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The static solutions of the axially symmetric vacuum Einstein equations with a finite number of Relativistic Multipole Moments (RMM) are described by means of a function that can be written in the same analytic form as the Newtonian gravitational multipole potential. A family of so-called MSA (Multipole-Symmetry Adapted) coordinates are introduced to perform the transformation of the Weyl solutions; a procedure for their calculation at any multipole order is given, and the results for a low order are shown.

In analogy with a previous result [10] obtained in Newtonian gravity, the existence of a symmetry of a certain system of differential equations leading to the determination of that kind of multipole solutions in General Relativity is explored. The relationship between the existence of this kind of coordinates and the symmetries mentioned is proved for some cases, and the characterization of the MSA system of coordinates by means of this relationship is discussed.

Introduction

As is known, the description of Newtonian Gravity (NG) in the vacuum involves solutions of the Laplace equation whose general well-behaved solution is a series with arbitrary constants that can be identified with the Multipole Moments (MM) of the source, and these quantities allow us to characterize the specific solutions given by the succession of partial sums of the series.

In contrast, the static solutions of the axially symmetric Einstein vacuum equations describing the gravitational field of a bounded isolated mass distribution in General Relativity (GR) can be described by means of only one metric function, f ≡ g 00 , which satisfies the Ernst equation [1].

We are interested in the following questions: might it be possible to obtain a description of these solutions in GR by means of a function, namely u, with the same behavior as the classical potential? Could we write this function u analytically equal to the Newtonian gravitational series but in terms of Relativistic Multipole Moments (RMM)?

We are concerned with these questions for several reasons, in particular because such a description of the relativistic gravitational solution would recover the benefits of the classical interpretation of the gravitational potential (see [10] for details). Moreover, the Weyl family of solutions depends on arbitrary constants, a n , in principle without any physical criteria to choose one or another solution from them, whereas the function u would allow us to deal, in a very simple form, with the Relativistic Multipole Solutions. This has been the aim of some authors and their works devoted to obtain solutions of the Einstein vacuum equations with a finite number of prescribed RMM [7,9,11,12].

In this work we seek an answer to these questions by introducing a family of coordinate systems referred to as MSA (Multipole-Symmetry Adapted). The possibility of extrapolating the symmetries obtained in NG [10] to GR, as well as characterizing the solutions with a finite number of RMM by means of group-invariant solutions, are the relevant features of these coordinate systems and the reason for their proposed name.

In a work published recently [10], the existence of some kinds of symmetries in NG has been proved, which makes it possible to extract from all solutions of the axially symmetric Laplace equation those with the prescribed Newtonian Multipole Moments. A family of vector fields that are the infinitesimal generators of certain one-parameter groups of transformations can be constructed. These vector fields represent symmetries of certain systems of differential equations whose group-invariant solutions turn out to be the family of axisymmetric potentials related to specific gravitational multipoles.

By introducing these coordinates, the function u, which describes the static and axially symmetric vacuum solution with a finite number of RMM, should satisfy the same system of differential equations as the classical potential in NG, and the symmetries of these equations [10] thus allow us to describe and determine the Multipole Solutions in GR analogously to the Newtonian case.

Since the function u, which is transformed from g 00 , must fulfil the corresponding Ernst equation written in MSA coordinates, the following question arises: is it possible to obtain conditions on the change of coordinates, to choose the suitable gauge, from the extension of the symmetries to the corresponding Ernst equation? In other words, can the symmetry groups obtained for the Laplace equation and the supplementary equation [10] be extrapolated to the Ernst equation in that system of coordinates? And if so, could we establish theorems relating the existence of the symmetry of a system of differential equations to that system of coordinates? We shall see, at least for the Monopole case, that this relationship can be used to determine the MSA radial coordinate explicitly.

We shall try to answer these questions along the work in the following way:

In section 2, the MSA systems of coordinates are defined from the context of the multipole expansion of gravitation introduced by Thorne [2], and the procedure to calculate these coordinates is shown for each set of multipole moments of the desired solution. The procedure first consists of performing a coordinate transformation from Weyl coordinates, preserving the Killing vectors and the asymptotically Cartesian behavior. Second, we introduce a function u by redefining the g 00 metric component and we force this function u to be a solution of the corresponding Ernst equation written in the new system of coordinates. The results are addressed in Appendix B. Some comments about the behavior and interpretation of the coordinates obtained complete this section.

In section 3 we attempt to provide these coordinates with a meaningful interpretation by means of the existence of symmetries of certain differential equations. We recall that the static and axially symmetric vacuum solutions with a finite number of RMM can be described, in these coordinates, as the group-invariant solutions of the same system of differential equations that ad-mits the symmetries obtained for the Newtonian case [10]. Furthermore, we prove two theorems that extend those symmetries to the corresponding Ernst equation written in the MSA system of coordinates for the Monopole and the Monopole-Dipole cases. And these theorems provide a relationship between the existence of these symmetries and the Newtonian-type solutions in GR, at least for these two cases. In subsection 3.2 a possible characterization of these systems of coordinates for each multipolar solution is explored, without taking into account our knowledge of the corresponding set of constants a n for each case. In this sense, for the Monopole case the corresponding MSA coordinates can be obtained as the unique solution of the Ernst equation (and the suitable constraints) with certain boundary condition. Nevertheless, for any other case this procedure fails to provide the uniqueness of the MSA system, since two coordinates must be solved rather than the radial coordinate alone, as is the case only for Spherical symmetry. Finally, in Appendix A the expressions of the RMM in terms of the a n constants and the inverse relation are shown for a solution with a set of arbitrary RMM up to order 10.

The MSA system of coordinates

Definition

In 1980 Thorne introduced a system of coordinates called ACMC (Asymptotically Cartesian and Mass Centered) in the context of Multipole expansions of gravitational radiation [2]. His work presents a definition of Relativistic Multipole Moments (RMM) and shows us how to deduce the RMM of a source from the form of its stationary and asymptotically flat vacuum metric in an ACMC coordinate system.

If the components of the metric are written in the coordinates { t, r, θ, φ} we can read off the RMM from the resulting expressions, other terms, R (n-1) ij (y), called Thorne rests, appearing at the same time that are functions depending on the angular variable y ≡ cos θ in at least one degree lower than those associated with the RMM. For the case of axial symmetry, the g 00 component of any static metric written in that kind of coordinates is:

g 00 = -1 + 2 c 2 ∞ n=0 1 r n+1 M n P n (y) + ∞ n=1 1 r n+1 R (n-1) 00 (y) , (1) 
M n being the RMM of order n, and P n (ω) the Legendre polynomial.

There is gauge freedom in the choice of ACMC coordinates preserving the invariance of the first series in (1) and addressing the differences in the metric expansion through the Thorne rests. Among the broad class of coordinate systems of this type, we wish that system to lead to an expansion of the metric in such a way that all the R (n-1) 00 (y) Thorne rests will vanish. We propose that this system of coordinates should be referred to as ACMC-TRF (ACMC-Thorne Rest-Free) in a first step, and then become the so-called MSA (Multipole-Symmetry Adapted) system of coordinates for reasons we shall see in the next section.

Thorne showed that de Donder coordinates are ACMC-to order N for all N, and in [2] he discussed that a de Donder transformation of the coordinates is not necessary. Hence, we do not impose the harmonic condition on our system of coordinates, and we perform a coordinate transformation of the following form

xα = x α + χ α (x i ) ; χ α = cte + O(1/R) , (2) 
{x α } being the Weyl spherical coordinates {t, R, ω ≡ cos θ, ϕ}, {x α } = {t, r, y ≡ cos θ, ϕ} being the new system of coordinates, and cte denotes a constant. This keeps the Killing vectors unchanged and maintains the asymptotically flat form of the metric: g αβ = η αβ + O(1/R). Now, the χ α functions must be adjusted so that the metric in the new system of coordinates will satisfy the following condition: (c = 1)

g 00 ≡ -1 + 2u = -1 + 2 N n=0 1 r n+1 M n P n (y) , (3) 
where N stands for the number of RMM we wish to consider for our metric. Henceforth, the g 00 component of the metric in this system of coordinates acquires a form that is analytically related to the Newtonian gravitational potential of a classical Multipole Solution, and (3) represents the solution, with a finite number (N+1) of RMM, of the static and axially symmetric Einstein vacuum equations.

Calculation of MSA coordinates for any Multipole Solution

The line element of a static and axisymmetric vacuum metric is as follows:

ds 2 = -e 2Ψ dt 2 + e -2Ψ+2γ dR 2 + R 2 1 -ω 2 dω 2 + e -2Ψ R 2 (1 -ω 2 )dϕ 2 , (4)
{R, ω ≡ cos θ, ϕ} being the Weyl spherical coordinates, and Ψ, γ are metric functions satisfying the following equations 1

Ψ ≡ R 2 Ψ RR + 2RΨ R + (1 -ω 2 )Ψ ωω -2ωΨ ω = 0 γ R = (1 -ω 2 ) R R 2 Ψ 2 R -(1 -ω 2 )Ψ 2 ω -2RωΨ R Ψ ω γ ω = ω R 2 Ψ 2 R -(1 -ω 2 )Ψ 2 ω + 2R(1 -ω 2 )Ψ R Ψ ω , ( 5 
)
where the sub-indices denote partial derivation with respect to them. The general solution for an isolated and static source with axial symmetry is given by the following asymptotically flat series (the family of Weyl solutions):

Ψ = ∞ n=0 a n R n+1 P n (ω) , (6) 
where coefficients a n are arbitrary constants; any set of those coefficients univocally determines the solution. From the calculation 2 of the RMM of this metric (4) with the function Ψ (6), one can obtain an expression for the coefficients a n in terms of the RMM and hence it is possible to choose these coefficients by neglecting the undesirable RMM. This procedure affords a Multipole Solution having a finite number of Multipole Moments [7]. Some authors have devoted some time to seeking such solutions (Pure Multipole Solutions in GR) [7], [8], [9]. In [7], the M-Q Solution is obtained, as well as 1 Let us note that the integrability condition of the equation for γ is simply the equation for Ψ, and therefore the solution of the Laplace equation univocally identifies the spacetime. 2 We perform the FHP method [3], which allows us to obtain the RMM in terms of coefficients m n involved in the expansion series on the symmetry axis of a conformal Ernst potential. Since that conformal potential is related to the metric function Ψ (6), the coefficients m n can be expressed in terms of the set of coefficients {a n }, and hence the final result provides a relation M n = M n (a n ) (57); the triangular structure of this relation [START_REF] Hernández-Pastora | Relativistic gravitational fields close to Schwarzschild solution[END_REF], [7] allows us to calculate the inverse relation, a n = a n (M n ) (58).

the Quadrupole Solution itself, and more recently in [11], [12] a method has been proposed for obtaining the general terms of the series (the coefficients a n ) that define the Pure 2 N -pole Solutions. In fact, the general term of the series corresponding to the gravitational Dipole and the solutions with Monopole plus any other 2 N -pole moment are written specifically.

In Appendix A, the RMM of the general static and axisymmetric solution (6) are written in terms of the coefficients a n , as well as the inverse relation for a solution with arbitrary RMM up to order 9. The method described in [12] can be used to obtain the general term of the series (6) with any finite set of RMM.

Let us set u ≡ 1 2

(1 + g 00 ); this function u, corresponding to the solution (6) written in Weyl coordinates (u W ), resembles the following expression

u W = 1 2 1 -exp 2 ∞ n=0 a n R n+1 P n (ω) , ( 7 
)
and would provide the gravitational solution with a finite number (N + 1) of RMM by substituting the coefficients a n from expression (58).

We want to find a change of coordinates which allows to write this function u, corresponding to a Multipole Solution with a finite number (N +1) of RMM in the following way (3):

u MSA = N n=0 M n r n+1 P n (y) . ( 8 
)
We can state the following Lemma: Lemma 1

It is possible to calculate a system of coordinates {r, y} such that:

(E0) u W = u MSA (9) 
Proof: First, let us perform the above-mentioned coordinate transformation (2) by assuming the following asymptotically Cartesian behavior of the new coordinates:

r = R 1 + ∞ n=1 f n (ω) 1 R n y = w + ∞ n=1 g n (ω) 1 R n , ( 10 
)
and let us suppose that both series in (10) converge at least in a neigbourhood of infinity. Second, we must take into account that the g 00 metric component equals, for the static case, the Ernst potential [1], and hence the function u satisfies the following equation derived from the Ernst equation:

(2u -1)[R 2 u RR + 2Ru R + (1 -ω 2 )u ωω -2ωu ω ] = 2[R 2 u 2 R + (1 -ω 2 )u 2 ω ] . ( 11 
)
It is straightforward to calculate the transformation of equation ( 11) by means of an arbitrary change of coordinates from the Weyl system ({R, ω}) to another one ({r, y}), leading to the following expressions:

Au rr + Bu yy + 2Cu ry + Du r + Eu y - 2 2u -1 [Au 2 r + Bu 2 y + 2Cu r u y ] = 0,( 12 
)
where A, B, C, D and E are functions of the coordinates {r, y} defined as follows

A(r, y) ≡ LB 1 (r, r) B(r, y) ≡ LB 1 (y, y) C(r, y) ≡ LB 1 (r, y) D(r, y) ≡ LB 2 (r) E(r, y) ≡ LB 2 (y), (13) 
LB 1 () and LB 2 () being the Laplace-Beltrami operators with respect to 3dimensional Euclidean metric (with axial symmetry) written in Weyl spherical coordinates; i.e.,

LB 1 (, ) ≡ η ij ∇ i ()∇ j () = R 2 ∂ R ()∂ R () + (1 -ω 2 )∂ ω ()∂ ω () LB 2 () ≡ η ij ∇ ij () = R 2 ∂ 2 RR + 2R∂ R + (1 -ω 2 )∂ 2 ωω -2ω∂ ω . ( 14 
)
The equation (E0) means that we force the solution with a finite number (N + 1) of RMM, written in Weyl coordinates (u W ), to be functionally equal to the Newtonian gravitational potential with that number of Multipole Moments written in the MSA system of coordinates (u MSA ). This condition is equivalent to the change of the metric component g 00 by means of the coordinate transformation.

We shall now impose the following condition:

(EI) [ Au rr + Bu yy + 2Cu ry + Du r + Eu y ] u=u MSA = 2 2u -1 [Au 2 r + Bu 2 y + 2Cu r u y ] u=u MSA . ( 15 
)
This equation (EI) should be understood in the following way: the function u MSA must be a solution of the differential equation ( 12) obtained from the Ernst equation for u (11) by means of the gauge transformation.

These two conditions, (E0) and (EI), univocally determine the functions f n (ω) and g n (ω) (10), up to any order, in the following way: first, equation (E0) provides a relation between each f n (ω) and g k (ω), for k from 1 to n -1, by developing a power series expansion on the inverse of the radial coordinate R. Second, we substitute u MSA (8) in the differential equation (EI) and the resulting expression can be expanded in power series of 1/R by using the gauge (10). Since we have considered the previously obtained relations between functions f n (ω) and g n (ω) in this expansion, the condition (EI) finally leads to a constructive calculation of those functions up to any order n. This procedure is straightforward and it can be followed up to any order O(1/R n ) and for any set of RMM. In particular, and as a matter of illustration, we have computed the gauge (10) for a solution with the first three RMM (M 0 ,M 1 and M 2 , monopole, dipole and quadrupole moments respectively) up to order O(1/R 10 ); the results obtained are very cumbersome and too long for high orders to be explicitly shown. In Appendix B some of the corresponding functions f n (ω) and g n (ω) of the gauge (10) are included, and complete expressions are supplied in a file to the editor or can be obtained by asking for it to the author.

Let us make some comments about the good behavior of these coordinates {r, y}: i) We assume that the series of the gauge (10) are convergent, but is not the aim of this work to prove it. Nevertheless, some guidelines can be introduced to show that both series are convergent on the axis (ω = 1) in some neighbourhood of infinity. The complete proof of convergence of the series is a very interesting open problem to be carried out in a future work. For the spherical symmetry case, the convergence of the series of the gauge (10) is proved in Lemma 2. If one considers solutions with more RMM than the Monopole, then we can obtain the convergence on the symmetry axis by an argument as follows:

As can be seen in the expressions of the functions g n (ω) (61), all these functions vanish for ω = ±1. This means that the coordinate y preserves the axial symmetry, since y = ω along the axis. This characteristic of the functions g n (ω) can be derived from the equation (56) because that expression allows us to calculate iteratively any function g k (ω) (with k ≥ 1) in terms of the functions g j (ω) and their derivatives of lower order (for j ≤ k -1); since g 1 (ω) = 0 and g 2 (ω) is proportional to (1 -ω 2 ), this factor (1 -ω 2 ) at the left-hand side of equation ( 56) leads to the conclusion g k (ω = 1) = 0 for all k ≥ 1.

The equation ( 56) represents the condition C = 0 (41) or equivalently LB 1 (r, y) = 0 (53)(a). This constraint is imposed by Theorem 2 to the MSA coordinates for the Monopole-Dipole solution, but nevertheless it is not exclusive for this case; in fact, the MSA coordinates corresponding to any solution with a finite number of RMM fulfill this condition which implies that there are no cross terms in the metric written in MSA coordinates (g ij = 0, for i = j). We can either consider this constraint to the MSA coordinates in addition to the conditions (E0) and (EI) ( 9), ( 15), or use it instead of condition (EI): in fact, it is straightforward to verify that the pair of conditions (E0)-(EI) is equivalent to the pair of conditions (E0)-( 56) in order to determine the functions f n (ω) and g n (ω), i.e., these functions are univocally determined by introducing the functions f n (ω) obtained from the condition (E0), in terms of g n (ω), into the equation ( 56) and this procedure provides the same set of functions previously obtained from conditions (E0) and (EI).

Therefore, by taking ω = 1 as well as y = ω = 1 in ( 7) and ( 8), we can rewrite the equation ( 9) as follows:

Ru W = N n=0 M n R n R r n+1 . ( 16 
)
This expression ( 16) is a polynomial equation in R/r with finite coefficients, for fixed R such that |R| ≥ R 0 , if R 0 is the constraint introduced by the convergence 3 , in a neighbourhood of infinity, of the series appearing in the expression (7). Taking the limit R → ∞ in ( 16) one obtains the asymp-

totics lim R→∞ R r = 1, since Ru W = - ∞ n=0
a n R n , (with a 0 = -M 0 ). All finite solutions to a polynomial equation depend continuously on the coefficients (see [12], and references therein for details, where solutions to a general algebraic equation is studied as well as their convergence when these solutions are written as a series), and hence, there is an

R 1 ≥ R 0 such that R r ≥ 1 2 for all R ≥ R 1 . This means that r R = 1 + ∞ n=1 f n (ω = 1) 1 R n ≤ 2 , ( 17 
)
and hence, the series converges for R > R 1 , at least in a neighbourhood of infinity.

ii) By taking m 2 = 0 in the expressions appearing in Appendix B, we obtain the gauge corresponding to a solution with only Monopole and Dipole Moments. Obviously, these coordinates are not mass-centered since the Dipole Moment does not vanish. Nevertheless, in spite of this fact, we have considered this solution because, as we will see in section 3, this kind of solution, with a prescribed multipole structure, described by a function u MSA in the same way as the Newtonian potential can be related with the existence of a symmetry of certain system of differential equations in analogy with the case of spherical symmetry. The Monopole-Dipole gauge is useful as a test to implement an additional multipole and its knowledge deserves to generalize to GR the Newtonian symmetries previously obtained [10]. The Monopole-Quadrupole solution could be a more appropriated case to be considered; in fact the equatorial symmetry, (which implies that the coefficients a n and the Multipole Moments M n with odd indexes n vanish), would simplify the gauge.

iii) According to the meaning of the RMM, these coordinates reveal the loss of relevance of high-order multipoles in the description of the solutions at large distances from the source. Moreover, as was previously said, all the functions g n (ω) (61) vanish for ω = ±1. This means that the coordinate y preserves the axial symmetry, since y = ω along the axis. iv) They are not harmonic coordinates because that condition (the de Donder gauge) is not fulfilled by the associated Cartesian coordinate z. 4v) In addition, if we consider the MSA coordinates for the case of spherical symmetry, which can be done by neglecting all RMM 5 in (60)-(61) greater than the monopole (M 0 ), then we observe that all the functions f n (ω = ±1) = 0 for n ≥ 2, (i.e., the coordinate r along the axis orthogonal to the equatorial plane shows a good behavior; in other words, it equals the Cartesian coordinate z, up to a displacement along the axis). These functions f n (ω) and g n (ω), for the case of spherical symmetry, can be written as follows:

f 2n (ω) = M 2n C (-1/2) 2n (ω) , f 2n+1 (ω) = 0 , n ≥ 1, f 1 (ω) = M g 2n (ω) = -M 2n C (-1/2) 2n+1 (ω) , g 2n+1 (ω) = 0 , n ≥ 1, g 1 (ω) = 0, (18) C (-1/2) n
(ω) being Gegenbauer orthogonal polynomials, and henceforth M ≡ M 0 is the Monopole Moment.

In fact, the case of spherical symmetry deserves a more detailed analysis; we can state the following lemma: Lemma 2

The sums of the series appearing in the gauge transformation (10) with the functions f n (ω) and g n (ω) given by ( 18) can be obtained, and the corresponding coordinate r leads to the Standard Radial Coordinate of Schwarzschild.

Proof:

Since the generator function of these polynomials C

(-1/2) n
is known:

r ± ≡ √ 1 ± 2ωλ + λ 2 = ∞ n=0 C (-1/2) n (ω)(∓λ) n , ( 19 
)
the following relations hold

∞ n=0 C (-1/2) 2n (ω)λ 2n = 1 2 (r + + r -) - ∞ n=0 C (-1/2) 2n+1 (ω)λ 2n+1 = 1 2 (r + -r -) , ( 20 
)
sidered. This condition leads to the following equation for the coordinate z: LB 2 (ẑ) = 0. It is easy to see that LB 2 (ẑ) = cos θ LB 2 (r) + r LB 2 (cos θ) + 2 LB 1 (r, cos θ) and the coordinates {r = r, cos θ = y} given in (10) (60-61) do not satisfy this harmonic condition. 5 As can be seen, expressions (59) are recovered from (60) by taking all RMM equal to zero, except for M 0 . and therefore, by taking λ = M/R, the coordinates {r, y} from (10) for this case are given by

r = M + R 2 (r + + r -) = M(x + 1) y = R 2M (r + -r -) = y p , ( 21 
)
where {x, y p } are the prolate spheroidal coordinates [18], [START_REF] Hernández-Pastora | Relativistic gravitational fields close to Schwarzschild solution[END_REF]. This radial coordinate r is easily recognized since it is merely the socalled standard radial coordinate of Schwarzschild and, as is known, the g 00 component of the Schwarzschild metric written in these coordinates is g 00 = -1 + 2M/r, and hence the prescribed form of the metric component ( 3) is recovered by this coordinate system and the relativistic Monopole Solution is described by a function u equal to the spherical Newtonian potential M/r.

In the following section we shall see the reasons why we refer to this system of coordinates as a Multipole-Symmetry Adapted one.

Interpretation and characterization of MSA coordinates

The function u written in a MSA system of coordinates {r, y} should be a solution of equation ( 12), (that is, the meaning of the condition (EI)), but at the same time it is also a solution of the following system of differential equations

0 = r 2 u rr + 2ru r + (1 -y 2 )u yy -2yu y 0 = ∂ N +1 y u , (22) 
for any value of N , whenever the function u represents the Multipole Solution with a finite number (N + 1) of RMM (8). Therefore, the symmetries of the system of differential equations ( 22), obtained in NG [10], that allow one to extract from all solutions of the axially symmetric Laplace equation those with the prescribed Newtonian Multipole Moments work identically in the case of using MSA coordinates, but now the quantities M n are the RMM (8). In this sense, the same family of vector fields that are the infinitesimal generators of certain one-parameter groups of transformations can be constructed. These vector fields represent symmetries of the system of differential equations (22) whose group-invariant solutions turn out to be the family of axisymmetric potentials related to specific gravitational multipoles (8).

The question we want to answer now is whether those groups of symmetry exist for the system of differential equations joined by ( 22) and ( 12); if so, we could generalize the above-mentioned results to GR, establishing a relationship between the existence of a certain symmetry and the uniqueness of the solutions of the Einstein equations with a prescribed multipole structure. Let us remark that equation ( 12) is the corresponding Ernst equation for the function u, and hence we could say more appropriately that Einstein equations admit the symmetry. Nevertheless, the existence of these coordinates itself leads to conclude that the static and axisymmetric solutions of the vacuum Einstein equations with a prescribed number (N + 1) of RMM can be described by means of the group-invariant solutions [10] of the system of differential equations ( 22) for each value of N .

Moreover, we wish to know whether the action of these symmetries on the equation ( 12) might provide conditions on the unknown functions f n (ω) and g n (ω) (10) to characterize the MSA coordinates.

Multipole symmetries in GR

Let v = r ∂ ∂r -u ∂ ∂u ( 23 
)
be a vector field on an open subset M ⊂ X × U , where X = R 2 is the space representing the independent variables, coordinates {x} = (r, y) being MSA coordinates such that ( 8) is fulfilled for N = 0, and U = R, with the coordinate u that represents the dependent variable. We can state the following theorem: Theorem 1

The system of equations ν (x,

u (n) ) = 0 given by        1 (x, u (n) ) ≡ r 2 u rr + 2ru r + (1 -y 2 )u yy -2yu y = 0 2 (x, u (n) ) ≡ u y = 0 3 (x, u (n) ) ≡ Au rr + Bu yy + 2Cu ry + Du r + Eu y + -2 2u-1 [Au 2 r + Bu 2 y + 2Cu r u y ] = 0, ( 24 
)
where 1 is the Laplace equation (with axial symmetry), 2 the so-called supplementary equation [10], and 3 equation ( 12), admits a symmetry group whose infinitesimal generator is v.

Proof:

The prolongation of v acting on the supplementary equation is pr (1) v [ 2 ] = -u y , and the second prolongation of this vector acting on 1 is pr (2) v [ 1 ] = -1 . Therefore, both prolongations are zero whenever the system of equations ν (x, u (n) ) = 0 is fulfilled.

With respect to the third equation of the system, it is straightforward to see that pr (2) 

v [ 3 ] = Du r + Eu y + r (A r u rr + B r u yy + 2C r u ry + D r u r + E r u y ) + - 1 2u -1 (Au rr + Bu yy + 2Cu ry + Du r + Eu y ) + - 2r 2u -1 A r u 2 r + B r u 2 y + 2C r u r u y -4 3 . ( 25 
)
Since the prolongations of the vector only need to vanish on solutions of the system of equations (24) [START_REF] Olver | Applications of Lie Groups to Differential equations[END_REF], we make use of equations 2 and 3 to obtain the following relation between the derivatives of u

u rr = 2 2u -1 u 2 r - D A u r , ( 26 
)
and we substitute this and 2 into (25) to obtain

pr (2) v [ 3 ] = u r rD r - D A (rA r -A) + u 2 r - 2A (2u -1) 2 . ( 27 
)
The derivatives u r and u 2 r are related by equations 3 and 1 (with u y = 0) as follows

u r - 2A r = u 2 r 2A 2u -1 , ( 28 
)
and therefore the second prolongation of v acting on 3 is

pr (2) v [ 3 ] = u r rD r - D A (rA r -A) - 1 2u -1 (- 2A r + D) . ( 29 
)
Equation ( 26) is the Ernst equation for the function u with the constraint 2 . It should therefore be fulfilled by the Monopole Solution, represented by u = M/r, since we have required the system {r, y} to be MSA coordinates for the Monopole case (spherical symmetry), and hence we can state the following relation between the coefficients A and

D D A = 2 r r -M r -2M . ( 30 
)
Finally, by using equation ( 30) and its derivative with respect to r, i.e.,

rD r = r D A A r - A r + 2A -2A r -M (r -2M) 2 (31) 
in (29), we have that:

pr (2) v [ 3 ] = - 2AM r -2M u r 1 r(2u -1) + 1 r -2M . ( 32 
)
This expression is zero if at least one of the following conditions hold:

A = 0 , u r = 0 , u = M/r . ( 33 
)
The first condition (A = 0) can obviously be neglected because it implies that equation 3 disappears; the second condition means that u = a + bf (y), a, and b being arbitrary constants and f (y) an arbitrary function of the variable y. Nevertheless, that expression is not a solution of the system (24), except for the case u = a, because u y = 0, and, since u = M/r has been forced to be a solution of 3 , which is a non-linear equation, then the linear combination u = a + M/r is no longer a solution of 3 . Hence, we must finally conclude that pr (2) v [ 3 ] = 0 iff u = M/r, i.e., whenever ν (x, u (n) ) = 0, as is the case, since that is the only solution of system (24).

Let {r, y} be an MSA system of coordinates such that (8) is fulfilled for N = 1. We can then state the following: Theorem 2

The system of equations ν (x, u (n) ) = 0 given by

       1 (x, u (n) ) ≡ r 2 u rr + 2ru r + (1 -y 2 )u yy -2yu y = 0 2 (x, u (n) ) ≡ u yy = 0 3 (x, u (n) ) ≡ Au rr + Bu yy + 2Cu ry + Du r + Eu y + -2 2u-1 [Au 2 r + Bu 2 y + 2Cu r u y ] = 0, ( 34 
)
where 1 is the Laplace equation (with axial symmetry), 2 the so-called supplementary equation [10], and 3 equation ( 12), admits a symmetry group whose infinitesimal generator is

v = r ∂ ∂r + y ∂ ∂y -u ∂ ∂u . ( 35 
)
Proof:

In [10] the null conditions on the prolongations of the vector field (35) acting on the first two equations of system (34), pr (2) v [ 1 ] = pr (2) v [ 2 ] = 0, whenever these two equations are fulfilled, were satisfied. Now, we explore whether pr (2) v [ 3 ] vanishes for the solutions of the system (34). It is straightforward to calculate (see [10] for details) that the second prolongation of vector (35) acting on equation 3 is

pr (2) v [ 3 ] = u rr (rA r + yA y -A) + u yy (rB r + yB y -B) + u ry (2rC r + 2yC y -2C) + u r (rD r + yD y ) + u y (rE r + yE y ) + u r u y - 4 2u -1 (rC r + yC y ) + 2 2u -2 (2u -1) 2 2C + u 2 r - 2 2u -1 (rA r + yA y ) + 2 2u -2 (2u -1) 2 A + u 2 y - 2 2u -1 (rB r + yB y ) + 2 2u -2 (2u -1) 2 B . ( 36 
)
Since pr (2) v [ 3 ] = 0 only needs to hold for the solutions of (34), we can substitute the derivative u rr from equations 3 and 2 ,

u rr = 2 A(2u -1) Au 2 r + Bu 2 y + 2Cu r u y - 2C A u ry - D A u r - E A u y (37)
into (36) as follows

pr (2) v [ 3 ] = u yy (rB r + yB y -B) + u ry 2rC r + 2yC y -2C r A r A + y A y A + u r rD r + yD y + D 1 -r A r A + y A y A + u y rE r + yE y + E 1 -r A r A + y A y A + u 2 r - 2A (2u -1) 2 u r u y - 4 2u -1 (rC r + yC y ) + 2 2u -2 (2u -1) 2 2C + 4C 2u -1 r A r A + y A y A + u 2 y - 2 2u -1 (rB r + yB y ) + 2 2u -2 (2u -1) 2 B + 2B 2u -1 r A r A + y A y A .(38)
By using expression (37) and 2 in equation 1 , the derivative u 2 r should satisfy the following equation

2 2u -1 u 2 r = - 2 Bu 2 y + 2Cu r u y (2u -1)A + 2 C A u ry - 2 r - D A u r + E A + 2y r 2 u y .
(39) By replacing expression (39) and equation 2 in (38) we have that pr (2) 

v [ 3 ] = u ry 2rC r + 2yC y -2C r A r A + y A y A - 2C 2u -1 + u r rD r + yD y + D 1 -r A r A + y A y A + 2A r(2u -1) - D 2u -1 + u y rE r + yE y + E 1 -r A r A + y A y A - 2Ay r 2 (2u -1) - E 2u -1 + u r u y - 4 2u -1 (rC r + yC y ) + 4C 2u -1 r A r A + y A y A + u 2 y - 2 2u -1 (rB r + yB y ) + 2B 2u -1 r A r A + y A y A . ( 40 
)
Since the coefficients of the various monomials in the first-order and second-order partial derivatives of u in this expression must be equal to zero, we must impose the following conditions on the coefficients of equation 3 and their derivatives:

C = 0 (41) A (rB r + yB y ) = B (rA r + yA y ) (42) rD r + yD y - D A (rA r + yA y ) + 2u -2 2u -1 D = - 2A r(2u -1) (43) rE r + yE y - E A (rA r + yA y ) + 2u -2 2u -1 E = 2Ay r 2 (2u -1) . ( 44 
)
The general solution of the system of equations 1 and 2 is as follows

u = c 1 y r 2 + c 2 ry + c 3 + c 4 r . ( 45 
)
Since {r, y} is a MSA system of coordinates (for the multipole order considered) we can force equation 3 to possess the Monopole-Dipole Solution (among those from ( 45) ) represented by ū = 1 r M + y r 2 M 1 (M and M 1 being the Monopole and Dipole moments respectively) and so, in addition to (41)-( 44), we have the following condition (C = 0):

A ūrr - 2 2ū -1 ū2 r - 2 2ū -1 B ū2 y + Dū r + E ūy = 0 . ( 46 
)
Moreover, this imposed condition implies that the only solution of the system of equations ( 34) is the Monopole-Dipole ū, and henceforth we can replace u by ū in equations ( 41)-( 44), leading to the following expressions:

(a) rν r + yν y = 0 (b) rκ r + yκ y + 2ū -2 2ū -1 κ = - 2 r(2ū -1) (c) rµ r + yµ y + 2ū -2 2ū -1 µ = 2y r 2 (2ū -1) , ( 47 
)
where ν ≡ B A , κ ≡ D A and µ ≡ E A . Equation (47.a) requires ν to be an arbitrary function of y/r and the solutions of equations (47.b) and (47.c) for κ and µ respectively are the following functions:

ν = ν(y/r) , κ= - 2r + F 1 (y/r) r 2 (2ū -1) , µ = 2y -F 2 (y/r) r 2 (2ū -1) . ( 48 
)
Equivalently, these solutions of the determining equations (47) can be written as follows:

νA = B (2r + F 1 )A = (r 2 -2Mr -2M 1 y)D (2y -F 2 )A = -(r 2 -2Mr -2M 1 y)E . ( 49 
)
These functions ν, κ and µ are related by means of condition (46), leading to the following relation between F 1 , F 2 and ν

M 1 F 2 = 2M 2 + 4M 2 1 y r 2 + 8MM 1 y r -2M 2 1 ν + MF 1 + 2M 1 F 1 y r . ( 50 
)
As already noted, that radial coordinate r is merely the Schwarzschild standard coordinate, the coordinate y being free of constraints because of the spherical symmetry. The system of coordinates characterized by solving equation ( 54) with boundary conditions (55), can aptly be said to be adapted to the Monopole symmetry group, whose infinitesimal generator is (23), for several reasons. First, we see that, written in these coordinates, the solution does not depend on the angular coordinate. In addition, another feature contributes to characterizing these coordinates: we refer to it as MSA because of the interrelation between the existence of the symmetry and the system of coordinates itself. Second, the function u that describes the relativistic solution with a finite number of RMM acquires the form of the classical Multipole potential, and hence all the conclusions obtained for the Newtonian case can be assumed again for this function, which can be considered as the group-invariant solution of a system of differential equations ( 22) that admits the symmetry.

B)The Monopole-Dipole symmetry

In analogy with the previous case, Theorem 2 allows us to establish a relationship between the existence of a symmetry of a certain system of equations and the MSA coordinates for the Monopole-Dipole Solution. We have seen that the uniqueness of the solution of the system of differential equations (34) can be deduced if the Ernst equation for the function u written in MSA coordinates is required to have a solution with the analytic form of the classical Monopole-Dipole gravitational potential. At the same time, this condition leads to the existence of a symmetry group for that system of equations.

The main goal obtained in the previous case (Monopole) is the calculation of the coordinate r by means of the constraint (54) that Theorem 1 introduces in the transformation of the coordinates; with appropriate boundary conditions (55), the choice of the functions f n (ω) is unique and r is fully determined.

Nevertheless, we cannot perform the complete determination of the MSA coordinates for the Monopole-Dipole case by using the constraints (53) introduced by Theorem 2. Equation (53.a) means that the new coordinates r and y preserve the orthogonality since they must be asymptotically Cartesian coordinates. This equation also implies that there are no cross terms in the metric written in MSA coordinates (g ij = 0, for i = j). If we substitute the prescribed gauge transformation from Weyl coordinates (10) in constraint (53.a), the corresponding series expansion leads to the following equations

(1 -ω 2 ) k i=1 f i (ω)g k-i (ω) = kg k (ω) - k-1 n=2 (n -1)(k -n)f n (ω)g k-n (ω) , ( 56 
)
where g 0 (ω) = ω, the symbol ( ) denotes the derivative with respect to the variable ω, and k is the order of the expansion in the parameter 1/R. This expression allows us to write any function g k (ω) in terms of the functions f n (ω) and g n (ω) of lower order (n < k) and their derivatives. As can be seen, the good behavior of the functions g n (ω) is recovered, since they must be zero along the axis of symmetry (ω = ±1). With the expressions of g k (ω) obtained from (56), we may solve the corresponding equations at each order of the series expansion of the other constraint, (53.b), for the functions f n (ω) alone. But now we do not have a suitable boundary condition to obtain a unique solution of the functions f n (ω) for the complete determination of the coordinate r for this Monopole-Dipole case. We can demand that the limit M 1 = 0 must lead to the same functions as the Monopole case, but this only allows us to determine the arbitrary constants of integration for f 1 (ω) and f 2 (ω), because from the next order onwards the equations involve arbitrary constants, since the functions f n (ω) for odd n are null in the Monopole case.

With this procedure we obtain a family of coordinates that transforms the Ernst equation into another one that admits the function ū, representing the Monopole-Dipole Solution, as a solution. Nevertheless, the coordinate transformation is not unique.

Conclusion

The exterior gravitational field of an isolated and static compact body with axial symmetry is described in GR by means of the Weyl family of solutions, which depends on a set of arbitrary coefficients {a n } whose values univocally determine each specific solution. If one is looking for solutions that are well known and physically meaningful, it is necessary to relate this set of coefficients to the RMM in order to make a suitable selection of them. If we work with an MSA system of coordinates, then the solution that describes the gravitational behavior of compact bodies with a prescribed multipole structure can be constructed by identifying the function u with the Newtonian potential and considering the constants of the classical potential to be exactly the RMM of the solution. The transformation of a solution (Weyl) into another one (MSA) fixes the change of coordinates by requiring the function u to be a solution of the corresponding Ernst equation.

Nevertheless, this procedure needs to know, a priori, the set of coefficients {a n } of the desired Multipole Solution, although the existence and explicit knowledge of these systems of coordinates is relevant enough and they become very useful, at least for the following topics: Application of this work could shed light on study of the influence and relevance of different RMM in the behavior of test particles along geodesics [16] for different sources, since the MSA coordinates provide us with the exact Multipole Solutions in a very simple way. The deviation of the source from the spherical configuration is a very important feature, for example, for describing the fate of the collapse of self-gravitating systems [17]. The calculation of circular geodesics at successive distances from the source can be used to determine its multipole structure. Additionally, some authors have attempted to [START_REF] Aguirregabiria | [END_REF] relate the RMM to the structure of the source by means of quantities defined over the distribution tensor of the source. The existence of MSA coordinates for any Multipole Solution seems to be a very useful tool for achieving these aims in the frame of global stationary axisymmetric solutions of the Einstein equations.

Except for the Monopole case, in which the gauge is well-known (Schwarzschild radial coordinate), the MSA system of coordinates for the other cases are given by means of two series expansions in the inverse radial Weyl coordinate. However, if we work at large distances from the source, the approximate character of the coordinates is negligible and the change of coordinates is completely determined. In addition, the function u is an exact solution with the finite number of desired RMM, and hence, we have defined a family of static and axially symmetric exact vacuum solutions with a prescribed multipole structure in a system of coordinates defined with a suitable order of approximation.

Finally, this work affords another conclusion: two theorems have been proved that allow us to establish a relationship between the existence of a certain symmetry of a system of differential equations (the corresponding Ernst equation for the function u is included among them) and the existence of a system of coordinates in which that function u can be written analytically equal to the Newtonian potential but in terms of the RMM.

This result is relevant in itself, and some implications can be derived from it. In particular, the construction of the MSA system of coordinates for the Monopole case is supported by the proof of Theorem 1, without knowledge of the corresponding set of coefficients {a n }, since the existence of the function u, or the MSA system of coordinates, is equivalent to the satisfaction of the corresponding Ernst equation by that function. This condition requires that the functions involved in the change of coordinates must satisfy some differential equations whose solution is unique for suitable boundary conditions. Accordingly, the existence of a one-parameter group of transformations can be stated, whose infinitesimal generator is (23), which represents a symmetry of the system of equations joined by the Laplace equation with axial symmetry, the supplementary equation and the Ernst equation for the function u written in a system of coordinates adapted to that symmetry (MSA).

For the Monopole-Dipole case, Theorem 2 allows us to establish the same relationship between the existence of the Monopole-Dipole symmetry and the corresponding MSA coordinate system, although unfortunately the characterization of the gauge by means of the conditions provided by the theorem leads to a family of undefined coordinates in terms of arbitrary constants.

Appendix A

The following expressions show the first ten RMM of any Weyl solution in terms of its coefficients a n : 

M 0 = -a 0 , M 1 = -a 1 , M 2 = -a 2 + 1 3 a 3 0 , M 3 = -a 3 +
From the above expressions we can extract, at each order, the corresponding coefficient a n in terms of the RMM:

a 0 = -M 0 , a 1 = -M 1 , a 2 = - 1 3 M 3 0 -M 2 , a 3 = -M 1 M 2 0 -M 3 a 4 = - 8 7 M 2 0 M 2 - 1 5 M 5 0 - 6 7 M 0 M 2 1 -M 4 a 5 = - 4 3 M 2 0 M 3 - 12 7 M 0 M 1 M 2 -M 1 M 4 0 - 2 7 M 3 1 -M 5 a 6 = - 20 11 M 1 M 0 M 3 - 25 21 M 4 0 M 2 - 38 21 M 3 0 M 2 1 - 17 11 M 2 0 M 4 - 60 77 M 0 M 2 2 + - 6 7 M 2 1 M 2 - 1 7 M 7 0 -M 6 a 7 = -M 1 M 6 0 - 128 33 M 3 0 M 1 M 2 - 49 33 M 4 0 M 3 - 120 143 M 2 2 M 1 - 18 11 M 3 1 M 2 0 + 6 Appendix B
The following expressions show the functions f n (ω) appearing in (10), for the Monopole case. Since the spherical symmetry only requires to define the radial coordinate, and the function u does not depend on y, the condition (E0) provides by itself this result:

f 1 (ω) = M , f 2 (ω) = - 1 2 M 2 (-1 + ω 2 ) , f 3 (ω) = 0 f 4 (ω) = - 1 8 M 4 (5ω 4 + 1 -6ω 2 ) , f 5 (ω) = 0 f 6 (ω) = - 1 16 M 6 (-35ω 4 -1 + 15ω 2 + 21ω 6 ) , f 7 (ω) = 0 f 8 (ω) = - 1 128 M 8 (5 + 429ω 8 -924ω 6 + 630ω 4 -140ω 2 ) , f 9 (ω) = 0 f 10 (ω) = 1 256 M 10 (7 -2431ω 10 + 6435ω 8 -6006ω 6 + 2310ω 4 -315ω 2 ) (59) 
For a more general case, we have calculated the MSA coordinates for the solution having only the Monopole, Dipole and Quadrupole moments, and the functions f n (ω) and g n (ω), up to order 5, are the following7 : denotes the Monopole terms obtained for the previous case (59). (2)

f 1 (ω) = M 0 , f 2 (ω) = 1 2 M 2 0 (1 -ω 2 ) f 3 (ω) = M 3 0 m 1 ω(1 -ω 2 ) + 1 2 m 2 (1 -3ω 2 ) + m 2 1 ω 2 f 4 (ω) = M 4 0 m 2 1 (- 5 42 ω 2 + 1 84 - 3 4 ω 4 ) + m 1 m 2 ω(-3 + 7ω 2 )+ + m 3 1 2 3 ω(1 -4ω 2 ) + m 2 (- 19 28 + 39 14 ω 2 - 5 4 ω 4 ) + f (M ) 4 f 5 (ω) = M 5 0 m 4 1 (- 7 2 ω 2 + 22 3 ω 4 + 1 6 ) + m 2 2 (1 -9ω 2 + 12ω 4 )+ + m 1 (5ω 3 - 7 2 ω 5 - 3 2 ω) + m 3 1 ( 71 21 ω 3 - 13 21 ω) + + m 2 (2ω 2 -3ω 4 ) + m 2 1 (2ω 4 -ω 2 ) + + m 2 1 m 2 (- 3 
g 1 (ω) = 0 , g 2 (ω) = -(1 -ω 2 ) 1 2 ωM 2 0 g 3 (ω) = -(1 -ω 2 ) M 3 0 3 m 1 (3ω 2 -1) -2m 2 1 ω + 3ωm 2 g 4 (ω) = -(1 -ω 2 ) M 4 0 168 m 2 1 (126ω 3 + 10ω) + (147ω 3 -63ω)+ + m 2 (210ω 3 -234ω) + m 1 m 2 (-882ω 2 + 126) + m 3 1 (336ω 2 -28) g 5 (ω) = -(1 -ω 2 ) M 5 0 420 m 1 m 2 (945ω 4 + 1566ω 2 -255)+ + m 2 (1260ω 3 -336ω) + m 1 (1890ω 4 -1400ω 2 + 126) + m 3 1 (52 -852ω 2 ) + + m 2 1 (-840ω 3 + 224ω) + m 4 1 (-2464ω 3 + 588ω) + m 2 2 (1512ω -4032ω 3 ) + + m 2 m 2 1 (8652ω 3 -2604ω) (61) 1 f 5 (ω) = M 5 0 m 4 1 (- 7 2 ω 2 + 22 3 ω 4 + 1 6 ) + m 2 2 (1 -9ω 2 + 12ω 4 )+ + m 1 (5ω 3 - 7 2 ω 5 - 3 2 ω) + m 3 1 ( 71 21 ω 3 - 13 21 ω) + m 2 1 (2ω 4 -ω 2 ) + + m 2 (2ω 2 -3ω 4 ) + + m 2 1 m 2 (- 3 
g 1 (ω) = 0 g 2 (ω) = -(1 -ω 2 ) 1 2 ωM 2

In[12] a conjecture due to Geroch is proved for the special case of axisymmetric spacetimes, which establishes that given any set of RMM, subject to the appropriate convergence condition, there exists a static solution of Einstein's equations having precisely those moments. The authors in[12] also provide the precise condition on the moments.

Let {x i } ≡ {x, ŷ, ẑ} be Cartesian coordinates associated with the spherical ones {r, θ, φ} as ẑ = r cos θ, x + iŷ = r sin θe i φ; these coordinates are said to be harmonic if {x i } = 0, where denotes the D'Alambert operator with respect to the metric con-

This calculation has been done up to order 9 but the resulting expressions are cumbersome to show here explicitly. The reader can obtain them by sending an e-mail to the author, or alternatively by asking for a file containing these expressions to the editor.
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By using the expression of F 2 obtained from the equation (50), and by using the first equation of (49) we can write the following expression:

(51) Finally, by substituting expression (51), and the function F 1 obtained from the second equation of (49), into the third equation of (49) we have that:

We must therefore say that the second prolongation of the vector v acting on 3 vanishes whenever the system of equations ( 34) is fulfilled, iff condition (52) holds, and hence the proof of this theorem can be concluded since this condition (52) is equivalent 6 to saying that the Monopole-Dipole function ū is a solution of 3 , that is, the assumption from the beginning of the theorem if coordinates used {r, y} are MSA coordinates.

The relevance of the theorem comes from the relationship that can be established between the existence of the symmetry and the gauge of coordinates that provides the Newtonian form of the Monopole-Dipole Solution.

If we recall definitions [START_REF] Olver | Applications of Lie Groups to Differential equations[END_REF][START_REF] Hernández-Pastora | Relativistic gravitational fields close to Schwarzschild solution[END_REF], then the last expression (52), in addition to the equation (41)(C = 0), provides the following explicit conditions in the coordinate transformation:

6 Note that equation ( 46) is exactly equal to expression (52).
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Note that if we take M 1 = 0 in the above expression, we obtain condition (30), which must be used for the determination of the coordinates in the Monopole case. We shall discuss these results in the following section.

Characterization of the MSA systems of coordinates

A)The Monopole Solution

From theorem 1, one can conclude that a symmetry of the system of differential equations ( 24) exists iff we force equation ( 26) to posses a solution of the Monopole type u = M/r; in other words, equation (30) must be satisfied. Equation ( 26) is the Ernst equation for the function u with the constraints given by the other equations of the system (24), and it should be taken into account that the system of MSA coordinates that we are using allows us to characterize the relativistic Monopole Solution with a function u written as the Newtonian Monopole. Therefore, since the only solution of system (24) is the Monopole Solution, we can state that this system of differential equations admits a symmetry group that can be related to the uniqueness of the solution of the system by means of the existence of MSA coordinates.

Furthermore, condition (30) allows us to determine the gauge of coordinates in which the relativistic solution having only the Monopole Moment is given by a function with the same analytic form as the classical Monopole potential in NG. We proceed to do this in the following way. First, we substitute the coordinate transformation (10) in condition (30), which becomes a constraint over the coordinate transformation, taking into account definitions [START_REF] Olver | Applications of Lie Groups to Differential equations[END_REF][START_REF] Hernández-Pastora | Relativistic gravitational fields close to Schwarzschild solution[END_REF]

Second, we solve the corresponding differential equations that appear at each order in the power series expansion, and the uniqueness of the solution is provided by the following boundary conditions:

which implies that all functions f n (ω) vanish for all n > 1 along the axis orthogonal to the equatorial plane.

- In what follows we show the functions f n (ω) and g n (ω), up to order 9, corresponding to the MSA coordinates for the solution having only the Monopole, Dipole and Quadrupole moments. We use the following notation for the dimensionless parameters m n and the Monopole terms f (ω) being Gegenbauer orthogonal polynomials.

+ M 4 0 m 2 1 (-