensor take the form

C11 = − γ1

2(γ1γ2γ3)3/2

[
γ2

1(2γ1 − γ2 − γ3) − (γ2 + γ3)(γ2 − γ3)2
]

, (A.15)

C22 = − γ2

2(γ1γ2γ3)3/2

[
γ2

2(2γ2 − γ1 − γ3) − (γ1 + γ3)(γ1 − γ3)2
]

, (A.16)

C33 = − γ3

2(γ1γ2γ3)3/2

[
γ2

3(2γ3 − γ1 − γ2) − (γ1 + γ2)(γ1 − γ2)2
]

. (A.17)

It is convenient (and will be used throughout this paper) to parametrize the metric
coefficients γi as follows,

γ1 = e2Ω+β++
√

3β− , (A.18)

γ2 = e2Ω+β+−
√

3β− , (A.19)

γ3 = e2Ω−2β+ . (A.20)

The volume of S3 is parametrized by Ω, whereas β+ and β− measure the deviations
from the isotropic metric that is associated to β+ = 0 = β−. Thus, for γ1 6= γ2 6= γ3,
the metric on S3 is homogeneous, but not isotropic, having different circumference
on great circles in each of the three mutually orthogonal principal directions. Axi-
ally symmetric non-isotropic metrics are obtained by choosing one of the deforma-
tion parameters equal to zero, say β− = 0, in which case γ1 = γ2 6= γ3. Likewise,
γ1 6= γ2 = γ3 requires β− =

√
3 β+ and γ1 = γ3 6= γ2 requires β− = −

√
3 β+.

Finally, note that the Cotton tensor vanishes in the isotropic case γ1 = γ2 = γ3,
since the metric of the round S3 is conformally flat.
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B The bounce law

In this appendix, we derive the bounce law of the effective point particle as it hits the
wall located at β → −∞. Far away from the wall the potential is assumed to vanish
and the particle moves freely, where this is applicable.

General relativity: In this case, the Hamiltonian is derived using the asymptotic
form of the potential VGR, as Ω → −∞, and becomes approximately

2HGR = p2
+ + p2

− − 1
4

p2
Ω +

12
κ4 e4(Ω−β+) . (B.1)

The Ω-dependence of the potential can be easily transformed away by introducing
new variables

Ω̄ =
1√
3

(
2Ω − β+

2

)
, β̄+ =

1√
3
(β+ − Ω) (B.2)

and their conjugate momenta

p̄Ω =
2√
3
(pΩ + p+) , p̄+ =

1√
3
(pΩ + 4p+) . (B.3)

Then, the Hamiltonian takes the simpler form

2HGR =
1
4

p̄2
+ + p2

− − 1
4

p̄2
Ω +

12
κ4 e−4

√
3β̄+ . (B.4)

In terms of these variables, the potential is frozen in time and both p̄Ω and p− are
constants of motion. Dividing by parts, one obtains

p̄Ω

p−
=

2√
3

1 + p+/pΩ

p−/pΩ
= constant (B.5)

relating the original momenta before and after the bounce.

At this point, it is useful to introduce Kasner exponents, which are applicable to
the evolution of the universe well before and after the bounce,

n1 =
1

3pΩ
(pΩ − 2p+ − 2

√
3p−) , n2 =

1
3pΩ

(pΩ − 2p+ + 2
√

3p−) ,

n3 =
1

3pΩ
(pΩ + 4p+) , (B.6)

and satisfy n2
1 + n2

2 + n2
3 = 1 by virtue of the Hamiltonian constraint p2

Ω = 4(p2
+ + p2

−)
far away from the wall. It is also convenient to parametrize the Kasner exponents in
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terms of a single variable s, following Misner, [6],

n1 =
2s(s − 3)
3(s2 + 3)

, n2 =
2s(s + 3)
3(s2 + 3)

, n3 = − (s − 3)(s + 3)
3(s2 + 3)

, (B.7)

so that the constant of motion (B.5) takes the form

p̄Ω

p−
= 2

n3 + 1
n2 − n1

=
s
3

+
3
s

= constant . (B.8)

Thus, in general relativity, the bounce law against the wall β+ → −∞ is simply
described as

s
3
→ 3

s
, (B.9)

which leaves p̄Ω/p− invariant and changes the Kasner exponents accordingly.

Hořava-Lifshitz gravity: The Hamiltonian is now derived using the asymptotic
form of the potential VHL, which is independent of Ω when Ω → −∞, and becomes
approximately

2HHL = p2
+ + p2

− − 1
2(3λ − 1)

p2
Ω +

18α

κ2 e−12β+ . (B.10)

The point particle moves freely before and after the bounce only when pΩ is very large,
in which case the Hamiltonian constraint simplifies to p2

Ω = 2(3λ − 1)(p2
+ + p2

−) for
generic values of β±. This will be implicitly assumed here and also that α > 0 and
λ > 1/3.

In the present case, there is no Ω-dependence on the wall located at β+ → −∞ and
it follows immediately that

pΩ

p−
= constant . (B.11)

Then, this is an ordinary bounce from a steady wall following the standard rule that
the incidence and reflection angles are equal asymptotically, namely p+ flips sign and
p− remains unchanged. To compare with the previous case, it is convenient to de-
scribe the free motion of the particle well before and after the bounce using Kasner
exponents, which are now defined as

n1 =
1

3pΩ

(
pΩ −

√
2(3λ − 1)p+ −

√
6(3λ − 1)p−

)
,

n2 =
1

3pΩ

(
pΩ −

√
2(3λ − 1)p+ +

√
6(3λ − 1)p−

)
,

n3 =
1

3pΩ

(
pΩ + 2

√
2(3λ − 1)p+

)
(B.12)
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and satisfy n2
1 + n2

2 + n2
3 = 1 by virtue of the Hamiltonian constraint far away from the

wall. By employing Misner’s parametrization (B.7), as before, we obtain

pΩ

p−
=

√
2(3λ − 1)

3
2

n2 − n1
=

√
3λ − 1

2

(
s√
3

+
√

3
s

)
= constant . (B.13)

Thus, the bounce law against the wall at β+ → −∞ is now described as

s√
3
→

√
3

s
, (B.14)

which leaves pΩ/p− invariant and changes the Kasner exponents accordingly. It has
the same from as in general relativity, s/3 → 3/s, setting

sGR =
√

3 sHL . (B.15)

Summarizing, the bounce in Hořava-Lifshitz gravity follows the standard reflec-
tion rule from a steady wall, whereas in general relativity this rule is modified by the
moving walls and it is effectively described by inserting a factor of

√
3 in the corre-

sponding Misner parameter. In general relativity, the standard rule of equal incidence
and reflection angles only applies to the transformed Hamiltonian (B.4) from which
the bounce law for the original momenta p± was derived.
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