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Abstract

Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem
of time in quantum gravity, including some aspects outside the reach of comparably complex minisuperspace models.
In this article, we consider the mechanics of pure shape and not scale of 4 particles on a line, so that the only physically
significant quantities are ratios of relative separations between the constituents’ physical objects. Many of our ideas
and workings extend to the N-particle case. As such models’ configurations resemble depictions of metro lines in public
transport maps, we term them ‘N-stop metrolands’. This 4-stop model’s configuration space is a 2-sphere, from which
our metroland mechanics interpretation is via the ‘cubic’ tessellation. This model yields conserved quantities which are
mathematically SO(3) objects like angular momenta but are physically relative dilational momenta (i.e. coordinates
dotted with momenta). We provide and interpret various exact and approximate classical and quantum solutions
for 4-stop metroland; from these results one can construct expectations and spreads of shape operators that admit
interpretations as relative sizes and the ‘homogeneity of the model universe’s contents’, and also objects of significance
for the problem of time in quantum gravity (e.g. in the näıve Schrödinger and records theory timeless approaches).
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1 Introduction

Euclidean relational particle mechanics (ERPM) (proposed in [1] and further studied in [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13]
is a mechanics in which only relative times, relative angles and relative separations are meaningful. On the other hand, in
similarity relational particle mechanics (SRPM) (proposed in [15] and further studied in [16, 5, 17, 7, 18, 9, 19, 20, 13]), only
relative times, relative angles and ratios of relative separations are meaningful. More precisely, these theories implement
the following two Barbour-type relational1 postulates.
1) They are temporally relational [1, 21, 22, 23, 18], i.e. there is no meaningful primary notion of time for the whole
system thereby described (e.g. the universe), which is implemented by using actions that are manifestly reparametrization
invariant while also being free of extraneous time-related variables [such as Newtonian time or General Relativity (GR)’s
lapse]. This reparametrization invariance then directly produces primary constraints quadratic in the momenta.
2) They are configurationally relational, which can be conceived in terms of a certain group G of transformations that
act on the theory’s configuration space Q being held to be physically meaningless [1, 21, 22, 23, 18, 13]. This can be
implemented by such as using arbitrary-G-frame-corrected quantities rather than ‘bare’ Q-configurations. For, despite this
augmenting Q to the principal bundle P (Q, G), variation with respect to each adjoined independent auxiliary G-variable
produces a secondary constraint linear in the momenta which removes one G degree of freedom and one redundant degree
of freedom among the Q variables. Thus, one ends up dealing with the desired reduced configuration space – the quotient
space Q/G. Configurational relationalism includes as subcases both spatial relationalism (for spatial transformations)
and internal relationalism (in the sense of gauge theory).

For ERPM, the Jacobi-type [24] action is2

I = 2
∫

dλ
√
T{E − V } , with T =

∑
i
µi{Ṙi − ḃ × Ri}2/2 , (1)

and for SRPM, our presentation of it is

I = 2
∫

dλ
√

T{E− V} , with T =
∑

i
µi{Ṙi − ḃ × Ri + ċRi}2/2I . (2)

These implement the above relational postulates for the corresponding Euclidean and similarity G’s [1, 15, 6, 17, 9].
Equivalent theories formulated directly in terms of rotational (and dilational) invariant quantities can also be arrived at
by considering the space of shapes and mechanics thereupon [30, 18]. It is then of interest what structure one gets when
one quantizes such theories [26, 6, 8, 19, 10, 27, 11, 20, 12, 13, 14, 28].

The Barbour-type indirect formulation of RPM’s (1,2), moreover, is particularly interesting through how the geometro-
dynamical form of GR can be cast in direct parallel: it also obeys postulates 1) and 2) implemented as follows [21, 23, 31]
(some features of which are already anticipated in [32]).3

SGR = 2
∫

dλ
∫

d3x
√
h

√
TGR{Ric(h)− 2Λ} for TGR =

1
4
Mµνρσ{ḣµν −£Ḟhµν}{ḣρσ −£Ḟhρσ} ; (3)

in this case, Q is the space Riem(Σ) of Riemannian 3-metrics on a fixed spatial topology Σ, and G is the corresponding
3-diffeomorphism group, Diff(Σ).

The way that the physical equations follow from each of the above actions then has many parallels. By reparametriza-
tion invariance [34] each has a primary constraint quadratic in the momenta: for GR the Hamiltonian constraint

H ≡ Nµνρσπµνπρσ −
√
h{Ric(h)− 2Λ} = 0 (4)

1RPM’s are relational in Barbour’s sense of the word rather than Rovelli’s distinct one; see e.g. [59, 3, 4] for these authors’ original material
and [9] for a discussion of some differences.

2Ri are relative Jacobi coordinates [25]: linear combinations of relative particle separation vectors that produce a diagonal kinetic term and
are particular inter-particle cluster separation vectors with associated cluster masses µi. Lower-case Latin indices run over 1 to n = N – 1 for
N the number of particles, and lower-case Greek ones are spatial indices; the spatial dimension is d. λ is label time and ˙ is the derivative with
respect to this. Using such relative coordinates, one has already incorporated the highly trivial translation part of the Euclidean or similarity
groups. ḃ is a rotational auxiliary velocity whereby the rotation part of these groups is implemented. In the SRPM case, ċ is a dilational
auxiliary velocity implementing the additional scaling part. Miαjβ = µiδijδαβ is the mass matrix with determinant M and inverse N iαjβ . P i
is the momentum conjugate to Ri. I is the moment of inertia,

∑
i µi|R

i|2. For ERPM, T , V and E are kinetic, potential and total energy
terms with the usual physical dimensions. In our ‘pure shape’ formulation of the SRPM, the kinetic term T has dimensions of (energy)/I and
E− V has dimensions of (energy)×I. Consistency dictates that this V additionally be a homogeneous function of the Ri; in fact, in the given
‘pure shape’ formulation, it must be homogeneous of degree zero. This turns out not to be a heavy restriction due to I being constant after
variation and useable to homogenize (see Sec 2 for an example). While an actual energy is prohibited by this consistency, the abovementioned
constant E is permissible instead.

3The spatial topology Σ is taken to be compact without boundary. hµν is a spatial 3-metric thereupon, with determinant h, covariant
derivative Dµ, Ricci scalar Ric(h) and conjugate momentum πµν . Λ is the cosmological constant. Mµνρσ = hµρhνσ − hµνhρσ is the inverse
DeWitt supermetric with determinantM and inverse Nµνρσ . To represent this as a configuration space metric (i.e. with just two indices, and

downstairs), use DeWitt’s 2 index to 1 index map [33]. Ḟµ is the velocity of the frame; in the manifestly relational formulation of GR, this
cyclic velocity plays the role more usually played by the shift Lagrange multiplier coordinate. £Ḟ is the Lie derivative with respect to Ḟµ.
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and, for ERPM and SRPM respectively, the ‘energy constraints’:

Q ≡ N iαjβPiαPjβ/2 + V = E , Q ≡ IN iαjβPiαPjβ/2 + V = E . (5)

By variation with respect to the auxiliary G-variables, each relational theory has constraints linear in the momenta: for
GR, the momentum constraint

Lµ ≡ −2Dνπ
ν
µ = 0 (6)

from variation with respect to Fµ, and, for RPM’s, the zero total angular momentum and zero total dilational momentum
constraints

L ≡
∑

i
Ri × P i = 0 , D ≡

∑
i
Ri · P i = 0 (7)

from variation with respect to bµ and c (so the latter constraint occurs only in SRPM). The zero total dilational momentum
constraint moreover closely parallels the well-known GR maximal slicing condition [35], hµνπµν = 0. Furthermore,
much like generalizing maximal slicing to constant mean curvature slicing [36] turns on a ‘York time’ variable [37, 38]
tYork ≡ 2

3hµνπ
µν/
√
h, one can think of the passage from SRPM to ERPM as involving an extra ‘Euler time’ variable

tEuler ∝
∑

i
Ri · P i. This is all underlied for both GR and RPM’s by shape-scale splits, the role of scale being played by√

I or I for RPM’s and by such as the scalefactor a or
√
h in GR. In both cases it is then tempting to use the singled-out

scale as a time variable but this runs into monotonicity problems which are avoided by using as times the quantities
conjugate to (a function of) the scale, i.e. tYork and tEuler.

There are further analogies at the configuration space level. If 1) R(N, d) the relative space of relative interparticle
(cluster) separation vectors and Riem(Σ) are held to be analogous, then so are 2) Relational space = R(N, d)/Rot(d)
for Rot(d) the d-dimensional rotations and superspace(Σ) = Riem(Σ)/Diff(Σ). 3) Shape space = R(N, d)/Rot × Dil for
Dil the dilations and conformal superspace [39, 40] CS(Σ) = Riem(Σ)/Diff(Σ) × Conf(Σ) for Conf(Σ) the conformal
transformations on Σ. 4) The cone representation of relational space in shape-scale split variables [11] and
{CS + V}(Σ) = Riem(Σ)/Diff(Σ) × VPConf(Σ) [36] for VPConf(Σ) the conformal transformations that preserve the
volume of the universe, V [41]. Also, both these GR and RPM configuration spaces are in general stratified, and both
have physically significant bad points (e.g. a = 0 is the Big Bang and I = 0 is the maximal collision).

There are yet more analogies [42, 33, 37, 43, 44, 38, 3, 45, 46, 4, 47, 17, 48] at the level of various strategies toward the
resolution of the Problem of Time4 and various other aspects of quantum cosmology. The above quadratic constraints
give frozen (i.e. timeless or stationary) quantum equations. For GR, this is the Wheeler–DeWitt equation,

ĤΨ = −~2‘
{

1√
M

δ

δhµν

{√
MN µνρσ δΨ

δhρσ

}
− ξRic(M)Ψ

}
’−
√
h(Ric(h)− 2Λ}Ψ = 0 , (8)

where Ψ is the wavefunction of the universe; ‘ ’ implies in general various well-definedness issues (see e.g. [19] for a sum-
mary) and need for a choice of operator-ordering (we use conformal ordering in this paper, c.f. Sec 3.1). Correspondingly,
for RPM’s,

Q̂Ψ = −~2

2

{
1√
M

∂

∂QA

{
NAB
√
M

∂

∂QB

}
− ξRic(M)

}
Ψ + VΨ = EΨ . (9)

For the moment A = iα, B = jβ and the QA are the Riα. NAB is the inverse mass matrix for ERPM and I times it for
SRPM. However, we use this equation more generally than that below for reduced RPM’s in which linear constraints have
been taken care of, this being explicitly possible in 1- or 2-d [18].

An important feature of GR (and one missed out by minisuperspace models [49, 50]) is that of linear constraints causing
substantial complications e.g. in attempted resolutions of the Problem of Time. That is the momentum constraint for GR
[(6) or its quantum counterpart], while RPM’s have the linear constraints [(7) or their quantum counterparts]. However,
minisuperspaces, unlike RPM’s, have more specific and GR-inherited potentials and indefinite kinetic terms. Thus both
minisuperspace and RPM’s are valuable in complementary ways as toy models.5

Some of the strategies toward resolving the Problem of Time are as follows.
A) Perhaps one is to find a time hidden within classical GR [38] and thus obtain a wave equation that depends on it from
the outset at the quantum level. York time is a GR example of such and Euler time is an ERPM model of it.
B) Perhaps one has slow, heavy ‘H’ variables that provide an approximate timestandard with respect to which the
other fast, light ‘L’ degrees of freedom evolve [52, 38, 47]. In quantum cosmology the role of H is played by scale (and
homogeneous matter modes), so ERPM’s in scale–shape split are more faithful semiclassical models of this than SRPM’s
themselves can muster.
C) A number of approaches take timelessness at face value. One considers only questions about the universe ‘being’,
rather than ‘becoming’, a certain way. This can cause at least some practical limitations, but nevertheless can address

4This notorious problem occurs because ‘time’ takes a different meaning in each of GR and ordinary quantum theory. This incompatibility
underscores a number of problems with trying to replace these two branches with a single framework in situations in which the premises of
both apply, namely in black holes and in the very early universe. While frozen quantum equations due to quadratic and not linear momentum
dependence in the GR Hamiltonian constraint are one facet of the Problem of Time, this does have many other facets [38].

5Midisuperspace [51] unites all these desirable features but is unfortunately then calculationally too hard for many of the strategies.
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at least some questions of interest. For example, Hawking and Page’s näıve Schrödinger interpretation [53] concerns the
‘being’ probabilities for universe properties such as: what is the probability that the universe is large? Flat? Isotropic?
Homogeneous? One obtains these via consideration of integrals of |Ψ|2 over suitable regions of the configuration space.
This approach is termed ‘näıve’ due to it not using any further features of the constraint equations. The conditional
probabilities interpretation [43] goes further by addressing conditioned questions of ‘being’ such as ‘what is the probability
that the universe is flat given that it is isotropic’? Records theory [43, 55, 45, 4, 56, 57] involves localized subconfigurations
of a single instant – whether these contain useable information, are correlated to each other, and whether a semblance
of dynamics or history arises from this. RPM’s are superior to minisuperspace for such a study as they have a notion
of localization in space, and more options for well-characterized localization in configuration space through their kinetic
terms possessing positive-definite metrics.
D) Perhaps instead it is the histories that are primary (histories theory [55, 58]). There is a records theory within histories
theory, and histories decohereing is one possible way of obtaining a semiclassical regime in the first place, making B) to
D) of particular interest to one of us [57, 10].
E) Distinct timeless approaches involve evolving constants of the motion (‘Heisenberg’ rather than ‘Schrödinger’ style
QM), or partial observables [59] (which are used in loop quantum gravity’s master constraint program [60]).
Some approaches to the Problem of Time that do not have an RPM analogue include superspace time (which requires
indefinite configuration spaces) and third quantization (which requires field theoretic rather than finite models).

We are in the process of building up a reasonable set of RPM models, paralleling e.g. the development of minisuperspace
in the early 70’s [49, 50], or Carlip’s work in the 90’s for 2 + 1 gravity [61] (see [38] for yet further useful toy model arenas
for Problem of Time approaches). Also RPM’s serve as a bridge from highly-studied ideas in molecular physics and ‘mini-
and midi’superspace, which may serve to import ideas and tools from the former to the latter.

Our build-up is for RPM’s in 1-d and 2-d; for N particles, we term these, respectively, N-stop metroland and N-a-
gonland (the first two nontrivial N-a-gonlands we furthermore refer to as triangleland and quadrilateralland). We choose
to study these models because their configuration spaces are highly tractable mathematically [30, 18]: SN−2 spheres in
1-d and CPN−2 complex projective spaces in 2-d. This is for the choice of plain shapes rather than oriented shapes.
[I.e. we make the choice of treating each shape and its mirror image as distinct; in this paper’s 4-stop metroland model,
this means that we regard the 1,2,3,4 ordering of the particles to be distinct from the 4,3,2,1 one. The opposite choice
gives configuration spaces Sk/Z2 = RPk (real projective spaces), and CPk/Z2 which are somewhat harder to model.]
N.B. that the interesting theoretical parallels between GR and RPM’s are unaffected by our choice of plain shapes and
of low-d RPM’s. We are presently studying scalefree models as these are more straightforward than models with scale
(though we will need to move on to scaled models as regards reasonably quantum-cosmologically realistic modelling of
the semiclassical approach; note also that scalefree problems occur as a subproblems in models with scale [63, 18, 9], so
studying these first also makes sense even from this semiclassical quantum cosmological perspective).

This paper considers scalefree 4-stop metroland (the smallest scalefree metroland to have the nontrivialities associ-
ated with having 2 physical degrees of freedom, so that one physical quantity can be expressed in terms of another, a
feature necessary for records theory’s correlations, while semiclassical approaches need at least one H and at least one L,
decoherence only makes sense if one thing decoheres another, and so on). Additionally, there are indications that 4-stop
metroland is simpler than triangleland [11] (which also has two physical degrees of freedom and spherical shape space by
CP1 = S2), particularly in the cases with scale and at the quantum level, so that the present paper is useful toward how
to subsequently deal with these other more complicated cases. Also, many of the present paper’s workings readily extend
to N-stop metroland. 4-stop metroland and triangleland are both useful preliminaries for studying quadrilateralland,
which is the simplest RPM to exhibit a number of geometrical nontrivialities, including some relevant to Problem of Time
approaches and some that are archetypal of 2-d problems in ways that triangleland is not. Moreover, 4-stop metroland
itself is already suitable for study of various timeless approaches to the Problem of Time.

In Sec 2 we consider a classical treatment of 4-stop metroland in its reduced form. We give a tessellation of the shape
sphere corresponding to 4-stop metroland’s physical interpretation and provide useful and meaningful shape quantities for
our study. We then study 4-stop metroland’s equations of motion and its conserved quantities, among which some have
angular momentum-like mathematics but are physically dilational rather than angular momenta. We interpret simple
subcases of multiple harmonic oscillator-like potentials’ solutions using our tessellation and shape quantities, concentrating
on the case of two localized and well-separated subsystems that is motivated by our interest in timeless approaches.

In Sec 3 we consider time-independent Schrödinger equations for these problems, by firstly interpreting their exact
and asymptotic solutions against our tessellation. Secondly, we compute expectations and spreads of our shape quantities
promoted to quantum-mechanical shape operators. Thirdly, we consider perturbations about the simplest case in which
the ‘springs’ balance each other out to produce a constant potential and hence spherical harmonics mathematics. Fourthly,
we note and apply a number of analogies with molecular physics to our study. We conclude in Sec 4, including discussion
of how our model and slightly larger versions thereof can be used as an arena for investigation of a number of Problem
of Time strategies – of which we provide näıve Schrödinger interpretation examples – and by commenting on ‘mini- and
midi’superspace counterparts of this paper’s shape operators.
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2 4-stop metroland at the classical level

2.1 Passage to reduced form of 4-stop metroland and useful coordinatizations of it

The unreduced action is given by the SRPM case within eq. (2) further restricted to being in 1-d (so there are no rotations)
and for 4 particles, and so 3 relative separations and thus 3 relative Jacobi coordinates, Ri:

I = 2
∫

dλ
√

T{E− V} with T =
∑

3

i=1
µi{Ṙi + ċRi}2/2I . (10)

We will find it more convenient to deal with the subsequent physics in terms of ιi ≡ √µiRi the mass-weighted relative
Jacobi coordinates [which are physically the square roots of the partial moments of inertia Ii = µiR

i 2 (no sum)], and,
after variation, their ‘normalized’ counterparts ni = ιi/ι and N i = Ii/I for I the total moment of inertia and ι =

√
I. It

will often be convenient to use nx, ny, nz for the components of ni. We take these Jacobi coordinates to be, in terms of
particle position coordinates, Jacobi H-coordinates rather than Jacobi K-coordinates (Fig 1) with quantum cosmological
and records theoretic applications in mind: two equal particle number clusters treated on the same footing, each could
model the seed of a galaxy, or be a nontrivial record (of which we need at least 2 to consider correlations between records).

Figure 1: a) and b) explain in 2-d the origin of the names H- and K-coordinates. Using {a...c} to denote the cluster composed of particles
a, ..., c ordered from left to right, + is the centre of mass (COM) of cluster {12}, X is the COM of cluster {34} and T is the COM of the triple
cluster {123}. c) What H-coordinates look like in 1-d: the H has been ‘squashed’.

Now let us perform some variational manoeuvres on the above action. It is useful to bear in mind from the outset
that our 4-stop metroland’s reduced configuration space is S2 and we are trying to bring this out as cleanly as possible
by removing extraneous variables and seeking for standard coordinates on this. Variation with respect to the dilational
auxiliary c gives the dilational constraint (7), the Lagrangian form for which can be rearranged to

ċ = −
∑

3

i=1
µiR

iṘi
/∑

3

j=1
µj{Rj}2 , (11)

and used to eliminate ċ from the action, producing (2) but with Tred in place of T:

Tred =
{∑

3

i=1
{ιi}2

∑
3

j=1
{ι̇j}2 −

{∑
3

i=1
ιiι̇i
}2}/ 2

{∑
3

k=1
{ιk}2

}2
. (12)

Then, via the coordinate transformation

Θ = arctan
(√
{ι1}2 + {ι2}2/ι3

)
, Φ = arctan

(
ι2/ι1

)
, (13)

(12) becomes
TS2 = {Θ̇2 + sin2Θ Φ̇2}/2 . (14)

The coordinate ranges are 0 < Θ < π and 0 ≤ Φ < 2π, so these are geometrically the standard azimuthal and polar
spherical angles on the unit shape space sphere S2. Inversely,

ι1 = ι sin Θ cos Φ , ι2 = ι sin Θ sin Φ , ι3 = ι cos Θ . (15)

Thus 4-stop metroland has ι ≡
√
I playing a (constant) radius role, and the ιi are Cartesian coordinates in the

‘surrounding’ Euclidean relational space R(4, 1) = R3, subject to the on-sphere condition∑
3

i=1
Ii =

∑
3

i=1
{ιi}2 = {ι}2 = I (constant) , or

∑
3

i=1
N i =

∑
3

i=1
{ni}2 = 1 . (16)

The ni are then the components of the unit Cartesian vector [(sin Θ cos Φ, sin Θ sin Φ, cos Θ) in spherical polar coordinates].
This should be contrasted with the way the sphere arising in scalefree triangleland [9] being harder to deal with from the
perspective of the ‘surrounding’ Euclidean relational configuration space, which is R3. Scalefree triangleland’s ι1 and ι2

are related to the Cartesian coordinates of the surrounding relational space not in the above familiar Cartesian way, but
rather in the less straightforward ‘Dragt’ way [11], corresponding to having to use not ι but I as radial variable.

The following formulae are also useful below:

cos Θ = nz, sin Θ =
√
nx2 + ny2, cos Φ =

nx√
nx2 + ny2

, sin Φ =
ny√

nx2 + ny2
, cos 2Φ =

nx
2 − ny2

nx2 + ny2
, sin 2Φ =

2nxny
nx2 + ny2

,

(17)
and what is (from the geometrical perspective) a stereographic radial coordinate,

R = tanΘ
2 =

√
{1− nz}/{1 + nz} . (18)
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2.2 Action and banal-conformal representations for this paper

We take the Jacobi action corresponding to (14),

I = 2
∫

dλ
√

TS2{E− V} (19)

to be primary. As well as by Sec 2.1’s reduction, this can be obtained by [18] considering a natural mechanics in Jacobi’s
geometrical sense [24] on the space of shapes [30].

The ‘banal’ conformal invariance of each of the above product-type actions T −→ Ω2T, E−V −→ {E−V}/Ω2 is useful
below in ‘passing’ factors between T and E−V (which we term ‘picking a distinct banal representation’). The above-given
forms of T and E − V are the geometrically-natural ones (both in the scale-invariant sense and in the sense of having
the standard spherical metric on the shape space sphere) and mechanically-natural in the sense that E itself appears in
them rather than E times some power of the moment of inertia. However, in some applications, (R, Φ) coordinates and
Ω = {1 +R2}/2 is useful; we term this the ‘flat banal representation’ as its T is flat, and denote it by tilde-ing.

Figure 2: a) On the configuration space represented as a sphere, there are 8 triple collision (T) points and 6 double-double (DD) collision
points. Each DD is attached to 4 T’s, and each T to 3 T’s and 3 DD’s, in each case by single double collision lines. This forms a tessellation
with 24 identical spherical isosceles triangle faces, 36 edges and 14 vertices. The T’s and DD’s form respectively the vertices of a cube and
the octahaedron dual to it (dashed lines in the second and third subfigures), so that the physical interpretation has the symmetry group of
the cube, of order 48. This is isomorphic to S4 × Z2 for S4 the permutation group of 4 objects, thus realizing the ways of labelling the 4
particles and ascribing an orientation. See pp. 72-75 of [64] for mathematical discussion of this tessellation and [65] for another occurrence of
it in mechanics. In this arrangement, the T’s and DD’s form 7 antipodal pairs, thus picking out 7 preferred axes. The 3 axes corresponding to
antipodal DD pairs are related to the 3 permutations of Jacobi H-coordinates and the 4 axes corresponding to antipodal T pairs are related to
the 4 permutations of Jacobi K-coordinates. This relation is in the sense that the poles in each case correspond to what each coordinatization
picks out as intra-cluster coordinates both going to zero i.e. collapse of both clusters for an H or collapse of the triple cluster for a K.
b) To make statements concerning shapes being near a DD or T – i.e. well-localized (intra-cluster distances far smaller than external distances
to non-member particles/clusters), spherical caps Θ ≤ ε are useful in the corresponding spherical polar coordinate chart. In particular, with
this paper’s usual choice of axis, the polar caps are where there is both {12} and {34} localization, so following clusters {12} and {34} makes
sense. Denote this clustering (i.e. partition into clusters) by {12,34}. The opposite notion is merged clusters for which the COM’s of {12}
and {34} are near each other so that these clusters largely overlap (which is, in a certain sense, a more ‘homogeneous’ universe model). This
corresponds to belts π/2− δ ≤ Θ ≤ π/2 + δ around the equator. (Multi)lunes Φ0 − η ≤ Φ ≤ Φ0 + η also correspond to physically meaningful
statements. E.g. being in the bilune around the Greenwich meridian means that the {34} cluster is localized, being in the bilune around the
‘Bangladeshi’ meridian perpendicular to the Greenwich one means that the {12} cluster is localized and being in the tetralune at π/4 to all
of these signifies that clusters {12} and {34} are of similar size’, i.e. η-close to contents homogeneity (i.e. that the particle clusters that make
up the model universe are, among themselves, of similar constitution). The above sort of approximate notions of shape are in the spirit of
those used in e.g. Kendall et al. [30], and we make use of the corresponding configuration space regions in our näıve Schrödinger approach
calculations in Sec 4.3. Moreover, note that notions of ‘relative size’ and ‘similar contents’ here in fact involve more concretely the

√
mass×

distance combination (whose squares are partial moments of inertia).

2.3 Physical interpretation by tessellation, charts and shape operators

The Jacobi H-coordinates in use are better-adapted for ‘seeing’ double-double collisions [see Fig 2a)] rather than triple
collisions (the opposite is the case for Jacobi K-coordinates), so that it is useful to preliminarily work out and graphically
represent the mechanical interpretations of the various zones of our problem’s configuration space of shapes: Fig 2. This
is of considerable use below in interpreting classical trajectories (as paths upon this figure) and classical potentials and
quantum-mechanical probability density functions (as height functions over this figure). Spherical polar coordinates about
each axis in Fig 2 are natural for the study of the corresponding H or K structure. Thus each choice of H- or K-coordinates
has a different natural spherical polar coordinate chart. Any two of these natural charts suffice to form an atlas for the
sphere (each goes bad solely at its poles, where its axial angle ceases to be defined). To look extremely close to a pole,
one can ‘cartesianize’ e.g. after projecting the relevant hemisphere onto the equatorial disc.

The ni are interesting quantities with which to describe the shape of the configuration. Of course, only 2 of the 3 ni

are independent, by the on-sphere restriction (16). For the example of H-coordinates that follows the {12,34} clustering
arrangement that we follow in particular in this paper, the corresponding nz is a signed quantifier of the relative size of
the universe from the perspective of an observer in either cluster. On the other hand, nx is a signed quantifier of the size
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of the universe from the less Copernican perspective of an observer specifically in cluster {12} [ny has the same meaning
but for cluster {34}]. Thus we term these shape quantities RelSize(12,34), RelSize(1,2) and RelSize(3,4) respectively.6

RelSize(12,34) small means that clusters {12} and {34} are merged, and corresponds geometrically to the equatorial
belt. RelSize(12,34) large means physically that clusters {12} and {34} each cover but a small portion of the model
universe, and corresponds geometrically to the polar caps. RelSize(1,2) small means physically that cluster {12} is but
a speck in the firmament, and corresponds geometrically to a belt around the ‘Bangladeshi’ meridian. RelSize(1,2) large
means physically that cluster {12} engulfs the rest of the model universe, and corresponds geometrically to an antipodal
pair of caps around each of the intersections of the equator and the Greenwich meridian.

A quantifier of the contents inhomogeneity between the two clusters is Φ, which is related to the ratio of the size of
{34} to that of {12}’s by (13). N.B. that the last 3 paragraphs refer, more concretely, to

√
mass× length, so that large

mass hierarchies can distort intuitive notions of ‘actual size’.

2.4 Rotor and planar mechanics analogies for 4-stop metroland

By inspection of the kinetic term, there are clear analogies between this 4-stop metroland problem and well-known rotor
and planar problems in ordinary mechanics. For the first analogy,

arctan
(√
{RelSize(12)2 + RelSize(34)2}/RelSize(12,34)

)
= Θ←→ θ = (azimuthal coordinate of the axis in space)

(20)
arctan (RelSize(34)/RelSize(12)) = Φ←→ φ = (polar coordinate of the axis in space) , (21)

1↔ Irotor ( moment of inertia of the rotor ) . (22)

For the second analogy, transform Θ to the radial stereographic coordinate R = tanΘ
2 and pass to the ‘tilded’ banal

representation. One then has the flat plane polar coordinates kinetic term, so√
{1− RelSize(12, 34)}/{1 + RelSize(12, 34)} = R ←→ r = (radial coordinate of test particle) , (23)

arctan (RelSize(34)/RelSize(12)) = Φ←→ φ = (polar coordinate of test particle) , (24)

1↔ m = (test particle mass) . (25)

These analogies will be furtherly fruitful in analyzing 4-stop metroland’s equations of motion and conserved quantities in
the next 2 subsections, as well as when further specifics about the potential are brought in (see Sec 3.6).

2.5 Equations of motion for 4-stop metroland

The equations of motion are
Θ∗∗ − sin Θ cos Θ Φ∗2 = −V,Θ , {sin2Θ Φ∗}∗ = −V,Φ . (26)

(The star is derivative with respect to the relational approach’s emergent time t: ∗ ≡ d/dt ≡
√
{E− V}/T ,̇ for which

the equations of motion simplify. This is readily deduced to banal-transform as ∗ −→ Ω−2∗ [68].]
V is independent of λ itself and so one of these can be replaced by the ‘energy relation’ (a first integral):

{Θ∗2 + sin2Θ Φ∗2}/2 + V(Θ,Φ) = E , constant . (27)

If the potential is additionally Φ-independent (which we term ‘special’ and whose planar mechanics analogue is termed
central), then the Φ-Euler–Lagrange equation above gives another first integral,

sin2Θ Φ∗ = D . (28)

For both of the analogies above, the correpsonding SO(2) or SO(3) related constant of the motion has the physical meaning
of an angular momentum; for its interpretation in the present context, however, see the next subsection. In the special
case, one can now furthermore combine the last 2 equations in two ways. Firstly,

E = Θ∗2/2 +D2/2sin2Θ + V(Θ) ≡ Θ∗2/2 + Veff (29)

which in the planar central problem amounts to modification of the potential by a centrifugal barrier, while, in the more
directly analogous rotor problem, amounts to placing a centrifugal barrier at each pole. In our problem, it takes the
latter ‘bipolar barrier’ form. Secondly, (for D 6= 0) Θ,Φ

2/2 = sin4Θ{E − Veff}/D2. Both of these straightforwardly give
quadratures relating Θ to, respectively, t (orbit traversal rate) and Φ (shape of the orbit, the D = 0 case giving a Φ =
constant 1-d motion without any double barrier).

If V is also Θ-independent and thus constant, we get 3 D-quantities from freedom to pick whichever axis to have a
conserved Φ about. We call this constant-potential case the ‘very special case’ (the counterpart of which in the second
analogy is the rigid rotor).

6There are other such operators corresponding to attaching significance to other clustering arrangements obtained by permuting the particles
in defining the Jacobi H-coordinates, while similar quantities can be defined for the various permutations of Jacobi K-coordinates; see [20] for

a brief account of the shape operators for each of these. RelSize(12,34) is also
√

1− nx2 − ny2, so it can also be viewed as a ‘measure’ of
noncollapse of at least one of the model universe’s clusters; one can readily work out such ‘dual statements’ for other shape quantities.
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2.6 Further discussion of 4-stop metroland’s conserved quantitites

One interesting issue in RPM’s is what these angular momentum-like quantities are physically. Triangleland is spatially
2-d and as such affords a notion of angular momentum; its conserved quantity J turns out to be the relative angular
momentum between its subsystems. But the present paper’s 4-stop metroland problem, however, is spatially 1-d, so no
angular momentum in space (relative or otherwise) is possible. What then is the meaning of the conserved quantity D in
terms of the ni or RelSize variables?

D = nxny
∗ − nynx∗ , (30)

which is the ‘3-component of an angular momentum in the Euclidean relational configuration space R(4, 1) = R3’.
Moreover, using Di for individual/partial dilations RiPi (no sum)

D = D2nx/ny − D1ny/nx (31)

so that D is a (weighted) relative dilational quantity corresponding to a particular exchange of dilational momentum
between the {12} and {34} clusters.

In the very special case, there are 3 D conserved quantities forming a vector in the ‘surrounding’ Euclidean relational
configuration space R3, of which the above D is the 3-component:

Di = εijkn
jnk ∗ = Dkn

j/nk − Djn
k/nj (32)

where i, j, k are a cycle of 1, 2, 3.
All in all, the less special a problem is, the more types of relative dilational momentum exchanges it has.
That we get ‘angular momentum mathematics’, we explain as follows. The body of mathematics habitually associ-

ated with angular momentum can actually be associated more generally (in terms of what physics it covers, not what
mathematics it is, as further explained in Appendix A) with rational (i.e. ‘ratio-based’) quantities rather than just with
angular ones (which are a subset thereof).7 Therefore ‘rational momentum mathematics’ would appear to be a more
widely appropriate term, covering both angular momentum and dilational momentum as subcases. The objects in ques-
tion continue to possess antisymmetry in this more general setting since this derives from differentiating a (function of a)
ratio by the (chain rule and) quotient rule: {f(y/x)}∗ = f ′{xy∗ − yx∗}/x2 and thus occurs irrespective of whether that
ratio admits an interpretation as an angle in physical space.

2.7 Passage to 4-stop metroland’s Hamiltonian

The conjugate momenta are then
pΘ = Θ∗ , pΦ = sin2Θ Φ∗ = D . (33)

[Also, Di = εij
kιjpk for pk the momentum conjugate to ιk.] The momenta obey a quadratic constraint

Q ≡ pΘ
2/2 + pΦ

2/2sin2Θ + V(Θ,Φ) = E , (34)

the middle expression of which also serves as the classical Hamiltonian H for the system.

2.8 Harmonic oscillator like potentials for 4-stop metroland

With eventual timeless records and structure formation goals in mind, we intend to follow a particular clustering – the
{12,34} one – using a particular permutation of H-coordinates which is physically picked out by considering not the
most general array of 6 springs between the particles but rather the following. We take the mechanical picture in Jacobi
coordinates as primary and consider springs within each of the {12} and {34} clusters and between the centres of mass
of the two clusters (reinterpretable if one so wishes as a superposition of inter-particle springs). Then the potential is

V =
∑

3

i=1
Ki{ni}2/2 = {K2

1 sin2Θ cos2Φ +K2
2 sin2Θ cos2Φ +K2

3 cos2Θ}/2 =

A+Bcos2Θ + Csin2Θcos2Φ = a+ bY2,0(Θ) + cY2,2c(Θ,Φ) (35)

for Ki = Hi/µi where Hi play the role of Jacobi–Hooke coefficients, and
A = K3/4 + {K1 +K2}/8 , B = K3/4− {K1 +K2}/8 , C = {K1 −K2}/4 , (36)

the Y ’s are spherical harmonics (c and s subscripts thereon standing for cosine and sine Φ-parts) and the precise form of
the constants a, b, c is not required for this paper. This potential has as a ‘very special’ case B = C = 0, for which the
potential is constant, and the ‘special case’ C = 0 for which the dynamics is separable (which is sketched in Fig 3). In
terms of the Ki, the special case corresponds to K1 = K2, i.e. that each cluster has the same ‘constitution’: the same
Jacobi–Hooke coefficient per Jacobi cluster mass, which is a kind of ‘homogeneity requirement’ on the ‘structure formation’
in the cosmological analogy. The very special case then corresponds to K1 = K2 = K3, for which high-symmetry situation

7Smith [62] pointed out this generalization but not, as far as we are aware of, its rational interpretation.
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the various potentials can balance out to produce the constant. Additionally the B << A perturbative regime about the
very special case signifies K1 +K2 << K3 so the inter-cluster spring is a lot stronger than the intra-cluster springs, which
in some ways is analogous to scalefactor dominance over inhomogeneous dynamics in cosmology. On the other hand, the
C << A regime corresponds to either or both of the conditions K1 + K2 << K3, K1 ≈ K2 the latter of which signifies
high contents homogeneity. The multiplicity of forms of writing the potential above is useful to bear in mind in searching
for mathematical analogues for the present problem in e.g. the molecular physics literature (c.f. Sec 3.6).

If one started instead with springs between all 6 pairs of particles, one would obtain V6 = V + V′ for

V′ =
∑

3

i=1
Lin

jnk = Dsin2Θ sin 2Φ + Esin 2Θ cos Φ + F sin 2Θ sin Φ = dY2,2s(Θ,Φ) + eY2,1c(Θ,Φ) + fY2,1s(Θ,Φ) (37)

where i, j, k are a cycle so that the first form of V6 is the most general homogeneous quadratic polynomial in the ni,
D = L3/2, E = L2/2 and F = L1/2, and the detailed form of the constants d, e and f are not needed for this paper.
On the face of it, this is a more general problem than the preceding paragraph’s, with three further nonseparable terms.
However, there is a sense in which these three terms can be made to go away, c.f. Sec 2.12. One can imagine whichever
of these problems’ potentials as a superposition of familiar ‘orbital shaped’ lumps, though such a superposition will of
course in general alter the number, size and position of peaks and valleys according to what coefficients each harmonic
contribution has. Contrast with the triangleland model is also interesting at this point – there Y0,0 and just two of the
first-order spherical harmonics arose.

The equations of motion for this potential are

Θ∗∗ − sin Θ cos Θ Φ∗2 = sin 2Θ {2B − C cos 2Φ−D sin 2Φ}+ 2 cos 2Θ {E cos Φ + F sin Φ} , (38)

{sin2Θ Φ∗}∗ = 2 sin2Θ {C sin 2Φ−D cos 2Φ}+ sin 2Θ {E sin Φ− F cos Φ} , (39)

one of which can be replaced by the ‘energy’ first integral

{Θ∗2 + sin2Θ Φ∗2}/2 +A+B cos 2Θ + C sin2Θ cos 2Φ +D sin2Θ sin 2Φ + E sin 2Θ cos Φ + F sin 2Θ sin Φ = E . (40)

Then if C = D = E = F = 0, one has a special potential, so the Φ Euler-Lagrange equation gives another first integral
(28) and the subsequent quadrature for the shape of the orbit is

Φ− Φ0 = ±D
∫

dΘ
/

sin Θ
√

2{E−A−B cos 2Θ}sin2Θ−D2 . (41)

Figure 3: We sketch V over the sphere for the mechanically significant cases a) A > B > 0 and b) −A < B < 0. The first has barriers at the
poles and a well around the equator, while the second has wells at the pole and a barrier around the equator. Each is a surface of revolution
of the curve provided, the first case being a peanut or ellipsoid-like surfaces and the second case being a concave or convex wheel. In each
case, considering Veff for D 6= 0 adds a spike at each pole (this now means that for D 6= 0 both islands cannot simultaneously collapse to their
generally distinct centre of mass points). Finally, note that our potential is axisymmetric and reflectible about its equator so its symmetry
group is D∞ × Z2 (D denotes dihaedral). If this is aligned with a DD axis of the physical interpretation, the overall problem retains a D4 × Z2

symmetry group, of order 16.

One simple consideration here is small and large regimes for the special case. More precisely, these are near-North
Pole and near-South Pole regimes in Θ but become large and small regimes in terms of R = tanΘ

2 . For this (including
changing to the tilded banal representation), and using ‘shifted energy’ E′ ≡ E−A−B

W ≡ Ẽ− Ṽ = 4E′/{1 +R2}2 + 32BR2/{1 +R2}4 . (42)

Then the near-North Pole regime (R << 1) maps to the problem with flat polar kinetic term and

W = 4E′ + 8{4B − E′}R2 (43)
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up to O(R4). This has the mathematics of a 2-d isotropic harmonic oscillator,

W = E − ω2R2/2 , (44)

provided that the ‘classical frequency’ (for us with units of I/time) ω < 0 (else it would be a constant potential problem
or an upside-down harmonic oscillator problem), alongside E > 0 to stand a chance of then meeting classical energy
requirements. Writing E and ω2 out by comparing the previous two equations, these inequalities signify that 2E > K3 and
2E > K3 + 2{K3 −K1}, the latter being more stringent if K3 > K1 (‘stronger inter-cluster binding’) and less stringent if
K3 ≤ K1 (‘weaker inter-cluster binding’). One can also deduce from the first of these and K3 ≥ 0 (spring) that E > 0.

Next, note that the near-South Pole regime (R << 1) maps to the problem with flat polar kinetic term and

W = 4E′/R4 + 8{4B − E′}/R6 (45)

up to O(1/R8). Moreover, U = 1/R maps the large case’s (42) to the small case’s (45), so this is also an isotropic harmonic
oscillator – in (U , Φ) coordinates and with the same E and ω as above. One of us had previously observed a ‘large–small’
duality of this sort in triangleland [9]. It halves the required solving to understand Θ ≈ 0 and ≈ π. Another lesson learnt
from the triangleland study is that we know that study of second approximations is considerably more profitable than
that of first approximations, so we pass straight to them. Note that, for our subsequent QM study, we want the isotropic
harmonic oscillator rather than cases corresponding to other values of the parameters E and −ω2 (e.g. the upside-down
isotropic harmonic oscillator).

2.9 Classical solutions for D = 0

0 = D = sin2Θ Φ∗, so either sin Θ = 0 and one is stuck on a pole or Φ is constant. In terms of the ni, this translates
to ny = knx for k constant, so motion is restricted to lying on a diameter. In the case of D = 0 (which corresponds
to constant potential case with D = 0), one likewise obtains ny = knx = lnz for l also constant, but (16) holds too, so
all ni take fixed values and motion is restricted to a point. Being purely 1-d or 0-d motions, this subsection’s solutions’
simpleness renders them of limited interest. 1-d motions include 1) going up and down the 1-axis, corresponding to cluster
{34} always being collapsed while cluster {12} varies in size including going through zero size at the origin and two triple
collisions in which each of particles 1 and 2 coincide with the collapsed cluster. 2) The {12} ↔ {34} of this going up and
down the 2-axis. 3) Going up and down an ny = ±nx line, corresponding to the clusters always being of the same size
(contents homogeneity) but that size varying from zero ({12,34} DD collision, i.e. {12} collapsing to a point and also {34}
collapsing to a point) to maximal [in which the two clusters are superposed into the {13,24} or {14,23} DD collisions].

2.10 Classical solution in the very special case

For D 6= 0, the very special case is solved by the geodesics on the shape space sphere,

cos(Φ− Φ0) = κ cot Θ (46)

for κ = D/
√

2{E−A} − D2, constant. Then in terms of the ni (or RelSize variables), (17 i–iv) gives

κnz = nx cos Φ0 + ny sin Φ0 , (47)

i.e. restriction to a plane through the origin, with arbitrary normal (cos Φ0, sin Φ0, −κ). But also
∑

3
i=1
{ni}2 = 1, so

we are restricted to the intersection of the sphere and the arbitrary plane through its centre, which is clearly another
well-known way of describing the great circles as circles within R3.

The disc in the equatorial plane is particularly useful for considering the mechanics of the problem with clusters {12}
and {34} picked out by our choice of Jacobi H-coordintes. Eliminating nz projects an ellipse onto this disc,

κ2 = {κ2 + cos2Φ0}nx2 + 2 cos Φ0 sin Φ0nxny + {κ2 + sin2Φ0}ny2 , (48)

centred on the origin with its principal axes in general not aligned with the coordinates. E.g. for Φ0 = 0, the ellipse is{
RelSize(1,2)/{1 + κ−2}−1/2

}
2 + RelSize(3,4)2 = 1 , (49)

which has major axis in the RelSize(3,4) = ny direction and minor axis in the RelSize(1,2) = nx direction, while the
value of RelSize(12,34) = nz around the actual curve can then be read off (47) to be nz = nx/κ. With reference to the
first subfigure in Figure 2a), as D −→ ∞, the dynamical trajectory is the equator, corresponding to maximally-merged
configurations including four DD collisions. For D small, the motion approximately goes up and down a meridian, e.g.
forming a basic unit of a narrow cycle from the polar DD to slightly around the T on the Greenwich meridian (reflections
of) which is repeated various times to form the whole trajectory. [The actual limiting on-axis motion D = 0 is excluded
from this subsection’s working but already considered in the preceding one.]

Other Φ0 straightforwardly correspond to rotated ellipses. However the mechanical meaning of these differs. E.g. about
π/2 clusters {12} and {34} are interchanged, while about ±π/4 also has distinct sharp physical significance. Throughout,
note the periodicity of the motion (already clear in the spherical model as the great circles are closed curves). The
tessellation’s edge-lines are great circles, projecting to the disc rim, the axes, the lines at π/4 to the axes and ellipses with
principal directions aligned with the preceding.
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2.11 Approximate classical solutions in the special case

At the level of the sphere and using the second approximation, we can transcribe the solution from [9] to be, with D for
J and with our E and ω2 in place of that paper’s Q0 and Q2, and defining f0 = 2E/D2, f2 = ω2/D2 and g =

√
f0

2 − f2,√
f0 + g cos(2{Φ− Φ0}) = 1/R = cotΘ

2 . (50)

In terms of R these are ellipses centred on the origin (including the bounding case of circles but excluding the other
bounded case of pairs of straight lines (Fig 4).

Figure 4: a) For the small approximation in (R, Φ) coordinates, the desired parameter space is the indicated wedge populated by ellipses;
on the bounding parabola, we get circles, coinciding with the edge of the nx, ny disc for f0 = 1 = f2 and becoming smaller in either direction.
b) For the large approximation in (W, Φ) coordinates, the parameter space is likewise; if one converts to (R, Φ) coordinates, however, the
wedge is then populated by ellipse-like curves and peanut-like curves.

N.B. we now have a third inequality on E and ω: 4E2 ≥ D2ω2, that replaces E > 0 as it is more stringent. Thus in terms
of E and the Ki we get our allowed wedge of parameter space to be 2{2E −K3}2/D2 ≥ {2E −K3} + 2{K1 −K3} > 0.
Saturation of this corresponds to circular trajectories. For such circles to exist, the discriminant gives the condition
{D/4}2 ≥ K3 − K1, so that the relative dilational quantity is bounded from below by the amount by which the inter-
cluster spring dominates.

Then by (17 v-vi) and (18), (50) becomes√
f0 + g{{nx2 − ny2} cos 2Φ0 + 2nxny sin 2Φ0}/{nx2 + ny2} =

√
{1 + nz}/{1− nz} , (51)

so solving for nz and applying the on-sphere condition for Φ0 = 0, say, gives√
1− nx2 − ny2 = nz =

{f0 + g − 1}nx2 + {f0 − g − 1}ny2

{f0 + g + 1}nx2 + {f0 − g + 1}ny2
. (52)

Then one can write down a curve in terms of two independent variables such as RelSize(1,2) and RelSize(3,4): either
RelSize(1,2) + RelSize(3,4) = 0 (so both are 0 because they are positive and so both clusters have collapsed) or{
{f0 + g + 1}RelSize(1,2)2 + {f0 − g + 1}RelSize(3,4)2}2 = 4{{f0 + g}RelSize(1,2)2 + {f0 − g}RelSize(3, 4)2} . (53)

The large regime then has √
f0 + g cos(2{Φ− Φ0}) = 1/W = R = tanΘ

2 , (54)

which is, for the cases of interest, an ellipse-like or peanut-like curve (see [9] and Fig 4b). Applying this paper’s in-
terpretation in terms of ni or RelSize variables, the same answer as for the small regime arises again. This conclusion
just reflects the potential imposed having an antipodal symmetry, which physically translates to shapes and their mirror
images behaving in the same fashion.

Finally, note that this approximate problem has a part-hidden SO(3) symmetry (such are well-known for harmonic
oscillators). In the present context, however, its objects take the form

H1 = ωnxny +D1D2/ωnxny , H2 = D = D2nx/ny−D1ny/nx , H3 = ω{nx2−ny2}/2 +D1
2/2ωnx2−D2

2/2ωny2 . (55)

Thus its unhidden part is H2 = D which has relative dilational momentum significance, while its remaining hidden parts
are mixed shape and dilational objects. [This is used as an example in Appendix A.]

2.12 Discussion of ‘more general combinations of springs’

The Li terms (or, equivalently, D, E and F terms) can be dropped in the sense that one can pass to normal coordinates
for which the symmetric matrix of Jacobi–Hooke coefficients has been diagonalized. Unlike in triangleland, however, this
does not send one to the special case – the C-term survives and so requires addressing separately (e.g. perturbatively).
The elimination thus of D, E and F terms is also subject to the mechanical interpretation of the normal-coordinate
problem being more difficult algebraically than for D = E = F = 0, so that it is conceivable that one might prefer to
retain this simpler interpretation and treat D, E and F perturbatively.
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3 4-stop metroland at the quantum level

Kinematical quantization [66] for this problem [19] involves three objects ui whose squares add up to 1 (which in the
present case we identify with the Cartesian unit vectors ni) and three SO(3) objects (which in the present case are the
Di). We then consider the time-independent Schrödinger equation [19]

{sin Θ}−1
{

sin Θ Ψ,Θ

}
,Θ +{sinΘ}−2Ψ,ΦΦ = {A+ B cos 2Θ + Csin2Θ cos 2Φ}Ψ , (56)

where A = 2{A− E}/~2, B = 2B/~2, C = 2C/~2 are dimensionless constants. Note that the above equation is separable
for 0 = C i.e. 0 = C i.e. K1 = K2; most of our work is for this case.

3.1 Explanation of the choice of operator ordering

We choose an ordering that is coordinatization invariant on configuration space [67], i.e. a member of the family D2 −
ξRic(M) [c.f. (8, 9)] where D2 and Ric(M) are the Laplacian and the Ricci scalar corresponding to the kinetic metric
M on configuration space. Moreover, following from the appropriateness of relational actions for whole-universe physics,
observing that these have banal conformal invariance as a simple and natural feature and then asking for this to hold at
the quantum level in the whole-universe context (i.e. in quantum cosmology or toy models thereof), among the preceding
family of orderings we are uniquely led to the conformal ordering, for which ξ = {k − 2}/4{k − 1}, where k is the
configuration space dimension. (See [68] for more on this motivation for conformal ordering, previous motivation on
different premises for it being in e.g. [49, 69].) Moreover, presently we are in configuration space dimension 2, for which
ξ = 0 so our operator ordering choice is, in this case the same as the Laplacian ordering (itself advocated in e.g. [70],
while [71] also considered 2-d configuration spaces so the Laplacian–conformal ordering coincidence also applies).

3.2 Solution in very special case

The C = 0 case of Eq (56) separates to simple harmonic motion and the Θ equation

{sin Θ}−1{sin Θ Ψ,Θ},Θ − {sin Θ}−2m2Ψ = AΨ + B cos 2Θ Ψ , (57)

If B = 0 as well – our very special problem –, then from Sec 2.4 this has similar mathematics to ordinary QM’s cen-
tral potential problem, in which the quantum Hamiltonian Ĥ, total angular momentum L̂Total =

∑3
α=1 L̂α

2 and mag-
netic/axial/projected angular momentum L̂3 form a complete set of commuting operators and as such share eigenvalues
and eigenfunctions. In fact (also Sec 2.4) our very special problem is mathematically the same as the rigid rotor, for
which Ĥ is LTotal up to multiplicative and additive constants, so, effectively one has a complete set of two commuting
operators, whose eigenvalues and eigenfunctions are the well-known spherical harmonics and, moreover also occur as a
separated-out part of the corresponding scaled relational particle model problem. However, our ‘rigid rotor’ is in con-
figuration space rather than in space and with total relative dilational momentum D̂Total =

∑3
i=1 D̂i2 in place of total

angular momentum and projected relative dilational momentum D̂3 in place of axial angular momentum. These then have
eigenvalues ~2D{D + 1} and ~d respectively, so we term D and d respectively the total and projected relative dilational
quantum numbers (in analogy with the rigid rotor).

Our very special problem’s time-independent Schrödinger equation separates into simple harmonic motion and the
associated Legendre equation (in X = cos Θ) i.e. the spherical harmonics equations, Thus its solutions are

ΨDd(Θ,Φ) ∝ YDd(Θ,Φ) ∝ Pd
D(cos Θ)exp(±idΦ) (58)

for Pd
D(X) the associated Legendre functions of X, D ∈ N0 and d such that |d| ≤ D. Also, D{D + 1} = −A, which,

interpreted in terms of the original quantities of the problem, is the condition

E′ = E−K3/2 = ~2D{D + 1}/2 (59)

on the model universe’s ‘energy’ and inter-cluster effective spring in order to have any quantum solutions (E is fixed as
this is a whole-universe model so there is nothing external from which it could gain or lose energy). If this is the case,
there are then 2D + 1 solutions labelled by d (we can see the preceding sentence cuts down on a given system’s solution
space, though the more usual larger solution space still exists in the ‘multiverse’ sense [20]).

Furthermore, using a basis with sines and cosines instead of positive and negative exponentials,

ΨDN
(ni) ∝ N (ni) . (60)

Here, the D-label runs over the orbital types (s for D = 0, p for D = 1, d for D = 2 ...) and N is the ‘naming polynomial’
i.e. 1 for s, nx for pnx

, nxny for dnxny
etc. (Note that the name ‘z2’ in dnz

2 is indeed shorthand for z2 – 1/3; shorthand
begins to proliferate if one goes beyond the d-orbitals; the polynomials arising in our working are also subject to being
‘nonunique’ under

∑3
i=1{ni}2 = 1.) That the wavefunctions are their own naming polynomials is via Sec 2.4’s analogy 2
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mirroring how the orbitals in space historically got their Cartesian names, and also is akin to representations [72] of the
spherical harmonics in terms of homogeneous polynomials. Another form for the solution is8

ΨD|d|(ni) ∝ Pd
D(nz)Td

(
nx/

√
nx2 + ny2

)
= Pd

D(RelSize(12,34))Td

(
RelSize(1,2)/

√
1− RelSize(12,34)2

)
. (61)

However, via Sec 2.3’s tessellation trick, we can interpret the wavefunctions in terms of the metroland mechanics on the
sphere itself, on which they take the particularly familiar ‘orbital’ form.

For D, d = 0, 0 (s-orbital), note that the axis is arbitrary so it is evident from using 2 different principal axes that
the probability distribution function on-axis is not to be trusted in spherical coordinates about that axis. We conclude
that the ground state does not have bias toward any particular configurations. For D, d = 1, 0 (pnz

orbital), equatorial
configurations are improbable, meaning that mergers of the {12} and {34} clusters [including the non {12,34} DD’s] are
disfavoured, while polar configurations are probable, meaning that the {12} and {34} clusters being small and well-apart
is favoured. For D, d = 1, ±1, in the pny orbital case, the ny = RelSize(3,4) axis part of the equator is probable, so
mergers of a small {12} and a large {34} are favoured. pnx

is the {12} ↔ {34} of this. For D, d = 2, 0 (dnz
2 orbital),

both equatorial and polar configurations are probable, so that the {12} and {34} clusters are either merged or small and
well-apart. For D, d = 2, ±1, in the pnynz

case, equatorial configurations are improbable, so mergers of {12} and {34}
are improbable, and also the {12} cluster is small; DD’s are disfavoured. dnxnz

is the {12} ↔ {34} of this. For D, d
= 2, ±2, in the dnx

2−ny
2 case, equatorial configurations, i.e. mergers of {12} and {34}, are probable, especially those

with one but not both of the clusters are large (i.e. configurations along one of the RelSize (12) or RelSize(34) axes:
contents inhomogeneity), including the {13,24}, {14,23}, {23,14} and {24,13} DD’s. In the dnxny

case, again equatorial
configurations are probable, but now with |RelSize(12)| ≈ |RelSize(3, 4)| i.e. contents homogeneity, including the DD’s
where the two clusters are on top of each other [{13,24} and {14,23}].

3.3 Overlap integrals: shapes and spreads of shape operators

We are interested furthermore in computing overlap integrals 〈D1d1| ̂Operator|D2d2〉 for three applications 1) expectation
and spread of shape operators (below). 2) Time-independent perturbation theory about the very special solution in Sec
3.5. 3) Time-dependent perturbation theory on space of shapes with respect to a time provided by the scale in the shape-
scale split ERPM models in semiclassical formulation also makes use of these. This parallels Halliwell–Hawking’s work
[52] and embodies one of our program’s eventual goals, so we prefer giving details of computing the overlaps to giving
details of 2). 2) and 3) have the merit of extending to far more general potential terms than the harmonic oscillator-
like terms discussed in the present working, while 2) survives as a subproblem in the corresponding time-independent
non-semiclassically approximated shape-scale split ERPM.

The idea to use 1) such can be traced back to how expectations and spreads of powers of r are used in the study
of atoms (see e.g. [73, 79] for elementary use in the study of hydrogen, or [74] for use in approximate studies of larger
atoms). Doing this amounts to acknowledging that ‘modal’ quantities (peaks and valleys), as read off from plots or by
the calculus, are only part of the picture: such as the mean 〈n l m | r |n l m〉, 〈n l m | r2 |n l m〉 and the spread ∆n l m(r) =√
〈n l m | r2 |n l m〉 − 〈n l m | r |n l m〉2 are also useful. E.g. for hydrogen, one obtains from the angular factors of the

integrals trivially cancelling and orthogonality and recurrence relation properties of Laguerre polynomials in Appendix B
for the radial factors that

〈n l m | r |n l m〉 = {3n2 − l{l + 1}}a/2 and ∆n l mr =
√
{n2{n2 + 2} − {l{l + 1}}2}a/2 , (62)

where a is the Bohr radius. One can then infer from this that a minimal typical size is 3a/2 and that the radius and
its spread both become large for large quantum numbers. c.f. how the modal estimate of minimal typical size is a
itself; the slight disagreement between these is some indication of the limited accuracy to which either estimate should
be trusted. Also, we identify the above as expectations of scale operators, and thereby next ask whether they have pure
shape counterparts in the standard atomic context.

The answer is yes. Up to normalization, they are the 3-Y integrals [75] (for Y spherical harmonics, the radial parts of
the integration now trivially cancelling), and the general case of this has been evaluated in terms of Wigner 3j symbols
[75]. Furthermore, many of the integrals for the present paper’s specific cases of interest are written out case-by case in
[76] (this applies to expectations of the RelSize’s as well as B, C, D, E, F perturbation terms’ constituent overlaps).
Shape operators for hydrogen are also considered in [77] (briefly) and [78].

Moreover, the context in which shape operators occur in molecular physics is wider than just the above.
E.g. 1) expectations of cosβ for β a relative angle from inner products between physically meaningful vectors e.g. between
the 2 electron–nucleus relative position vectors in Helium, in the characterization of molecules’ bonds or in nuclear spin-
spin coupling (p 443 of [77]).
E.g. 2) one also gets expectations of Y20(θ) [c.f. form 4 of (35)] in spin-spin and hyperfine interactions (p 437-441) of [77]
(as a shape factor occurring alongside a 1/r3 scale factor.

8This is found by shifting from arctan to arccos and then using one of the standard definitions of Tchebychev polynomials, Td(ξ) =
cos(d arccos(ξ)) Despite being the product of two generally nonpolynomial factors, the two conspire to produce polynomials in each case. We

then introduce the symbol Td(ξ) to mean Td(ξ) for cosine solutions and
√

1− Td(ξ)2 for sine solutions.
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E.g. 3) In the study of the H+
2 molecular ion, one uses fixed nuclear separation as a scale setter and then one has not

only 1 relative angle but also 2 ratios forming spheroidal coordinates with respect to which this problem separates, and
expectations of all these things then make good sense.
We contemplate ‘mini- and midi-’superspace counterparts of such shape operators in Sec 4.5.

As regards good shape operators for 4-stop metroland, the kinematical quantization carries guarantees that the three
ni are promoted to good quantum operators. These can be interpreted as RelSize(1,2), RelSize(3,4) and RelSize(12,34)
as per Sec 2.3. It is also useful to note at this stage that nz is not only physically RelSize(12,34) but also mathematically
the Legendre variable.

Then 〈D d | ̂RelSize(1,2) |D d〉 = 〈D d | ̂RelSize(3,4) |D d〉 = 0 and 〈D d | Θ̂ |Dd〉 ≈ 〈D d | ̂RelSize(12,34) |D d〉 = 0 as an
obvious result of orientational symmetry. The useful information starts with the spreads,

∆D d( ̂RelSize(1,2)) =

√
D{D + 1}+ d2 − 1
{2D− 1}{2D + 3}

Q1(d) , ∆D d( ̂RelSize(3,4)) =

√
D{D + 1}+ d2 − 1
{2D− 1}{2D + 3}

Q2(d) , (63)

∆D d(Θ̂) ≈ ∆Dd( ̂RelSize(12,34)) =

√
2{D{D + 1} − d2} − 1
{2D− 1}{2D + 3}

, (64)

for Q2(d) = 1/2 for the d cosine solution, 3/2 for the d sine solution, and 1 otherwise, and Q1(d) the sin ↔ cos of this.
One can then readily check that 〈n̂x2 + n̂y

2 + n̂z
2〉 = 1, as it should be.

One case of interest is the ground state. Therein, the spreads in each are 1/
√

3. Another case of interest is the large
quantum number limit. ∆D d(Θ̂) ≈ ∆D d( ̂RelSize(12,34)) which, for the maximal d (|d| = D), is equal to 1/

√
2D + 3 which

goes as 1/
√

2D −→ 0 for D large. The hydrogen counterpart of this result is ∆l lθ̂ ≈ 1/
√

2l −→ 0, i.e. restriction to the
Kepler–Coulomb plane (e.g. [77] outlines this, while [78] considers it in more detail). Back to our problem, this result
therefore signifies recovery of the equatorial classical geodesic as the limit of an ever-thinner belt in the limit of large
maximal projectional relative dilational quantum number |d| = D (‘the rim of the disc’ of Sec 2.10, traversed in either
direction according to the sign of d). In fact, as for the constant potential we can put the axis wherever we please, this
leads to recovery of any of the classical geodesics. Also, for d = 0, ∆D 0Θ̂ ≈ ∆D 0( ̂RelSize(12,34)) −→ 1/

√
2 for D large.

This means that the s, pnz
, dnz

2 ... sequence of orbitals does not get much narrower as D increases, so that for these
states we only get limited peaking about clusters {12} and {34} both being small and well apart, a situation which we
will revisit in the next subsection due to its centrality to the assumptions made in, and applications of, this paper. The
RelSize(1,2) and RelSize(3,4) operators’ spreads tend to finite constant values for large D no matter what value d takes.

What of Φ̂? Now, clearly, by factorization and cancellation of the Θ-integrals, the d = 0 states obey the uniform
distribution over 0 to 2π, with mean π and variance π2/3 (corresponding to axisymmetry). Furthermore, 〈D d | Φ̂ |D d〉 is
also π and cosine and sine states have

∆D d(Φ̂) =
√
π2/3 + 1/2d2 and ∆D d(Φ̂) =

√
π2/3− 1/2d2 , (65)

which indicate some resemblance to the uniform distribution arising for large d (mean and variance do not see the
multimodality, but at least, by inspection along the lines of the preceding subsection, it is regular multimodality for d
maximal – equatorial flowers of 2D petals – by inspection of the shapes of the standard maximal s, p, d, f , g ... orbitals.

3.4 Solution in special case – large and small regimes

Passing to stereographic coordinates, banal-conformal transforming to the flat representation and applying the small
approximation, our Schrödinger equation becomes

−{~2/2}
{
R−1{RΨ,R},R +R−2Ψ,ΦΦ

}
= E − ω2R2/2 , (66)

which is in direct correspondence with the 2-d quantum isotropic harmonic oscillator (see e.g. [73, 79, 80] under R ←→ r
(radial coordinate), 1←→ particle mass, and with our ω as classical frequency (×I). Thereby,

E = n~ω for n ≡ 1 + 2N + |d| (67)

for N a node-counting quantum number running over N0 and d a ‘projected’ dilational quantum number as in the preceding
subsection but now running over Z. [The ‘shifted energy’ in its usual units, E′ = E−A−B, itself goes as

E′ = {n2~2/2}{1 +
√

1−B{4/n~}2} , (68)

so for n~/ω << 1 (small quantum numbers as used below), E′I ≈ n~Ω for Ω = 2
√
−B.] The solutions are then (to

suitable approximation)

ΨNd(Θ,Φ) ∝ Θ|d|{1 + |d|Θ2/12}exp(−ωΘ2/8~)L|d|N (ωΘ2/4~)exp(±idΦ) (69)
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for Lba(ξ) the associated Laguerre polynomials in ξ (see Appendix B). [The Φ-factor of this is rewriteable as before in
terms of the ni or RelSize(12,34) and RelSize(1,2), while the Θ-factor is now a somewhat more complicated function of
RelSize(12,34)].

The large regime gives the same eigenvalue condition (67), and (69) again for wavefunctions except that one now uses
the supplementary angle Ξ = π −Θ in place of Θ. Next, see Fig 5 for the form and interpretation of the wavefunctions.

Figure 5: Probability density functions for this subsection’s problem for ω/~ large, 400, say, plotted using Maple [81]. All d = 0 states
are axisymmetric about the {12,34} clustering’s DD axis, i.e. all relative sizes for cluster {12} and for cluster {34} are equally favoured. The
ground state is peaked around the {12,34} DD collision. It it the surface of revolution of the given curve. The N = 0, |d| = 1 solutions are a
degenerate pair. Each takes the form of a pair of inclined lobes – the cosine solution’s oriented about the nx = RelSize(1,2) = 0 D collision
and the sine solution’s about the ny = RelSize(3,4) = 0 D collision. These next three solutions form a degenerate triplet. The N = 1, d = 0
solution is a slender bulge around the {12,34} DD collision, then a gap and then a second bulge in the form of a cone, representing ‘a band
very close to this DD collision and a band somewhat close to it being probable, while all other configurations are improbable. The N = 0,
|d| = 2 solutions are tulips of four petals, the cosine one separately favouring the lunes of near {12} D collisions and near {34} D collisions
(i.e. contents inhomogeneity), while the sine one disfavours these and favours instead the lunes at π/4 to the preceding, which correspond to
contents homogeneity of the {12} and {34} clusters.
The large case’s approximate solution is just the reflection of the preceding about the equatorial plane with the same interpretation except
that {34} is now to the left of {12}.

In the small regime, the RelSize(1,2) and RelSize(3,4) operators still have zero expectation as each sign for these remains
equally probable. For D, d substantially smaller than ω/~ so powers of the latter dominate powers of the former (and
ω/~ was considered to be large, so this works for the kind of quantum numbers in this subsection’s specific calculations),
the following mean and spread results for shape operators are derived using orthogonality of, and a recurrence relation
for, Laguerre polynomials, as provided in Appendix B.

〈N d | ̂RelSize(12,34) |N d〉 = 1− 2n~/ω . (70)

∆N d
̂RelSize(12,34) is zero to first two orders, beyond which the approximations used begin to break down, but it would

appear to have leading term proportional to ~/ω. These results signify that the potential has trapped what was much
more uniform in Sec 3.3 into a narrow area around the {12,34} DD collision. Furthermore,

∆N dn̂ā ≈
√

2n~Qā(d)/ω (71)

for ā = 1, 2 gives ∆N d( ̂RelSize(1,2)) for ā = 1 and ∆N d( ̂RelSize(3,4)) for ā = 2. So one can obtain strong concentration
around the poles by suitable choice of springs, amounting to a tall thick equatorial barrier and polar wells. The ground
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state has the tightest spread in RelSize(1,2) and RelSize(3,4):
√

2~/ω. This has some parallels with how the Bohr radius
is an indicator of atomic size, including the hydrogen–isotropic harmonic oscillator correspondence [79].

3.5 Perturbations about the very special solution

We begin by recasting our Schrödinger equation in Legendre variables nz = cos Θ,

{{1− nz2}Ψ,nz
},nz

+ {1− nz2}−1Ψ,ΦΦ = {A − B + nz
2{2B − Ccos 2Φ}+ Ccos 2Φ}Ψ . (72)

One can then study this using time-independent perturbation theory (see e.g. [75] for derivation of the formulae for this
up to second order). Applying perturbation theory here means considering 1) C small, which is high contents homogeneity
at the level of each cluster’s (Hooke cooefficient)/(reduced mass) in the sense that K1 −K2 is small compared to ~2. 2)
B small, in the sense that ~2 is large compared to {K1 + K2}/2 −K3, which collapses to K1 −K3 small in the case of
C = 0, meaning that there is little difference between the inter-cluster spring and the intra-cluster springs.

Perturbative study of (72) is amenable to exact calculations though involving various of trigonometric and stan-
dard/tabulated associated Legendre function integrals, or, alternatively, the aforementioned 3-Y integrals. Furthermore,
this continues to be the case if one includes a non-diagonal/non-normal basis’ D, E and F terms.

For the B-perturbation, as both it and the unperturbed Hamiltonian commute with D, the eigenvalue problem can
be solved separately in each subspace Vd of a given eigenvalue d of D, and in each such subspace the spectrum of
the unperturbed Hamiltonian is nondegenerate, so that nondegenerate perturbation theory is applicable (this argument
parallels e.g. p 697 of [73]). This gives (with the unperturbed problem’s A playing the role usually ascribed to the energy
and H1 the perturbative term) A(1)

D d = 〈D d |H1 |D d〉 at first order and A(2)
D d =–

∑
D′,d′ 6=D,d |〈D

′d′|H1 |D d〉|2/{AD′ −AD}
at second order [75]. Then e.g. [19] double use of a standard recurrence relation [82] gives a ∆d = 0, ∆D = 0,±2 ‘selection
rule’. Moreover, the terms that survive this take the following forms.

〈D d | B{2nz2 − 1} |D d〉 = B{1− 4d2}/{2D− 1}{2D + 3} , (73)

which is closely related to the expectation of nz = RelSize(12,34) already computed in Sec 3.3. Two new overlaps that
are more general than expectations are

〈D + 2 d | B{2nz2 − 1} |D d〉 =
2B

2D + 3

√
{{D + 2}2 − d2}{{D + 1}2 − d2}

{2D + 5}{2D + 1}
, (74)

and then, swapping D for D – 2, also,

〈D− 2 d | B{2nz2 − 1} |D d〉 =
2B

2D− 1

√
{{D2 − d2}{{D− 1}2 − d2}

{2D + 1}{2D− 3}
. (75)

Using these then gives the perturbed ‘energies’:

ED d = A+ ~2D{D + 1}/2 +B{1− 4d2}/{2D− 1}{2D + 3}+

4B2{{2D + 5}{2D + 3}3{D2 − d2}{{D − 1}2 − d2} − {2D− 1}3{2D− 3}{{D + 2}2 − d2}{{D + 1}2 − d2}}}
~2{2D + 5}{2D + 3}3{2D + 1}{2D− 1}3{2D− 3}

+O(B3).

(76)
Note that d positive and negative are treated the same, so there is only a partial uplifting of degeneracy. Changes to the
wavefunction due to the perturbations for the sign of B corresponding to Sec 3.4 and to second order in B are that we
get slight bulges at the poles for the ground state (a bit of dnz

2 mixed in).
The C perturbation can likewise be studied based on half-way stage overlaps that can be directly transcribed by our

angular momentum to dilational momentum analogy from those computed in e.g. [76]. E.g. the surviving terms are found
[19] by a second standard recurrence relation [82] to obey the selection rule ∆d = ±2, ∆D = 0. Some noteworthy features
of the study of the C term are that degenerate perturbation theory is now required, there is no first order contribution as
∆d = ±2 only, and now d and –d do get shifted differently corresponding to this perturbation not preserving the axis of
symmetry. In nondiagonal/nonnormal form, the further D term has the same selection rule to the C term’s while the E
and F terms share the selection rule ∆d = ±1, ∆D = 0,±2. The above ‘noteworthy features’ apply to these also.

3.6 Molecular physics analogies

Analogy A) (57) occurs in mathematical physics (e.g. from the separation of the wave equation in prolate spherical
coordinates [83, 84, 85, 82]) and has multiple applications in molecular physics studies of which parallel some of the
studies in the present paper. Examples of this in molecular physics are as follows.
Analogy A.1) (57) recast in terms of the Legendre variable is

{{1− nz2}Ψ,nz},nz − {1− nz2}−1d2Ψ = {A − B + 2Bnz2}Ψ , (77)
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which is the simpler of the two spheroidal equations that arise in the study of the H+
2 molecular ion [86, 87, 88]. This

and the next two analogies are for B < 0, although the aforementioned mathematical physics literature covers B > 0.
Analogy A.2) The potential V0{1 − cos 2θ} [c.f. form 3 of (35)] occurs in modelling the rotation of a linear molecule in
a crystal [90, 91, 89]. Here, the analogy is (21,20,22) where the axis and rotor in question are provided by the linear
molecule itself, ‘energy’ ↔ energy up to a constant,

K1/2↔ 2V0 up to the same constant difference as in the energy analogy (78)

B ↔ −2V0 (79)

Analogy A.3) The potential −α||E2 cos2θ [c.f.form 2 of (35)] for α|| the polarizability along the axis occurs in the study
[92, 93] of e.g. the CO2 molecule in a background electric field E (the study of polarizability is the theory underlying
Raman spectroscopy). Here the analogy is, rather,

B ←→ −α||E2/2 . (80)

Analogy A.4) Examples 2) of Sec 3.3 is another substantially developed area in the molecular physics literature.
Analogy B) is with the ammonia molecule NH3, in the following rougher but qualitatively valuable sense. NH3 has two
potential wells separated by a barrier and then is capable of tunnelling between the two at the quantum level (like an
umbrella inverting in the wind). Our model for B < 0 is similar to this, albeit in spherical polar coordinates: we have 2
polar wells with an equatorial barrier in between.
This analogy then gives us some idea about how the separate solutions for the two wells compose. For NH3, one can start
with separate solutions for each well and additional degeneracies ensue (due to the wells being identical and being able
to distribute some fixed energies between these in diverse ways). However the wavefunctions tend to perturb each other
toward breaking these degeneracies, forming symmetric and antisymmetric wavefunctions over the two wells [77, 87].

3.7 Applications of the analogies and developing an overall picture of our model

Firstly, the B < 0 locally stable small or large regimes are the kind of regimes that are termed ‘rotator-like’ in analogy
A.2)’s literature; both of the SO(3) quantum numbers (for us, dilational quantum numbers) hold good in this regime.

Secondly, for B < 0 one can use Analogy B to form a simple picture of putting the small and large Θ approximations
together. As d remains a good quantum number for the unapproximated problem, one expects to need the North Pole
approximation’s d and the South Pole approximation’s d to match and the subsequent perturbations exacted by these
two approximations upon each other not to affect d. Also, prior to any recombination, one has degeneracies as follows
(call the near-North Pole’s node-counting quantum number N and the near-South Pole’s N

′). There is the one ground
state N = N

′ = d = 0, then the degenerate pair N = N
′ = 0,d = ±1, and then the degenerate quadruplet N = 1,N′ = 0

or N = 0,N′ = 1 for each of d = ±1. Now if N and N
′ match, expectation of RelSize(12,34) goes to 0 again though

the wavefunction’s distribution is bimodal about both poles. If they do not match, RelSize(12,34) retains some nonzero
expectation due to the peaking near the two poles being different in detail. The flip here, as in NH3, is an inversion, i.e.
it reverses the orientation, sending 1,2,3,4 to 4,3,2,1.

Thirdly, analogy A.3) is well-known for its Raman-type ±2 and not ±1 selection rule, which parallels our results of
Sec 3.5. Analogy A.3) has furthermore been studied perturbatively for what for us is the small B < 0 regime. This allows
us to e.g. check the half-way house results (73, 74, 75) against pp. 271-273 of [93].

Fourthly, further resources from analogy A.1)’s references [84, 85] include analysis of this equation’s poles in the
complex plane and how it admits a solution in the form of an infinite series in associated Legendre functions in the
vicinity of ±1 and in Bessel functions in the vicinity of∞, as well as how to piece together these different representations.
It is then appropriate to compare results from the expansion in associated Legendre functions against our perturbative
regime (this particular working holds regardless of the sign of B). Thus we find the lowest four cases of (76) to agree with
pp. 1502-4 of [85], which additionally provides the corresponding wavefunctions which we use to first order in B in Sec
4.4 to evaluate the näıve Schrödinger interpretation probabilities for these states’ model universes being large.

Fifthly, one cannot really put together our near-polar calculations and our perturbative calculations, because the “B
small perturbative condition” goes a long way toward ω being small and then only a bit of the wavefunction is near the
pole. Our near-polar calculations should be compared, rather, with the asymptotics for B large. Analogy A.2)’s literature
covers this for what for us is the B large negative (>> E−A−B = E′) regime, giving, via the analogy,

E′ ˜n~ωlarge +O(1/ωlarge) and (81)

Ψ ∝ exp(ωlargecosΘ/~){{tanΘ
2 }

2N{secΘ
2 }

2{|d|+1} +O(1/ωlarge)} (82)

as the relevant asymptotic solutions, for ωlarge = 2
√
−B. Now, from (43,44) the small-Θ approximate solution (69)’s

ω = 8
√
−B = 4ωlarge, so exp(ωlargecosΘ/~) in (81) ≈ const × exp({ω/4~}{−Θ2/2}), which is indeed in agreement with

the leading and dominant factor of (69). For our model, this regime signifies that K3 >> K1,K2 i.e. that the inter-
cluster spring is much stronger than each of the intra-cluster springs. This is termed a ‘harmonic oscillator-like regime’
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– comparing (81) and the standard result for the 2-d isotropic harmonic oscillator makes it clear why. d alone remains a
good dilational quantum number in this regime.

Sixthly, the spheroidal equation has led to many hundreds of pages of tabulations [84] and further numerical work e.g.
in [82, 94], though the most recent of this states that this study is still open in some aspects.

Seventhly, one can furthermore envisage extending analogy A.2) to have the further parallel with our model that a
rotationally-dislocated molecule in a cubic crystal will have preferred directions in space of approximately the same form
as ours are in configuration space. We do not know if such a study has been done.

Finally, we comment that A.3) has been extended [95] to include what for us are C, D, E and F terms. For, what
one has more generally is a symmetric polarization tensor α such that µρ = αρσEσ. Then for the CO2 model in a
diagonal basis αz = α|| giving the combination -α⊥ sin2θ − α|| cos2θ [a slight improvement of analogy A.3) by inclusion
of the smaller α⊥ = αx = αy], and this readily rearranges to the special case of the third form of (35). But for more
general groups than just oxygen atoms at each end of the axis (while still remaining in a diagonal basis) αx 6= αy,
giving −αx sin2θ cos2φ − αy sin2θ cos2φ − αz cos2θ which is the general case of the second form of (35). Moreover, in
non-diagonal bases, the off-diagonal elements form extra terms directly analogous to those in (37). Thus there is an
extended analogy between our problem and the study of polarization, with 4-stop metroland’s Jacobi–Hooke coefficients
forming a configuration space-indexed analogue of the spatial-indexed polarizability tensor.

4 Conclusion

Relational particle models (RPM’s) benefit from notions of locality and structure that are absent in minisuperspace and
are free of many of the technical difficulties of midisuperspace models. This makes them suitable for testing some of the
conceptual aspects of quantum cosmology, and of quantum general relativity (such as the Problem of Time). In particular,
in this paper we study the RPM of 4 particles in 1-d – 4-stop metroland – in the case without scale, both classically and
quantum-mechanically. We concentrate on the clustering into two particular binary clusters [of particles {12} and particles
{34}] both by using coordinates that follow this case and imposing a potential term that restricts the physics to being
near such a configuration. This is toward a qualitative conceptual model of the quantum cosmological seeding of structure
formation in a semiclassical regime (paralleling the Halliwell–Hawking [52] approach, which is somewhat narrower as a
Problem of Time strategy but has further conceptual and computational applications outside of the Problem of Time
context too), and of records theory [43, 55, 45, 4, 56, 57]. The counterpart of the current paper’s model with scale (which
is harder and in which the current paper’s work occurs as a subworking under the shape–scale split) will be required
for some aspects of such a study (in particular, for a semiclassical treatment with a greater number of parallels to that
of GR). This is further work in progress [10, 11, 12, 28], though Sec 4.2–4 give a brief account of generalizations of the
current paper’s model and how these meet additional quantum cosmological and Problem of Time criteria.

This paper’s model has an S2 configuration space and then the mathematics which follows has analogies with the
standard axisymmetric sphere and central force problems of ordinary mechanics. In particular, where a conserved angular
momentum occurs in these analogue problems, a conserved relative dilational momentum occurs in our model. [These
both have SO(3) mathematics, but each has a different physical nature, the two being embraced by our notion of rational
momentum which generalizes angular momentum to ratios that do not happen to physically be angles.] We then interpret
some of 4-stop metroland’s classical and quantum solutions in cases with harmonic oscillator-like potentials. The solutions
in spherical variables give fairly standard mathematics such as that of the rigid rotor and of the 2-d isotropic harmonic
oscillator in some of the simpler cases, albeit now these require subsequent interesting and unusual interpretation in
terms of the 4-stop metroland problem’s mechanical variables. We deduce this at the level of mass-weighted coordinates
by tessellating the shape space sphere by the mechanical interpretation appropriate to 4-stop metroland, which we find
to possess the symmetry group of the cube. Further tools we introduce, paralleling basic treatises on the atom, are
expectations and spreads of shape operators, to which we can also attribute cosmological analogies. Our shape operators
are RelSize(12,34): the relative size difference between universe and its {12}, {34} cluster contents, RelSize(1,2): the size
of the {12} cluster relative to the size of the whole model universe, and its {34} cluster counterpart. The polar angle Φ
itself is an inhomogeneity ratio of the contents of the universe themselves (i.e. of the two clusters relative to each other).

We obtain expectations and spreads for such operators e.g. for the ground state and for large quantum number limits.
We consider the very special constant potential case that resides within the harmonic oscillator-like potential models as
a particularly structurally homogeneous balance of springs, as well as more general cases treated perturbatively for small
differences in spring constitution, asymptotically for large such differences, and in near-polar approximations. We further
benefit from recognizing that the special case with the two clusters of the same spring constitution but the inter-cluster
spring is weaker gives an elsewise well-known spheroidal equation, alongside various molecular physics analogies: with H+

2 ,
NH3, rotation of molecules in crystals and molecular polarizability (at least the last of which extends to cases with more
general combinations of springs between the four particles). This permits us to tap into substantial mathematical physics
results and generally control our particular problem, and is a further example of useful bridges between RPM quantum
cosmology models and the physics of molecules (triangleland RPM with harmonic oscillator-like potentials having already
been found to share mathematics with the Stark effect for a linear rigid rotor [19]).
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4.1 Comments on extension to N > 4 metrolands

The Jacobi H- and K-coordinates of Fig 1 generalize to an increasing variety of ‘part H-shaped, part K-shaped’ clusterings
([96] may be useful in this respect), which are of additional value as less trival models of structure formation and of records
theory. For full reduction for scalefree arbitrary-N-stop metroland and the subsequent Euler–Lagrange equations in the
arbitrary-potential case, see [18, 9]. Moreover, we now comment that the number and nature of conserved quantities that
each of these possesses is tied to the usual SO(N – 1) representation theory, and their physical interpretations extend the
present paper’s discovery of dilational quantities. Tessellations by physical interpretation are now harder as they both
have more pieces and also are more difficult to visualize due to being higher-dimensional. However, our relative size and
contents inhomogeneity shape operators do straightforwardly extend to N-stop metroland.

Within each N-stop metroland, one can envisage a tower of special, very special, ... (very)N−2 special problems. The
most special of these in each case has a constant potential and thus gives ultraspherical geodesics classically and the
ultraspherical rigid rotor quantum-mechanically (solved by ultraspherical harmonics [19]), while the next most special of
these in each case has (N – 1)-d isotropic harmonic oscillator mathematics in its near-polar regime (solved by a power
times a Gaussian times an associated Laguerre polynomial). Establishing a perturbative regime about each most special
problem would then appear to be possible e.g. [19] by recurrence relations of the Gegenbauer polynomials [82, 98]. One
technical difference is that, if one does use conformal operator ordering, then one can no longer use the configuration
space being 2-d to evoke collapse to Laplacian ordering like in Sec 3.1. However, hyperspheres are of constant curvature
and so of constant Ricci scalar curvature, so ξRic(Sk) is just a constant, ξk{k− 1} (our ‘E has no nonconstant prefactors
banal conformal representation’ having the unit sphere as its configuration space). So, even in this case, the sole difference
between Laplace and conformal ordering [or any other member of the D2 − ξRic(M) family of operators] is in what is to
be interpreted to be the zero of the energy. We also note that for N = 5 the analogy with the Halliwell–Hawking scheme is
somewhat tighter, as both involve perturbative expansions in S3 ultraspherical harmonics. Finally, the next most special
equation unapproximated can also be mapped to the spheroidal equation, so that the fairly standard mathematical physics
of that equation continues to be of aid in N-stop metroland.

4.2 Comments on Extension to metrolands with scale

The configuration spaces for these are cones over the corresponding shape spaces [11]. The present paper’s advances in
the physical understanding of conserved quantities in RPM’s have further applications here. Our introduction of shape
quantities to be promoted to operators also continues to be relevant here through there being a shape–scale split, so that
evaluating shape operators here collapses back to pure shape workings such as the present paper’s. Expectation and
spread of size (in close parallel with atomic physics) will also now be pertinent. Metrolands with scale will now have
solid rather than surface analogues of the present paper’s ‘tessellation by physical interpretation’ technique. The way in
which similarity RPM arises as a subproblem from the shape-scale split of the scaled theory means that the most special
harmonic oscillator case and perturbations thereabout survives as a piece of the analysis upon introduction of scale, now
partnered by isotropic harmonic oscillators in the size quantity.

This setting with scale is more appropriate as regards toy-modelling of cosmology in general and using a semiclassical
approach in particular, both in the Problem of Time context and as a toy model of the Halliwell–Hawking approach [52].
One of us provides a first sketch at this in the smallest case in [10], with other cases to follow in [11, 12, 28], involving
more realistic early universe cosmology dynamics of scale with the RPM (square root of) the moment of inertia I playing
the role of the GR scalefactor a, coupled now to light, fast RPM shape dynamics that is easier to solve than GR’s corre-
sponding quantum dynamics of inhomogeneities. We also note that, even in 1-d with scale (for which there are no linear
constraints), RPM’s still have the important nontriviality of possessig a notion of localization/inhomogeneity/structure
(while minisuperspace has neither this nor linear constraints). Finally, inclusion of scale is also necessary if one’s RPM is
to have a hidden time [17, 8, 97] that parallels GR’s York time.

4.3 Comments on extension to 2-d

The price to pay in introducing scale is that one no longer has nontrivial constraints in spatially 1-d models with which to
model some effects due to GR’s momentum constraint. On the long term, one can get around this by passing to spatial
dimension > 1. A first such model is triangleland: the RPM of 3 particles in the plane. This has a S2 shape space like
the present paper’s 4-stop metroland model does. This gives a number of useful insights. E.g. parts of the present paper
parallel [9, 19]. Even more significantly, because the 4-stop metroland interpretation of the sphere turns out to be more
straightforward, the present paper is useful as regards obtaining an improved understanding of the less straightforward
triangleland case [20]. Scaled triangleland is harder; so far we have just provided some classical study for this (also to be
augmented by the present paper’s techniques at the classical level in [11] toward finally providing a quantum study of it
in [14]).

Moreover, triangleland lacks the present paper’s nice feature of splitting into two nontrivial subsystems (of 2 particles
each), which is a useful nontriviality from the structure formation and records theory perspectives. Studying scaled
quadrilateralland (RPM of 4 particles in the plane) [99] would incorporate this feature too. Thus this model would
possess a number of midisuperspace’s features with the benefit of being technically simpler. This makes it particularly
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suitable for the simultaneous investigation of records theory and the semiclassical approach (which may support each
other, and histories theory, to form a more robust combined approach to the Problem of Time and to quantum cosmology
[100, 56, 19]). Quadrilateralland does have a further technical complexity – its shape space is CP2, which unavoidably
involves complex-projective mathematics (triangleland has CP1 but this is well-known to also be S2).

Further features for consideration in RPM models involve [13] A) oriented shapes – real projective spaces RPN−2 in
place of SN−2 as shape spaces or CPN−2/Z2 in place of CPN−2 as shape spaces and the corresponding cones in models
with scale and/or B) (partial) particle indistinguishibility by which only pieces of whichever of the preceding spaces would
pass to being the configuration spaces. The present paper’s treatment of physical interpretation by multiple coordinate
charts and tessellations by physical interpretation are doubtlessly ideas of further value in the study of these models with
their wide range of configuration space geometries.

4.4 Further details of Problem of Time and quantum cosmology applications

Our wavefunctions, eigenvalues and operators are useful in the following Problem of Time investigations.
1) The computation of näıve Schrödinger interpretation [53] probabilities of the universe having some particular property.
Example 1) consider quantifying P(universe is large), in the sense that the two clusters under study are but specks in the
firmament, by P(ε-close to the {12,34} double-double collision), which means, at the level of the configurations themselves,
that the magnitude of

√
RelSize(1, 2)2 + RelSize(3, 4)2/Relsize(12,34) lies between 1 and 1 – ε2/2, and, in configuration

space terms, that one is in the ε-caps about each pole. Then from the latter and by the näıve Schrödinger interpretation,
this probability ∝

∫
ε–caps

|Ψ|2dS =
∫ 2π

Φ=0
{
∫ ε

Θ=0
+
∫ π

Θ=π−ε}|Ψ(Θ,Φ)|2sin Θ dΘdΦ. So, e.g. for the very special solution’s
ground state and first excited state, one gets proportionality to ε2 +O(ε4), while for the states with dilational quantum
numbers D = 1, |d| = 1, one gets proportionality to ε4 + O(ε6).
Example 2) consider quantifying P(the two clusters nominally under study are in fact merged) by P(δ-close to {12,34}
merger) which means, at the level of the configurations themselves, that the size of Relsize(12,34) does not exceed the
small number δ, and, in configuration space terms, that one is in the δ-belt around the equator. Thus
P(δ-close to {12,34} merger) ∝

∫
δ–belt

|Ψ|2dS, which, in the very special case, works out to be proportional to δ3 +O(δ5)
for D = 1 d = 0 and to δ +O(δ)3 for the other three lowest-lying states.
Example 3) consider quantifying P(universe is contents-homogeneous) in the sense that the two clusters under study are
similar to each other, by the magnitude of RelSize(1,2)/RelSize(3,4) departing from 1 by no more than 2η. Then, on
configuration space, one is in the tetralune described in Fig 2, and the näıve Schrödinger interpretation gives
P(universe is η-contents-homogeneous) ∝

∫
η–tetralune

|Ψ|2dS, which, in the very special case, comes out as proportional to
η for all four of the lowest-lying states.

Example 1 also makes sense for the small-regime special solution. One now obtains proportionality to ε2
√
ω/~ to

leading order i.e. the same ‘(small)2’ factor as in the very special problem but now with an opposing ‘
√

large’ factor,
amounting to the small regime’s potential well (Fig 3b) concentrating the wavefunction near the poles i.e. in the region
of the configuration space corresponding to large universes in the above-described sense.

Finally, also repeating Example 1 for the wavefunctions with first order perturbative corrections in B included, we now
find proportionality to ε2{1− 8BI2/9~2}+O(B2) +O(ε4) for the ground state, to ε2{1− 8BI2/25~2}+O(B2) +O(ε4)
for D = 1, d = 0, and ε4{1− 36I2B/25~2}+ O(B2) + O(ε6) for the D = 1, d = 1 states. The signs of these corrections
conform with intuition, as (Fig 3a) B > 0 corresponds to placing a potential barrier at the poles and a well around the
equator, which should indeed decrease the amount of wavefunction there, i.e. making large universes less probable, and
vice versa for B < 0.
2) Given explicit wavefunctions such as this paper’s, one can build up projectors and mixed states (including with
environment portions traced out) and then construct conditional probabilities [43] for pairs of universe properties.
3) As regards records theory [57], the current paper’s classical work provides some means of defining a notion of distance on
configuration space (which is quite closely related to the measure problem in cosmology [54]), and a notion of localizability
in space. Next [101], one would construct notions of information (alias negentropy) both at the classical level and at the
quantum level for the problems solved in this paper. In this respect it is worth noting that QM perturbation theory
suffices in order to build an approximate statistical mechanics [102]. Such notions of information include e.g. Shannon’s,
von Neumann’s, Tsallis’s [57], as well as notions of subsystem information, mutual information and correlation (such as
the covariance for the two clusters in the situation that the present paper centres on).
4) One can also build up decoherence functionals for histories theory [58], and consider the Feynman–Vernon influence
functional that Halliwell uses [56] for the study of records within histories theory.
5) Exact wavefunctions also serve as useful checks on whether the semiclassical approach’s assumptions and approximations
are appropriate [12, 28]. By the arguments in SSec 4.2, we prefer to wait until we have set up scaled models before carrying
out such a study.
Some further quantum cosmological applications are as follows.
A) RPM’s are well-suited for the investigation of the issue of whether quantum cosmology is robust to neglecting some
degrees of freedom. This was investigated by Kuchař and Ryan [103] for minisuperspace, though tractable minisuperspace
examples of this are expected to be rare, while considering an N – 1 particle RPM within an N-particle RPM is more
straightforward. There is however here the catch that, by relationally meaningful degrees of freedom counting, 4-stop
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metroland is the smallest nontrivial SRPM, so one would need to study scalefree 4-stop metroland within as-yet not
explicitly studied scalefree 5-stop metroland (or scaled 3-stop metroland within scaled 4-stop metroland).
B) RPM’s are also useful toy models for whether uniform states have an important or privileged status [104]. E.g.
examples 2 and 3 above can be interpreted as concerning aspects of uniformity, as can the parallel investigation of the
probability of being close to the equilateral triangle configuration in [20].
We comment that [11] contains some further details of the above as toy models of aspects of GR alongside listing yet
further applications.
We note that operator insertions for meaningful shape operators remain useful in constructing various of the above Problem
of Time-relevant objects and schemes. All of 2) to 5) above have workings substantially longer than 1), or, alongside A),
are better considered for extensions of the present paper’s model (though this still features within as a submodel). Thus
we leave further detail of these for future occasions. Finally, we comment that RPM’s are mostly intended as qualitative
models of conceptually-interesting features of quantum cosmology [though they are capable of testing the extent to which
quantitative and observationally-tieable calculations in inhomogeneous GR quantum cosmology should be trusted, 5) and
A) being clear examples of this, as well as permitting more comparison and composition of Problem of Time strategies
than is usually possible, due to their high level of mathematical tractability].

4.5 Analogues of our shape operators in mini and midisuperspace?

Another longer-term goal would be to export insights acquired by our program to ‘mini- and midi-’superspace; are there
then useful analogues of shape operators for these (anisotropy operators, inhomogeneity operators?) In surveying the
literature, we have found, firstly, that the abovementioned Kuchař and Ryan paper considers 〈y2〉 for y a reparametriza-
tion of one of the anisotropy degrees of freedom β± in diagonal Bianchi IX quantum cosmology. Secondly, Ashtekar
and Bojowald make mention of an anisotropy operator in studying loop quantum gravity [105]. Thirdly, Petryk and
Schleich [106] consider expectation values for geometrical quantities in the Hartle–Hawking initial state in their study of
conditional probabilities in the 3-d Ponzano-Regge minisuperspace. Fourthly, Halliwell and Hawking [52] compute the
expectation of the anisotropy in temperature of the microwave background; this has the additional value of being “halfway
to midisuperspace” in that it considers inhomogeneous perturbations about a homogeneous spacetime. As regards inho-
mogeneous spacetimes, the Lemâıtre–Tolman–Bondi solution principally concerns radial scale variables, so it is far more
of an analogue to the shape-scale extension of the present paper. While there is not anything as yet that we know about
using shape operators at the quantum level for the Gowdy universe, e.g. Andersson, van Elst and Uggla [107] use a form
of shape–scale variables at the classical level. Thus, while shape quantities and shape operators have occasionally been
used in ‘mini and midi’superspace, a systematic treatment parallelling that in atomic physics does as yet appear to be
lacking.

Acknowledgments: we thank Claire Anderson for hospitality, and Professors Don Page, Jonathan Halliwell and Julian
Barbour for references and discussion. This research was partly supported by Grant Number RFP2-08-05 from The
Foundational Questions Institute (fqxi.org).

Appendix A This paper’s generalization of angular momentum put into context

What is habitually called angular momentum mathematics (because that is a common guise in which it appears in physics),
is, structurally, the representation theory of SO(p). The most usual case is that of SO(3), habitually called the rotation
group, and also interpretable as the isometry group of the 2-sphere [more generally, SO(p) is the p-dimensional rotation
group and the isometry group of the (p – 1)-sphere]. In turn, SO(3) is closely related to SU(2) (which is its double
cover). The rational momentum viewpoint is more general than the mechanical angular momentum perspective but not
the SO(p) one, as Fig 6 begins to explain by classifying examples. Beyond that, SO(p) can arise as a piece of an even
larger group. [This is already the case for Fig 6’s Runge–Lenz example, which can be viewed as a second SO(3) coming
from a partly-‘hidden’ SO(4), but it covers further cases where the group is not necessarily ‘hidden’, such as SO(3, 1) in
relativistic particle physics, or SU(3) containing 3 different directions’ worth of SU(2) ladder operators]. Quantum ‘SO(p)
objects’ also combine under an addition rule, whereby composites of cases in Fig 6 arise. E.g. total angular momentum
T = L + S in atomic physics; more generally, total rational momentum T = R+A, which also would include the effect
of adding internal ‘arrows’ to the present paper’s 1-d RPM setting.9 There are also rational momenta that are linear
combinations of relative angular momentum and relative dilational momenta occur in triangleland [20]. In this sense,
this paper’s rational momentum came about from building a different notion of 1-d space from the usual into the present
paper (scalefreeness) Finally, adding arrows to the present model could be nontrivial in the sense that the 1-d arrows
need not just obey separate ‘tensored-on’ occupation rules since dilational momentum exists as does addition of arrow
and dilational momentum quantities, so that spatially 1-d models can have arrow-dilational momentum interactions that
parallel the spin-orbital angular momentum couplings that occur in higher spatial dimensions.

9As the word ‘spin’ itself has rotational and hence angular momentum connotations, we generalize ‘spin alias internal angular momentum’,
S, to ‘arrow alias internal rational momentum’, A.
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Figure 6: Various physical realizations of SO(p) objects.

Appendix B Some results concerning associated Laguerre Polynomials

The bounded solutions of the associated Laguerre equation

ξy,ξξ + {α+ 1− ξ}y,ξ + βy = 0 (83)

are the associated Laguerre polynomials Lαβ(ξ). These obey [82] the orthogonality relation∫ ∞
0

ξαexp(−ξ)Lαβ(ξ)Lαβ′(ξ)dξ = 0 unless β = β′ (84)

and the recurrence relation

ξLαβ(ξ) = {2β + α+ 1}Lαβ(ξ)− {β + 1}Lαβ+1(ξ)− {β + α}Lαβ−1(ξ) . (85)
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[51] See e.g. K.V. Kuchař, Phys. Rev. D4 955 (1971);

B.K. Berger, Ann. Phys. 83 458 (1974);

K.V. Kuchar, Phys. Rev. D50 3961 (1994), arXiv:gr-qc/9403003, and articles citing some of the above.

[52] J.J. Halliwell and S.W. Hawking, Phys. Rev. D31, 1777 (1985).

[53] S.W. Hawking and D.N. Page, Nucl. Phys. B264 185 (1986);

W. Unruh and R.M. Wald, Phys. Rev. D40 2598 (1989).

[54] G.W. Gibbons, S.W. Hawking and J.M. Stewart, Nu. Phys. B281 736 (1987);

S.W. Hawking and D.N. Page, Nu. Phys. B298, 789 (1988);

G.W. Gibbons and N. Turok, Phys. Rev. D77 063516 (2008), hep-th/0609095.

[55] M. Gell–Mann and J.B. Hartle, Phys. Rev D47 3345 (1993).

[56] J.J. Halliwell, Phys. Rev. D60 105031 (1999), quant-ph/9902008.

[57] E. Anderson, Int. J. Mod. Phys. D18 635 (2009), arXiv:0709.1892;

E. Anderson, in Proceedings of the Second Conference on Time and Matter, ed. M. O’Loughlin, S. Stanič and D. Veberič (University of
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