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Abstract

We define a modification of LQG in which graphs are required to consist in piecewise linear
edges, which we call piecewise linear LQG (plLQG). At the diffeomorphism invariant level, we
prove that plLQG is equivalent to standard LQG, as long as one chooses the class of diffeomor-
phisms appropriately. That is, we exhibit a unitary map between the diffeomorphism invariant
Hilbert spaces that maps physically equivalent operators into each other. In addition, using the
same ideas as in standard LQG, one can define a Hamiltonian and Master constraint in plLQG,
and the unitary map between plLQG and LQG then provides an exact isomorphism of dynamics
in the two frameworks.

Furthermore, loop quantum cosmology (LQC) can be exactly embedded into plLQG. This
allows a prior program of the author to embed LQC into LQG at the dynamical level to proceed.
In particular, this allows a formal expression for a physically motivated embedding of LQC into
LQG at the diffeomorphism invariant level to be given.

1 Introduction

Loop quantum gravity (LQG) [1, 2, 3] is a minimalistic, background independent approach to quan-
tum gravity. However, in the construction of the theory, technical choices have to be made, especially
in the kinematics of the theory. One can then ask: might some of these technical choices not matter
once the constraints are solved? In this paper, we show that in particular the choice of the piecewise
analytic category is not essential: it can even be replaced with something as simple as the piecewise
linear category, and the resulting theory is the same at the diffeomorphism invariant level. The dif-
feomorphism invariant Hilbert spaces of the two theories are naturally isomorphic, and the dynamics
are exactly the same. Furthermore, a very large algebra of the diffeomorphism invariant operators are
also seen to be the same.

We call this modification of LQG ‘piecewise linear loop quantum gravity’ (plLQG).
What are the consequences of this? First, plLQG can be used as a “trick” to circumvent an

obstruction to the program of [4, 5], allowing the program to proceed. The program [4, 5] lays out a
strategy for embedding loop quantum cosmology — the symmetry reduced version of loop quantum
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gravity — into LQG. Prior to the present work, a seemingly technical detail hindered the program: as
long suspected, and finally proven in [6], the restriction, to the homogeneous isotropic sector, of the
basic algebra of configuration observables in LQG (the cylindrical functions) is not equal the basic
configuration algebra in LQC (the almost periodic functions). We refer the reader to section 5 of the
present paper for an explanation of why this is a hindrance. Piecewise linear LQG, by contrast, does
not have this hindrance. This, combined with the fact that plLQG is completely equivalent to standard
LQG at the diffeomorphism invariant level, finally allows the systematic program of [4, 5] to move
forward, leading to a formal expression for an embedding of LQC into LQG at the diffeomorphism
invariant level. A second possible use of the piecewise linear framework is that it may allow a closer
relation to spinfoams [7, 8], which also use the piecewise linear category to define the kinematics [8].

It should be noted that, in order to achieve isomorphism with LQG, one must use in LQG a class of
generalized diffeomorphisms allowing non-differentiability on lower dimensional surfaces, such as that
systematically motivated in [9], and advocated in [14, 22]. This in turn forces one to use the Rovelli-
Smolin ordering of the volume operator [1, 2, 10, 12] instead of the Ashtekar-Lewandowski ordering
[1, 2, 11, 12] when defining the Hamiltonian and Master constraints via the usual construction [15, 16].

After this work was completed, it was pointed out to the author that the kinematics of piecewise
linear LQG as presented here, and the choice of generalized diffeomorphisms, had already been pro-
posed as a model by Zapata in [13]. In [13], one was not interested in plLQG as such, and so did not
develop it beyond kinematics. This paper goes further, in rigorously constructing the rigging map for
the diffeomorphism constraint, constructing Hamiltonian and Master constraint operators, and show-
ing equivalence with the piecewise analytic framework at the diffeomorphism invariant level including
dynamics. Of course the embedding of LQC into plLQG is also new. On the other hand, [13] presents
features of the kinematics of plLQG not presented here. For example, [13] introduces the piecewise
linear analogue APL of the generalized connections, and constructs the piecewise linear analogue of
the Ashtekar-Lewandowski measure, allowing one to express the kinematical Hilbert space as an L2

space. The later work [14] by Zapata also proved independently lemma 4 of the present paper.
The paper is organized as follows. First we define the kinematics of piecewise linear LQG, mo-

tivate a choice of generalized diffeomorphism group, and solve the diffeomorphism constraint. The
unitary map between the diffeomorphism invariant Hilbert spaces in plLQG and LQG is then explic-
itly constructed and proven in section 3. Equivalence of diffeomorphism invariant operators in the two
frameworks, and the equivalence of dynamics in the two frameworks is proven in section 4. Everything
proven up to this point applies for spatial manifolds with arbitrary (3 dimensional) topology. The
exact embeddings of LQC into plLQG of the type motivated in [4, 5] are then explicitly reviewed in
section 5, and at the end of this section, the resulting formal expressions for the embeddings of LQC
into LQG at the diffeomorphism invariant level are given. We then close with a brief discussion.

2 Piecewise linear loop quantum gravity

2.1 Kinematics

Much of this section overlaps with the work of Zapata [13].
For simplicity (and because it is the case relevant for the application to cosmology), we assume

space, M , is topologically R3, and we equip M with a fixed, flat frame bundle connection ∂a. This
flat connection gives us a notion of ‘straightness’ and fixes a specific piecewise linear structure on M .
More general topologies are also possible, as well as different piecewise linear structures — we refer
the reader to appendix A for the definitions in the general case. All of the arguments and results in
this paper hold also in the general case (for M three dimensional) without change, except of course in
the section on cosmology, where homogeneity and isotropy dictate the topology and piecewise linear
structure of M .
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Let A denote the space of smooth SU(2) connections onM . The classical phase space is parametrized
by such a connection Ai

a and a densitized triad field Ẽa
i . (Here Ai

a denotes the components of the
SU(2) connection with respect to the basis τi := − i

2σi of the Lie algebra su(2).) The Poisson brackets
are given by

{Ai
a(x), Ẽb

j (y)} = 8πγGδi
jδ

b
aδ

3(x, y) (1)

where G is Newton’s constant, and γ ∈ R+ is the Barbero-Immirzi parameter.
Next one specifies the basic variables. The algebra of elementary configuration variables is chosen

to consist in (real analytic1) functions of finite numbers of holonomies of the connection Ai
a along

piecewise straight edges; we will also use the term piecewise linear for such edges. We call these
functions piecewise linear cylindrical and the space of such functions is denoted Cyl. The elementary
momentum variables are taken to be the fluxes on piecewise flat surfaces2. Given a surface S and a
function f : S → su(2), the corresponding flux is

E(S, f) :=
∫

S

f iẼa
i nadσ1dσ2 (2)

where na := εabc
∂xb

∂σ1

∂xc

∂σ2
, (σ1, σ2) are arbitrary coordinates on S, xa are arbitrary coordinates on the

spatial manifold, and εabc denotes the fully anti-symmetric symbol (i.e., the Levi-Civita tensor of
density weight −1).

Next let us introduce some structures to give a more useful characterization of Cyl. We first define
a piecewise linear path to be a continuous path e : [0, 1] →M consisting in a finite number of segments,
each segment being geodesic with respect to ∂a (but not necessarily affinely parametrized.) We then
define a piecewise linear edge to be an equivalence class of piecewise linear paths, where two piecewise
linear paths are equivalent if they are related by a reparametrization, or addition or removal of ‘trivial’
segment of the form (δ ◦ δ−1).3 We next define a piecewise linear graph to be a finite, ordered set of
piecewise linear edges. Let Γ denote the space of piecewise linear graphs. With these definitions, any
element Φ of Cyl can be written in the form

Φ[A] = F (A(e1), . . . , A(en)) (3)

for some piecewise linear graph (e1, . . . , en) ∈ Γ, and some real-analytic function F : SU(2)n → C. If
a cylindrical function Φ ∈ Cyl may be written using the edges of a graph γ, we say Φ is cylindrical
with respect to γ. We denote by Cylγ the space of functions cylindrical with respect to γ.

We next define an inner product 〈·, ·〉 on Cyl in the same way as in standard LQG: Given Ψ,Φ ∈ Cyl,
we find a graph γ large enough so that Ψ,Φ ∈ Cylγ , and then define the inner product between Ψ and
Φ using the Haar measure on SU(2). As in LQG, this inner product is independent of the ambiguity
in the choice of γ. For each γ let Hγ denote the Cauchy completion of Cylγ , and let H denote the
Cauchy completion of Cyl, in this inner product.

We then construct a representation of the basic algebra on (Cyl, 〈·, ·〉). The configuration algebra
Cyl is represented by multiplication. The operators corresponding to the momentum degrees of
freedom are then defined via the classical Poisson bracket

Ê(S, f)Φ = i{E(S, f),Φ} (4)

1As always, one has some freedom in the precise definition of cylindrical functions. This definition will be convenient
for section 5.

2We may also include the fluxes on arbitrary piecewise analytic surfaces, but nothing is thereby gained, and using
piecewise flat surfaces is more in the spirit of piecewise linear loop quantum gravity as presented here.

3Thus, two paths are equivalent iff they yield the same holonomies.
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which ensures that the commutators of elements of Cyl and the fluxes match the corresponding
Poisson brackets. The multiplicative Cyl operators are bounded because each element of Cyl, as
a continuous function of a finite number of SU(2) holonomies, is bounded due to the compactness
of SU(2). These multiplicative operators thus extend to all of H by the BLT theorem. The flux
operators, equipped with domain Cyl, form essentially self-adjoint operators, which therefore extend
uniquely to self-adjoint operators on H. The resulting representation of the basic observables then
reflects correctly not only the poisson brackets, but also the correct adjointness relations. This is the
elementary quantization.

After the quantization of the elementary operators, other geometrical operators corresponding to
length, area, and volume can be constructed in the same way as in standard LQG [1, 2, 10, 17], all
with the same spectra. The Gauss constraint is defined in the same way as in standard LQG [1, 2]
and is just as easy to solve, yielding as a solution space HG ⊂ H, consisting in the Cauchy completion
of the span of gauge-invariant spin-network states [1, 2], this time with the graphs restricted to be in
Γ.

2.2 Solution to the diffeomorphism contraint

Next, let us discuss the solution to the diffeomorphism constraint. Central to this is the selection of a
generalization of the group of diffeomorphisms to be used in quantum theory. Once this generalization
is selected, we will simply use the group averaging strategy of [1, 18] to solve the constraint.

The choice of diffeomorphism gauge group
Let Diff denote the group of generalized diffeomorphisms to be used. We first stipulate several

requirements of Diff, which will lead us to a choice for the group. First, we stipulate that the
generalized diffeomorphisms at least consist in bijective maps of space onto itself.4 Second, each
element of Diff must map all piecewise linear edges to piecewise linear edges, so that it has a well-
defined action on Γ, the set of piecewise linear graphs. These requirements, however, are so far
not enough: if we were to only require these, one could map any graph into any other with such
a ‘generalized diffeomorphism’, and, if one follows the prescription of [1, 18], one would be led to
a solution space with only a single state. Therefore, we furthermore stipulate that the maps be
homeomorphisms. A natural choice satisfying the above requirements is the group of piecewise linear
homeomorphisms. To define the notion of a piecewise linear homeomorphism, we must first review
the definition of a simplicial complex [19]. First, we note that the fixed connection ∂a endows M with
a natural affine structure. Let us for convenience arbitrarily pick an origin O ∈ M , and use this to
make M into a vector space, so that addition and real scalar multiplication are defined in M . None
of the definitions or constructions below will depend on the choice of O.

A set of points {a0, . . . , an} ⊂ M is said to be independent if they do not lie within any common
(n−1)-dimensional plane in M . Given such a set of n+1 independent points, we define the n-simplex
σ spanned by a0, . . . , an to be the set of all points x ∈ M such that

x =
n∑

i=0

tiai (5)

4If one were to solve the Gauss and diffeomorphism constraints together, this would be equivalent to requiring that
the generalized principal bundle automorphisms to be used should at least consist in maps from the principal bundle
to itself that preserve all structure of the principal bundle except possibly topology and differentiable structure.
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for some t0, . . . , tn ∈ R all non-negative, satisfying
∑n

i=0 ti = 1. n is the called the dimension of σ.
In common language, a 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle,
and a 3-simplex is a tetrahedron.

Next we define the generalized notion of ‘face’. Given an n-simplex σ spanned by a set of points
{a0, . . . , an}, the simplex spanned by a subset of these points is called a face of σ. In particular, every
simplex is a face of itself; a face of a simplex σ that is not equal to σ is called a proper face. Thus,
in this generalized sense, the proper ‘faces’ of a tetrahedron consist in all the triangular faces in the
usual sense, all the edges, and all four vertices. The proper ‘faces’ of a triangle consist in its three
edges and three vertices, etc.

We can now define a simplicial complex K to be a (locally finite) collection of simplices such that

1. Every face of a simplex of K is in K.

2. The intersection of any two simplices of K is a face of each of them.

The maximal simplex dimension occuring in K is called the dimension of K.
Finally, a homeomorphism F from an n-dimensional manifold M onto an n-dimensional manifold

N is called piecewise linear if there exist simplicial complexes K and L, covering all of M and N ,
respectively, such that v0, . . . vm span a simplex of K if and only if F (v0), . . . , F (vm) span a simplex
of L, and such that for each {v0, . . . vn} spanning an n-simplex in K,

F

(
n∑

i=0

tivi

)
=

n∑

i=0

tiF (vi) (6)

for all ti ≥ 0 satisfying
∑n

i=0 ti = 1. That is, F maps simplices of K into simplices of L in a continuous
way, such that F is linear within each n-simplex. 5

The piecewise linear homeomorphisms are essentially the piecewise linear analogue of the stratified
analytic diffeomorphisms advocated in [9] and described in [20, 21] (see also [14, 22]). In the ana-
lytic framework, however, one has more choices: one can, for example, require that the generalized
diffeomorphisms be at least differentiable. The analogue of such a requirement can, however, not be
satified in the piecewise linear framework: the only differentiable piecewise linear maps are globally
linear. But the group of globally linear maps is too small, in the sense that there are no local degrees
of freedom therein that would allow one to approximate arbitrary diffeomorphisms. Piecewise linear
homeomorphisms, by contrast, do, for example in the sense proven in the classic simplicial approxima-
tion theorem [23]. Furthermore, if one were to choose globally linear maps as the group of ‘generalized
diffeomorphisms’, then linear relations among the tangent vectors of even distant, disconnected edges
would survive as information at the ‘diffeomorphism invariant’ level. This would prevent any possible
relation, with any analytic LQG framework so far proposed.

Construction of the diffeomorphism invariant Hilbert space
With the foregoing choice of Diff, let us proceed to construct the solution to the diffeomorphism

constraint. For this purpose, we introduce some further definitions. First, if two graphs γ1, γ2 ∈ Γ
differ only by a permutation of edges or reversal of edge orientations, call them probe equivalent.
The probe equivalence class of a graph γ we write as [γ]pr. Let Γpr denote the space of such probe

5In the language of [19], a piecewise linear homeomorphism is a simplicial homeomorphism from some simplicial
complex K to another L.
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equivalence classes in Γ. Next, for each γ ∈ Γ, let H′
γ denote the orthogonal complement, in Hγ , of

the span of all functions that are constant on at least one edge of γ. Then, as in [1],

H = ⊕[γ]pr∈Γpr
H′

γ . (7)

Furthermore let Cyl′γ := H′
γ ∩ Cyl. Lastly we define some subgroups of our chosen generalized

diffeomorphisms. For each γ ∈ Γ, let Diffγ be the set of elements in Diff mapping γ back into its
probe equivalence class. Let TDiffγ be the set of elements in Diff fixing γ, so that they preserve each
edge of γ including orientation. Let GSγ := Diffγ/TDiffγ where the division is taken with respect to
the left-action.

For each γ ∈ Γ, define P diff,γ as the group averaging map [18, 1] from H′
γ to the subspace invariant

under GSγ :6

Pdiff,γΨγ :=
1∣∣GSγ

∣∣
∑

ϕ∈GSγ

ϕ∗Ψγ . (8)

For each Ψγ ∈ Cyl′γ , define η(Ψγ) ∈ Cyl∗ by

(η(Ψγ)|Φ〉 :=
∑

ϕ∈Diff/Diffγ

〈ϕ∗P diff,γΨγ ,Φ〉 =
1∣∣GSγ

∣∣
∑

ϕ∈Diff/TDiffγ

〈ϕ∗Ψγ ,Φ〉. (9)

Piecing together these maps for the various γ ∈ Γ defines a map η : Cyl → Cyl∗. This is the rigging
map for solving the diffeomorphism constraint for piecewise linear LQG. The space of ‘test functions’
at the diffeomorphism invariant level is then

Cyl∗
diff

:= Imη. (10)

The inner product on this space is defined as follows: For ηΨ, ηΦ ∈ Imη,

〈ηΨ, ηΦ〉 := (ηΨ|Φ〉. (11)

The Cauchy completion of Cyl∗
diff

with respect to the above inner product we denote by Hdiff .
The solution to both the Gauss and diffeomorphism constraints is constructed by first defining

Cyl∗
diff,G

:= η[Cyl ∩ HG] ⊂ Cyl∗
diff

, and then Cauchy completing to obtain Hdiff,G ⊂ Hdiff .

3 Equivalence of piecewise linear LQG with analytic LQG at

the diffeomorphism invariant level

In this section we prove that the diffeomorphism invariant Hilbert space for piecewise linear LQG is
naturally isomorphic to the diffeomorphism invariant Hilbert space of standard LQG — provided that
for standard LQG one uses a generalized diffeomorphism group such as that advocated in [9].

We begin by proving the key lemma about piecewise linear LQG allowing the equivalence. Define
a “graph knot-class” as a homeomorphism-equivalence class of topologically embedded graphs. The
key lemma essentially states that Diff equivalence classes of piecewise linear graphs are graph knot-
classes. Because the analogue of this is also true for piecewise analytic LQG with the choice of
diffeomorphism group advocated in [9], one already has a hint of the equivalence of the two theories

6In lemma 5, we will show Pdiff,γ is equal to Pdiff,γ in [1].
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at the diffeomorphism invariant level. However, to rigorously prove the equivalence, more must be
done, and the subsequent part of this section is devoted to this task.

First we give several definitions. Given a simplicial complex K, a subcomplex K ′ is any subset of
K such that K ′ is again a simplicial complex. (Note it is possible for the dimension of K ′ to be less
than that of K). Second, a complex K̃ is said to be a subdivision of a complex K if every simplex of
K̃ is contained in a simplex of K, and every simplex of K is a union of simplices in K̃. Third, given
a simplicial complex K, we denote the union of simplices in K by

|K| := ∪A∈KA, (12)

called the polyhedron underlying K. Lastly, we define a piecewise linear graph γ and a 1-complex X
to be compatible if the image of γ (which we denote by |γ|) equals |X |. By breaking up each edge
of a piecewise linear γ into its straight pieces, and taking the set of these line segments and all their
endpoints, one obtains the simplest 1-complex compatible with γ. By subdividing the edges further,
one obtains other compatible 1-complexes.

We begin by stating a lemma, which is almost identical to (4.4) of [24]:

Lemma 1 (almost (4.4) of Brown [24]). Let K and L be 3-complexes and let K1 and L1 be 1-
dimensional subcomplexes of K and L respectively. Suppose f : |K| → |L| is a homeomorphism such
that f(|K1|) = |L1|. Then there exists an isotopy gt : |K| → |L| such that

(i) g0 = f

(ii) there exist subdivisions K̃, L̃, K̃1, L̃1 of K,L,K1, L1 respectively such that

(a.) K̃1 and L̃1 are subcomplexes of K̃ and L̃, respectively,

(b.) gt maps K̃1 onto L̃1 for all t, and

(c.) g1 is piecewise linear on K̃1.

Proof. The proof is exactly the same as that given for (4.4) in [24]; only the statement of the lemma
differs. �
We use the above in proving the following key lemma. A generalized version of the Hauptvermutung
of algebraic topology for 3-complexes, proved in 1969 [24], plays a key role in the following proof.

Lemma 2. If γ, γ′ ∈ Γ admit a homeomorphism ξ : M → M such that γ′ = ξ · γ, then there exists
ϕ ∈ Diff such that γ′ = ϕ · γ.

Proof.
First, by lemma 12 in the appendix, there exist simplicial complexes K and L, each triangulating all
of M , such that K contains a one-dimensional subcomplex K1 compatible with γ, and L contains a
one-dimensional subcomplex L1 compatible with γ′. Because ξ maps γ to γ′, it maps |K1| to |L1|.
We now invoke lemma 1 above; it provides us with subdivisions K̃, L̃, K̃1, L̃1 of K,L,K1, L1 such that
K̃1 and L̃1 are subcomplexes of K̃ and L̃, and an isotopy ξt : M → M such that (i) ξ0 = ξ, (ii) ξt
maps K̃1 to L̃1 for all t, and (iii) ξ1 is piecewise linear on K̃1.
The 3-complexes K̃ and L̃, the subcomplex K̃1 of K̃, and the homeomorphism ξ1 now satisfy the
hypotheses of theorem (4.8) of [24], which implies the existence of an isotopy ϕt : M →M , such that
(i) ϕ0 = ξ1, (ii) ϕ1 is piecewise linear, and (iii) ϕt||K̃1| = ξ1||K̃1| for all t.

Now, as already noted, ξt maps K̃1 as a 1-complex onto L̃1 as a 1-complex for all t. That is, ξt maps
each simplex of K̃1 to a corresponding simplex of L̃1 in an onto fashion; this mapping is furthermore
1-1 from the injectivity of ξt. Now, because K̃1 is a subdivision of K1, and K1 is compatible with γ,
K̃1 is also compatible with γ, so that each edge of γ is a union of simplices in K̃1. Likewise, each edge
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of γ′ is a union of simplices in L̃1. It follows that, for all t, ξt maps each edge of γ onto a corresponding
edge of γ′ in a 1-1 and onto fashion. The continuity of ξt in t ensures that ξt always maps each edge
of γ to the same edge of γ′ for all t. Furthermore, recall that ξ0 = ξ maps the orientation of each edge
in γ correctly into the orientation of the corresponding edge in γ′; the continuity of ξt in t ensures
that ξt does the same for all t. Thus, for all t, ξt maps γ onto γ′ as a graph. This is in particular true
for ξ1; property (iii) of ϕt then implies that this is also true for ϕt for all t. ϕ := ϕ1 thus provides a
piecewise linear homeomorphism, i.e., an element of Diff, mapping γ to γ′, as desired. �

The above lemma in particular implies that Γ/Diff is isomorphic to the set of graph knot-classes.
This follows from the fact that the converse of the above lemma is trivially true and that every graph
knot-class has a representative in Γ (as is not hard to see).

Next, let Γ denote the set of piecewise analytic graphs: that is, graphs with a finite number of
oriented compact edges, each of which can be subdivided into a finite number of analytic curves.

Definition (probe equivalent). When two graphs γ, γ′ ∈ Γ differ only by a permutation of edges or
reversal of edge orientations, we say that γ and γ′ are probe equivalent. The probe equivalence class
of a graph γ we write [γ]pr.

Let Γpr denote the set of probe equivalence classes in Γ, as we have let Γpr denote the set of probe
equivalence classes in Γ.

Let Diff denote the class of diffeomorphisms which one wishes to use to solve the diffeomorphism
constraint in the piecewise analytic framework. There are multiple proposals for such a class of
diffeomorphisms in the literature. We make two assumptions about the choice of Diff:

Assumption 1. Diff is a subgroup of the homeomorphisms of M .

Assumption 2. If γ, γ′ ∈ Γ are such that γ′ = ξ · γ for some homeomorphism ξ : M → M , then
there exists ϕ ∈ Diff such that γ′ = ϕ · γ.

These assumptions imply that Γ/Diff too is isomorphic to the set of graph knot-classes (using reasoning
similar to that in the case of Γ/Diff). Note that if Diff is chosen to be the stratified analytic diffeo-
morphisms [20, 21] as advocated in [9], then both assumptions (1) and (2) are satisfied — assumption
(1) is immediate, and assumption (2) follows from lemma 4 in [9]7.

Note, however, that this choice, like any choice of Diff satisfying the above assumptions, necessarily
includes elements that are non-differentiable. This is due to the existence of certain ‘continuous moduli’
[22] describing the differentiable structure of graphs at vertices. Assumption 2 implies that Diff, like
the homeomorphisms, must act transitively on the space of these continuous moduli for fixed valence;
bi-differentiable maps, by contrast, preserve such moduli. A consequence of this is that the Ashtekar-
Lewandowski ordering of the volume operator [1, 2, 11], as it involves these continuous moduli, is
necessarily non-covariant with respect to any choice of Diff satisfying the above assumptions. This
in turn means that, if one is to define Hamiltonian and Master constraints via the usual construction
[15, 16], one needs to use the Rovelli-Smolin volume operator [1, 2, 10] instead of the Ashtekar-
Lewandowski one; in section 4 we shall do this.8

Finally, let A denote the space of smooth SU(2) connections on M . In defining analytic LQG and
its diffeomorphism invariant Hilbert-space, we follow the presentation in [1]. The structures necessary
to construct the diffeomorphism invariant Hilbert space are the following:

7using the analytic differentiability class.

8We do not wish to imply that the Rovelli-Smolin ordering is ‘more correct’. Rather, this paper simply shows an
interesting result that can be obtained if one uses the Rovelli-Smolin ordering.
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Definition (Piecewise analytic LQG structures).

1. Given a graph γ ∈ Γ, let Cylγ denote the set of functions on A cylindrical with respect to γ
(note that for γ ∈ Γ, this is consistent with the prior definition of Cylγ). Let Cyl := ∪γCylγ

2. Let 〈, 〉 denote the standard inner product on Cyl defined using the Haar measure on SU(2)
[1, 2]. Let Hγ and H denote the Cauchy completions of Cylγ and Cyl, respectively, with respect
to 〈, 〉.

3. Let HG denote the solution space to the Gauss constraint, consisting as usual in the Cauchy
completion of the span of gauge-invariant spin-networks[1, 2].

4. For each γ ∈ Γ, let H′
γ denote the orthogonal complement, in Hγ , of the span of all functions that

are constant on at least one edge of γ, so that, as in [1], H = ⊕[γ]∈ΓprH′
γ . Let Cyl′γ := Cyl∩H′

γ .
(For γ ∈ Γ, these definitions are again consistent with the ones in the piecewise linear framework.)

5. For each γ ∈ Γ, let Diffγ be the set of elements in Diff mapping γ back into its probe equivalence
class. Let TDiffγ be the set of elements in Diff that fix γ — i.e., that preserve each edge of
γ, including orientation. So defined, Diffγ is precisely the subset of Diff preserving Cyl′γ under
pull-back, and TDiffγ is precisely the subset of Diff that acts as the identity on Cyl′γ under
pull-back. Let GSγ := Diffγ/TDiffγ where the division is taken with respect to the left-action.

6. For each γ ∈ Γ, define Pdiff,γ as the group averaging map from H′
γ to the subspace invariant

under GSγ :

Pdiff,γΨγ :=
1

|GSγ |
∑

ϕ∈GSγ

ϕ∗Ψγ . (13)

For each Ψγ ∈ Cyl′γ , define η(Ψγ) ∈ Cyl∗ by

(η(Ψγ)|Φ〉 :=
∑

ϕ∈Diff/Diffγ

〈ϕ∗Pdiff,γΨγ ,Φ〉 =
1

|GSγ |
∑

ϕ∈Diff/TDiffγ

〈ϕ∗Ψγ ,Φ〉. (14)

Piecing these together for all γ defines a map η : Cyl → Cyl∗. This is the rigging map for the
theory, as defined in [1] (see also [18], and the related [22]).

7. Cyl∗diff := Imη. For ηΨ, ηΦ ∈ Imη,

〈ηΨ, ηΦ〉 := (ηΨ|Φ〉. (15)

Hdiff is then defined to be the Cauchy completion of Cyl∗diff with respect to this inner product.
The completion Hdiff,G of the subspace Cyl∗diff,G := η[Cyl ∩ HG] ⊂ Hdiff is then the solution to
both the Gauss and diffeomorphism constraints.

We next prove a few important lemmas which we use.

Lemma 3. For each γ ∈ Γ, the map

F : GSγ → GSγ

ϕ ◦
[
TDiffγ

]
7→ ϕ ◦ [TDiffγ ] (16)

is well-defined, and is an isomorphism, showing GSγ
∼= GSγ.
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Proof.
F is well-defined
Suppose ϕ, ξ ∈ Diffγ are such that ϕ ◦

[
TDiffγ

]
= ξ ◦

[
TDiffγ

]
. Then ϕ−1 ◦ ξ ∈ TDiffγ , whence

ϕ−1 ◦ ξ ∈ TDiffγ , so that ϕ ◦ [TDiffγ ] = ξ ◦ [TDiffγ ], proving F well-defined.
F is a homomorphism
This is immediate from the definition of multiplication in the two quotient groups.
F is injective
Suppose ϕ, ξ ∈ Diffγ are such that ϕ◦ [TDiffγ ] = ξ ◦ [TDiffγ ]. Then ϕ−1 ◦ ξ ∈ TDiffγ . But ϕ, ξ ∈ Diff,
so that ϕ−1 ◦ ξ ∈ Diff, proving furthermore ϕ−1 ◦ ξ ∈ TDiffγ . It follows ϕ ◦

[
TDiffγ

]
= ξ ◦

[
TDiffγ

]
,

proving injectivity.
F is surjective
Let ϕ ◦ [TDiffγ ] ∈ GSγ be given. Let γ′ := ϕ · γ. As ϕ ∈ Diffγ , γ′ is probe equivalent to γ and so is
also in Γ. Furthermore, ϕ is in particular a homeomorphism, allowing us to invoke lemma 2, so that
there exists a ξ ∈ Diff such that γ′ = ξ ·γ. This ξ maps γ to γ′, a graph probe equivalent to γ, whence
ξ ∈ Diffγ . Furthermore, (ϕ−1 ◦ ξ)γ = γ, so that ϕ−1 ◦ ξ ∈ TDiffγ , whence ξ ◦ [TDiffγ ] = ϕ ◦ [TDiffγ ].
Thus F (ξ ◦ [TDiffγ ]) = ϕ ◦ [TDiffγ ], proving surjectivity. �

Lemma 4.

1. Given γ ∈ Γ, there exists ϕ ∈ Diff such that ϕ · γ ∈ Γ.

2. Given Ψ ∈ Cyl, there exists ϕ̃ ∈ Diff such that ϕ̃∗Ψ ∈ Cyl.

Proof.
Proof of (1.):
Let α be any element of Γ with the same knot-class as γ (it easy to see that one can construct an
element of Γ with any desired knot-class), and choose the ordering and orientation of the edges of α
such that α = ξ · γ for some homeomorphism ξ : M →M . Assumption 2 implies there exists ϕ ∈ Diff
such that α = ϕ · γ.
Proof of (2.):
As Ψ ∈ Cyl, Ψ ∈ Cylγ for some γ ∈ Γ. From part (1.), there exists ϕ ∈ Diff such that ϕ · γ ∈ Γ, so
that (ϕ−1)∗Ψ ∈ Cyl.

�
Because Cyl ⊂ Cyl, we have a natural map I : Cyl∗ → Cyl∗ defined by

(IΨ|Φ〉 := (Ψ|Φ〉 (17)

for all Ψ ∈ Cyl∗ and Φ ∈ Cyl.

Lemma 5.

1. For γ ∈ Γ, Pdiff,γ = P diff,γ.

2. For Ψ ∈ Cyl, IηΨ = ηΨ.

Proof.
Proof of (1.):
We use the isomorphism F from lemma 3. It is immediate from its definition that, for Ψ ∈ Cyl′γ and
ξ ∈ Diffγ/TDiffγ , F (ξ)∗Ψ = ξ∗Ψ. Using F and this fact,

Pdiff,γΨ :=
1

|GSγ |
∑

ϕ∈GSγ

ϕ∗Ψ =
1∣∣GSγ

∣∣
∑

ϕ∈GSγ

(Fϕ)∗Ψ =
1∣∣GSγ

∣∣
∑

ϕ∈GSγ

ϕ∗Ψ = P diff,γΨ. (18)

10



Proof of (2):
Using the linearity of I, η and η′, without loss of generality, assume Ψ ∈ Cyl′γ for some γ ∈ Γ. Suppose
γ′ ∈ Γ and Θ ∈ Cyl′γ′ are given.
Case 1: There exists no ϕo ∈ Diff such that ϕo · γ′ = γ.

Then from (14), (IηΨ | Θ〉 = 0. But from (9), (ηΨ | Θ〉 = 0 as well, so that (IηΨ | Θ〉 =
(ηΨ | Θ〉 = 0.

Case 2: There exists ϕo ∈ Diff such that ϕo · γ′ = γ.

Then, from lemma 2, there exists ϕ
o
∈ Diff such that ϕ

o
· γ′ = γ. Using the orthogonality

of the spaces H′
γ , the middle expression in (14) reduces to

(IηΨ|Θ〉 = (ηΨ|Θ〉 = 〈ϕ∗
o
Pdiff,γΨ,Θ〉 (19)

Using part (1.) of this lemma, and the same orthogonality of the spaces H′
γ to simplify

the expression for (ηΨ | Θ〉, we also have

(IηΨ|Θ〉 = 〈ϕ∗
o
P diff,γΨ,Θ〉 = (ηΨ|Θ〉 (20)

Thus (IηΨ | Θ〉 = (ηΨ | Θ〉 for all Θ ∈ Cyl′γ′ , γ′ ∈ Γ, so that IηΨ = ηΨ. �

Theorem 6. I maps Cyl∗diff onto Cyl∗
diff

. Furthermore, I|Cyl∗diff
: Cyl∗diff → Cyl∗

diff
is a unitary

isomorphism.

Proof.
Proof that I[Cyl∗diff ] = Cyl∗

diff
:

⊆:
Let ηΨ ∈ Cyl∗diff be given, so that Ψ ∈ Cyl. By lemma 4, ∃ξ ∈ Diff s.t. ξ∗Ψ ∈ Cyl. Using
the Diff invariance of η and part (2.) of lemma 5, IηΨ = Iη(ξ∗Ψ) = η(ξ∗Ψ), which is in
Cyl∗

diff
.

⊇:
Let ηΨ ∈ Cyl∗

diff
be given, so Ψ ∈ Cyl. Then ηΨ ∈ Cyl∗diff , and by lemma 5, IηΨ = ηΨ, so

that ηΨ ∈ I [Cyl∗diff ].

Proof that I|Cyl∗diff
is injective:

Suppose ηΨ, ηΦ ∈ Cyl∗diff are such that IηΨ = IηΦ. Let Θ ∈ Cyl be given. By lemma 4,
there exists ξ ∈ Diff such that ξ∗Θ ∈ Cyl. Using the Diff invariance of η,

(ηΨ|Θ〉 = (ηΨ|ξ∗Θ〉 = (IηΨ|ξ∗Θ〉 = (IηΦ|ξ∗Θ〉 = (ηΦ|ξ∗Θ〉 = (ηΦ|Θ〉

for all Θ ∈ Cyl, whence ηΨ = ηΦ.

Proof that I|Cyl∗diff
is isometric and hence unitary:

Let ηΨ, ηΦ ∈ Cyl∗diff be given, so that Ψ,Φ ∈ Cyl. Using lemma 4, there exists ϕ and ξ in
Diff such that ϕ∗Ψ, ξ∗Φ ∈ Cyl. Using the Diff invariance of η and part (2.) of lemma 5,
we have

〈IηΨ, IηΦ〉 = 〈Iη(ϕ∗Ψ), Iη(ξ∗Φ)〉 = 〈η(ϕ∗Ψ), η(ξ∗Φ)〉
:= (η(ϕ∗Ψ)|ξ∗Φ〉 = (Iη(ϕ∗Ψ)|ξ∗Φ〉 = (η(ϕ∗Ψ)|ξ∗Φ〉
= (ηΨ|Φ〉 = 〈ηΨ, ηΦ〉,

11



�
The above theorem implies

Corollary 7. Hdiff and Hdiff are isomorphic as Hilbert spaces.

It is then easy to extend the equivalence to the solution spaces solving both the diffeomorphism and
Gauss constraints:

Corollary 8. I|Cyl∗diff,G
: Cyl∗

diff,G
→ Cyl∗diff,G is a unitary isomorphism, so that Hdiff,G and Hdiff,G

are isomorphic as Hilbert spaces.

Proof. From the injectivity of I|Cyl∗diff
, we know I|Cyl∗diff,G

is injective. It thus remains only to prove
that I maps Cyl∗diff,G onto Cyl∗

diff,G
, i.e., I[Cyl∗diff,G] = Cyl∗

diff,G
.

(⊆):
Let ηΨ ∈ Cyl∗diff,G be given, so that Ψ ∈ Cyl ∩ HG, and in particular Ψ ∈ Cylγ for some γ ∈ Γ. By
part (1.) of lemma 4, there exists ϕ ∈ Diff such that ϕ ·γ ∈ Γ. Then (ϕ−1)∗Ψ ∈ Cyl∩HG, and we have
IηΨ = Iη(ϕ−1)∗Ψ = η(ϕ−1)∗Ψ, where lemma 5 was used in the second step. Thus IηΨ ∈ Cyl∗

diff,G
.

(⊇):
Let ηΨ ∈ Cyl∗

diff,G
be given, so that Ψ ∈ Cyl ∩ HG ⊂ Cyl ∩ HG. By lemma 5, IηΨ = ηΨ, so that

ηΨ ∈ I[Cyl∗diff,G]. �

4 Equivalence of diffeomorphism invariant operators, and equiv-

alence of dynamics

When constructing operators in plLQG, we propose one quantize in exactly the same way as in
standard LQG, except that only piecewise linear edges should be used. For operators preserving Cyl,
this general statement can be made precise as follows. Given an operator Ôω in standard LQG, a
corresponding operator is defined in plLQG iff Ôω preserves Cyl, and in this case one defines the
corresponding operator Ôpl in plLQG to be Ôω |Cyl. An immediate consequence of this definition is

Ô∗
pl ◦ I = I ◦ Ô∗

ω. (21)

Let an operator, in the analytic or piecewise linear framework, be called “diffeomorphism invariant”
if it is invariant under the group of generalized diffeomorphisms for the relevant framework. We then
have the following

Proposition 9. Given any diffeomorphism-invariant operator Ôω preserving Cyl in standard LQG,
then Ôω also preserves Cyl. The corresponding piecewise linear operator Ôpl is also diffeomorphism-
invariant, and Ôpl and Ôω are mapped into each other by the isomorphism I|Cyl∗diff

, that is,

Ô∗
pl ◦ I = I ◦ Ô∗

ω. (22)
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Proof. Every diffeomorphism-invariant operator preserving Cyl is also graph preserving9. There-
fore Ôω preserves also Cyl, so that Ôpl is defined and satisfies (21), and is trivially Diff-invariant as
Diff ⊂ Diff. �

Of course there are also diffeomorphism-invariant operators that are not well-defined on Cyl. The
above proposition does not apply to them; rather they must be considered on a case by case basis.
The master constraint is such an operator — it must be directly defined on Cyl∗diff . We will later
discuss the master constraint, after we have discussed the Hamiltonian constraint.

The Hamiltonian constraint [15] is rather unique because it has as its domain Cyl∗diff , but does not
map Cyl∗diff back into itself. It is defined as follows. For each lapse N , each ε ∈ [0, ε0] and each graph
γ, one defines a regulated operator Ĥ(N)γ,ε on H′

γ (see [15, 1]). Piecing these together for all γ gives,
for each ε, an operator Ĥ(N)ε on the kinematical Hilbert space H. The dual Ĥ(N)∗ε then acts on
Cyl∗. For any ξ in Cyl∗diff ⊂ Cyl∗, the limit limε→0 Ĥ(N)∗εξ eventually becomes trivial [15], allowing
us to define

Ĥ(N)ξ := lim
ε→0

Ĥ(N)∗ε ξ, (23)

so that Ĥ(N) is well-defined on Cyl∗diff .
We will also need Ĥ(N) to be covariant with respect to the group of generalized diffeomorphisms

Diff introduced in section 3. In defining the regulated operators Ĥ(N)ε,α, one uses the volume
operator. As long as one uses the Rovelli-Smolin volume operator [10] (in constrast to [15] where one
uses the Ashtekar-Lewandowski operator [11]), Ĥ(N) will be covariant with respect to Diff, that is,(
U−1

ϕ

)∗ ◦ Ĥ(N) ◦ U∗
ϕ = Ĥ(ϕ∗N) for all ϕ ∈ Diff, where Uϕ denotes the unitary action of ϕ on H

via pullback. Nevertheless, for general lapse N , as with the standard Hamiltonian constraint defined
using the Ashtekar-Lewandowski volume operator, Ĥ(N) will map Cyl∗diff out of itself due to Ĥ(N)
not being diffeomorphism invariant. One can nevertheless define the solution to the Hamiltonian
constraint to be the common kernel of the operators Ĥ(N) for all lapse N .

This construction can be repeated in the obvious way for plLQG: one need only ensure that the
loops added by the regulated Ĥ(N)γ,ε are chosen to be piecewise linear. We do this, and then for
γ ∈ Γ, define Ĥ(N)γ,ε := Ĥ(N)γ,ε|Cyl. A construction exactly parallel to that above then goes
through, giving us a family of operators Ĥ(N), defined on Cyl∗

diff
. Again as long as we use the

Rovelli-Smolin strategy for defining the volume, Ĥ(N) is diffeomorphism covariant with respect to
Diff, though it generically maps Cyl∗

diff
out of itself.

Let ker Ĥ denote the common kernel of the operators Ĥ(N) for all N , and let ker Ĥ denote the
common kernel of the operators Ĥ(N) for all N . We have the following result:

Proposition 10. I|ker Ĥ provides a unitary isomorphism from ker Ĥ onto ker Ĥ.

Proof.

9This can be seen as follows. Suppose Ô is Diff-invariant and preserves Cyl. Let Ψ ∈ Cylα be given for some α. As Ô

preserves Cyl, ÔΨ ∈ Cylβ for some β. From Diff-invariance, we have that for all ϕ ∈ Diffα (recall Diffα is the subgroup

of Diff preserving α), ÔΨ = UϕÔUϕ−1Ψ = UϕÔΨ, so that ÔΨ ∈ Cylϕ·β for all ϕ ∈ Diffα. Thus ÔΨ ∈ ∩ϕ∈DiffαCylϕ·β .

But given any γ, γ′ ∈ Γ, Cylγ ∩ Cylγ′ = Cylγ∩γ′ , so that ÔΨ ∈ Cyl∩ϕ∈Diffα ϕ·β . The only edges of β that survive in

∩ϕ∈Diffαϕ · β are those that are also edges of α, whence in fact ÔΨ ∈ Cylα, showing Ô is graph preserving.
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We first note that for Ψ ∈ Cyl∗diff , Φ ∈ Cyl, and any lapse N , the following relation holds:

(Ĥ(N)IΨ|Φ〉 := lim
ε→0

(IΨ|Ĥ(N)εΦ〉

= lim
ε→0

(Ψ|Ĥ(N)εΦ〉 = lim
ε→0

(Ψ|Ĥ(N)εΦ〉

= (Ĥ(N)Ψ|Φ〉. (24)

From this we immediately see that if Ψ ∈ ker Ĥ, so that Ĥ(N)Ψ = 0 for all N , then Ĥ(N)IΨ = 0 for
all N , so that IΨ ∈ ker Ĥ , whence I[ker Ĥ ] ⊂ ker Ĥ .
To prove the converse, let Θ ∈ ker Ĥ be given. As Cyl∗

diff
is defined to be the domain of the Ĥ(N),

Θ ∈ Cyl∗
diff

; using the onto-ness of I|Cyl∗diff
: Cyl∗diff → Cyl∗

diff
, there exists Ψ ∈ Cyl∗diff such that

Θ = IΨ. Next, let N be given, and let Φ ∈ Cyl be given. By lemma 4, there exists ϕ ∈ Diff such that
ϕ∗Φ ∈ Cyl. Using the Diff covariance of Ĥ(N) and then the Diff invariance of (Ψ|,

(Ĥ(N)Ψ|Φ〉 = ((U−1
ϕ )∗ ◦ Ĥ((ϕ−1)∗N) ◦ (Uϕ)∗Ψ|Φ〉 = (Ĥ((ϕ−1)∗N)Ψ|U−1

ϕ |Φ〉

= (Ĥ((ϕ−1)∗N)Ψ|ϕ∗Φ〉. (25)

Applying relation (24) to ϕ∗Φ and (ϕ−1)∗N , and then using the fact that Θ = IΨ is in ker Ĥ , the
last line above is seen to be zero. Thus (Ĥ(N)Ψ|Φ〉 = 0 for all Φ ∈ Cyl and all lapse N , proving
Ψ ∈ ker Ĥ , so that Θ ∈ I[ker Ĥ ]. This proves the containment ker Ĥ ⊂ I[ker Ĥ], completing the proof
that ker Ĥ = I[ker Ĥ ].
As already shown in theorem 6, I is injective and unitary on Cyl∗diff , so that it is also injective and
unitary on ker Ĥ . Thus I|ker Ĥ : ker Ĥ → ker Ĥ provides a unitary isomorphism between ker Ĥ and
ker Ĥ . �
Finally, the physical Hilbert space of solutions to the diffeomorphism, Gauss, and Hamiltonian con-
straint in LQG and plLQG are HPhys := Cyl∗diff,G ∩ ker Ĥ and HPhys := Cyl∗

diff,G
∩ ker Ĥ , respectively,

where the closure denotes Cauchy completion. As the isomorphism I|Cyl∗diff
maps the inner product on

Cyl∗diff onto that on Cyl∗
diff

, maps Cyl∗diff,G onto Cyl∗
diff,G

, and maps ker Ĥ onto ker Ĥ , it is immediate
that I provides a unitary isomorphism between these physical Hilbert spaces.

We now come to the master constraint. Let us review its construction in standard LQG from
[16]. First, given a spatial point v ∈ M , let Nv(x) := δv,x, a particular singular choice of lapse. The
corresponding Hamiltonian constraint operator Ĥv := Ĥ(Nv) is nevertheless well defined [15]. We
next recall the generalized spin-network functions Tσ, where σ denotes the triple (γ,~j, ~T ) of a graph
γ ∈ Γ, an assignment of a spin to each edge, and an assignment of a tensor among representations to
each vertex [1, 2]. We require that all spin labels be non-trivial. Furthermore, as in, e.g., [1], for each
possible set of representations incident at a vertex, we fixed a basis of the tensor space among the
representations. Let S denote the space of all such triples (γ,~j, ~T ). {Tσ}σ∈S forms an orthonormal
basis of Cyl and hence H. Furthermore, Diff acts on S, so that we may consider the Diff-equivalence
class of an element σ ∈ S, which we denote [σ]Diff . With these definitions made, we define a quadratic
form QM : Cyl∗diff × Cyl∗diff → C by

QM (Φ,Ψ) :=
∑

[σ]Diff

η[σ]Diff

∑

v∈V (γ(σ))

(ĤvΦ|Tσ〉(ĤvΨ|Tσ〉. (26)

where η[σ]Diff := 1/|GSγ(σ)| are the coefficients appearing in the last expression in (14) for the diffeo-
morphism constraint rigging map, and where V (γ(σ)) denotes the set of vertices in γ(σ).10 QM (·, ·)

10In [16], η[σ]Diff
are a set of constants parametrizing an ambiguity in the definition of the rigging map discussed in
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then determines the master constraint M̂ uniquely via [16]

M̂Φ :=
∑

x∈I

QM (Bx,Φ)Bx (27)

where {Bx}x∈I is any orthonormal basis of Cyl∗diff .
A construction parallel to the above goes through in the plLQG case. Let S denote the set of

generalized spin-network labels σ = (γ,~j, ~T ) such that γ ∈ Γ. Then Diff acts on S , so that for each
σ ∈ Diff, one can define an equivalence class [σ]Diff . The quadratic form for the piecewise linear
framework is then

QM (Φ,Ψ) :=
∑

[σ]Diff

η[σ]Diff

∑

v∈V (γ(σ))

(ĤvΦ|Tσ〉(ĤvΨ|Tσ〉 (28)

where Φ,Ψ ∈ Cyl∗
diff

, and where η[σ]Diff = 1/|GSγ(σ)| are the coefficients in the plLQG rigging map
(9). The master constraint is then

M̂Φ :=
∑

x∈I

QM (Bx,Φ)Bx (29)

where {Bx}x∈I is any orthonormal basis of Cyl∗
diff

.

Proposition 11. M̂ is mapped into M̂ by the isomorphism I|Cyl∗diff
.

Proof. In each case the master constraint is determined from the quadratic form and inner product
on diffeomorphism invariant states in the same way. To prove equivalence of the master constraints, it
is thus sufficient to prove equivalence of the quadratic forms; that is, we want to show QM (IΦ, IΨ) =
QM (Φ,Ψ) for all Φ,Ψ ∈ Cyl∗diff :

QM (IΦ, IΨ) :=
∑

[σ]Diff

η[σ]Diff

∑

v∈V (γ(σ))

(ĤvIΦ|Tσ〉(ĤvIΨ|Tσ〉

=
∑

[σ]Diff

η[σ]Diff

∑

v∈V (γ(σ))

lim
ε,ε′→∞

(IΦ|Ĥv,εTσ〉(IΨ|Ĥv,εTσ〉

=
∑

[σ]Diff

η[σ]Diff

∑

v∈V (γ(σ))

lim
ε,ε′→∞

(Φ|Ĥv,εTσ〉(Ψ|Ĥv,εTσ〉

=
∑

[σ]Diff

η[σ]Diff

∑

v∈V (γ(σ))

(ĤvΦ|Tσ〉(ĤvΨ|Tσ〉 (30)

where, in the third equality, we have used the definition of I and that Ĥv,ε = Ĥv,ε|Cyl. Now, the outer
sum in (30) is over [σ]Diff ∈ S/Diff. Define J : S/Diff → S/Diff by [σ]Diff 7→ [σ]Diff . J is well-defined
due to Diff ⊂ Diff. Using lemma 2, one shows that it is 1-1, and using lemma 4 one sees that it is
onto. (Details: exercise for the reader.) Furthermore, as σ ∈ S, γ(σ) ∈ Γ, so that from lemma 3,
|GSγ(σ)| = |GSγ(σ)|, and we have η[σ]Diff = η[σ]Diff . Using the isomorphism J to replace [σ]Diff with
[σ]Diff in (30), we obtain

QM (IΦ, IΨ) = QM (Φ,Ψ). (31)

the original work [18]. Here, as earlier in this paper, we are taking a natural resolution to this ambiguity suggested in
[1], leading to the specific values of η[σ]Diff

given above.
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Lastly, because I|Cyl∗diff

maps the master constraint M̂ onto M̂ , and Cyl∗diff,G onto Cyl∗
diff,G

, I|Cyl∗diff,G

will map M̂ |Cyl∗diff,G
onto M̂ |Cyl∗

diff,G
, so that the master constraint dynamics are also equivalent after

solving both the diffeomorphism and Gauss constraints.11

The above results show that not only are the diffeomorphism invariant Hilbert spaces in LQG
and plLQG unitarily isomorphic, but the dynamics (whether defined with Master or Hamiltonian
constraint) are isomorphic as well, so that the two frameworks are truly equivalent.

5 Exact embedding of LQC into piecewise linear LQG

In this section, we will consider an application of the above constructions to cosmology. The restriction
of the topology and piecewise linear structure of M to be that of R3 is here no longer for simplicity,
but is implied by homogeneity and isotropy.

As mentioned briefly in the introduction, the restriction, to the homogeneous isotropic sector, of
the configuration algebra of LQG (Cyl) is not equal to the configuration algebra of LQC (the almost
periodic functions - see definition below). As a consequence, the paper [5] was not able to construct
an embedding of LQC states into the usual space of distributional states in LQG, Cyl∗. Instead, an
embedding of LQC states into what was at the time a more unusual space, Cyl∗, had to be defined.
A possible physical meaning for Cyl∗ was suggested in [5]. Nevertheless it was not clear how to use
Cyl∗ for the next step in the program of [4, 5]. Specifically, the next step was to group average
the kinematical embeddings to obtain embeddings into LQG at the diffeomorphism invariant level.
Note one must construct embeddings into LQG at the diffeomorphism invariant level if one hopes to
exactly relate the Hamiltonian constraints in LQC and LQG in any way, as the latter is defined only
on diffeomorphism invariant states. To accomplish the construction of the diffeomorphism invariant
embeddings, two issues needed to be addressed [5]:

1. The group of piecewise analytic diffeomorphisms did not even act on Cyl∗, so that one could
not even write down a formal expression for group averaging the kinematical embeddings.

2. Once one is able to write down a formal group averaging, one would need to regulate the integral
over diffeomorphisms in some way.

It is in this first step that the use of Cyl∗ seemed to prevent further progress.
In the construction of plLQG, Cyl∗ also appears, but this time as the space of distributional

states for a completely parallel framework for loop quantum gravity, which, as was proven above,
is equivalent to the standard one at the diffeomorphism-invariant level. Furthermore, the space of
‘piecewise linear generalized diffeomorphisms’ acts on Cyl∗, so that one can now formally write down
the group averaging of the embeddings, providing an expression for the embedding into the space
of diffeomorphism invariant states. Because of the isomorphism between plLQG and LQG at the
diffeomorphism invariant level, this is also a formal expression for the embedding into the space of
diffeomorphism invariant states in standard LQG. That is, the first obstruction listed above is gone.
Because the embeddings of [5] were a motivation for the present work, we briefly review them here;
we then end the section with the new expressions for the diffeomorphism invariant embeddings.

First we recall some necessary structures from loop quantum cosmology (LQC). As in [25], we take
the classical configuration space for homogeneous, isotropic cosmology to be the space of homogeneous,

11In [16], the master constraint is in fact constructed directly on Cyl∗diff,G.
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isotropic connections, but in the gauge-fixed sense defined in [5]; we denote this space by AS . By
picking a reference connection Åi

a ∈ AS , all other connections in AS are related to Åi
a by scaling.

Thus if we define r : R → AS ⊂ A by
r : c 7→ cÅi

a, (32)

r provides an isomorphism of R with AS . States in LQC are then functions on R ∼= AS . The basic
space of ‘nice’ states in LQC (and one of the sources of the unique character of LQC) is the space
of almost periodic functions ; following [25], we denote this CylS . Cyl∗S is the space of distributional
states.

The kinematical and gauge-invariant embeddings of [5] are then defined as follows. The ‘c’ em-
bedding ιc : Cyl∗S → Cyl∗ is defined by

(ιcψ|Φ〉 := (ψ|r∗Φ〉. (33)

From ιc, one constructs the ‘b’ embeddings. To remind the reader from [4, 5], the ‘b’ embedding
is built using coherent states, the idea being to use the freedom in the choice of coherent states to
adapt the embedding to be approximately preserved by the dynamics. In [4, 5], complexifier coherent
states are used; in complexifier coherent states, the freedom in choosing the family of coherent states
is parametrized by a choice of complexifier [26]. To introduce the complexifiers, first let XS and X
denote the classical phase space of the reduced and full theories, respectively. Then let CS : XS → R+,
C : X → R+ be any two (pure momentum) complexifiers [26]. Let ĈS and Ĉ denote their respective
quantizations in the reduced and full quantum theories. For brevity, we give only the final expression
for the corresponding ‘b’ embedding ιb : Cyl∗S → Cyl∗. It is given by [5]

(ιbψ|Φ〉 := (ψ|eĈS ◦ r∗ ◦ e−Ĉ |Φ〉. (34)

The Gauss-gauge invariant versions of these embeddings are ιGc := P ∗
G ◦ ιc and ιGb := P ∗

G ◦ ιb, where
PG : Cyl → Cyl denotes the projector onto gauge-invariant states. For the motivation behind these
definitions and their nice properties, we refer the reader to the original papers [4, 5].

Now we come to the formal expression for the embedding into diffeomorphism invariant states,
made possible by the new piecewise linear LQG framework introduced in this paper. The diffeomor-
phism invariant embedding ιDiff

c : Cyl∗S → Cyl∗
diff

has the formal expression

(ιDiff
c ψ|Φ〉 :=

(∫

ϕ∈Diff

Dϕ (U∗
ϕι

G
c ψ|

)
|Φ〉

=
∫

ϕ∈Diff

Dϕ (ιGc ψ|Uϕ|Φ〉

=
∫

ϕ∈Diff

Dϕ (ψ|r∗ ◦ PG ◦ Uϕ|Φ〉. (35)

The formal expression for the diffeomorphism invariant ‘b’ embedding ιDiff
b : Cyl∗S → Cyl∗

diff
is then

(ιDiff
b ψ|Φ〉 =

∫

ϕ∈Diff

Dϕ (ψ|eĈS ◦ r∗ ◦ e−Ĉ ◦ PG ◦ Uϕ|Φ〉. (36)

If Ĉ and ĈS are gauge and diffeomorphism invariant, this reduces to ιDiff
b = e−Ĉ∗ ◦ ιDiff

c ◦ eĈ∗
S .

Composing (35) and (36) with the isomorphism Cyl∗
diff

↔ Cyl∗diff defined in section 3 then provides us
with the formal expression for the ‘c’ embedding into Cyl∗diff , and for the ‘b’ embeddings into Cyl∗diff .
The use of Diff instead of Diff not only has allowed us to write these expressions, but the fact that
Diff is so much smaller than Diff makes it more likely that they can be regularized.
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6 Discussion

The kinematics of LQG are usually formulated in terms of the piecewise analytic category. We have
shown that the piecewise analytic category is not essential, and can be replaced with something as
simple as the piecewise linear category, giving rise to what we have called piecewise linear LQG
(plLQG). We have shown that piecewise linear LQG is fully equivalent to standard LQG at the
diffeomorphism invariant level, both in terms of Hilbert space structure and dynamics, as long as one
makes a choice of generalized diffeomorphism group such as advocated in [9, 14, 22].

We have additionally seen that LQC is exactly embeddable into plLQG. This suggests that the
non-embeddability result of [6] may be somewhat of a red herring: it appears relevant at the kinemat-
ical level, but this relevance seems to evaporate at the diffeomorphism invariant level. For, plLQG
circumvents the non-embeddability result of [6], and is yet fully equivalent to LQG at the diffeomor-
phism invariant level. This is what has now allowed us to at least write down formal expressions for
embeddings of LQC into LQG at the diffeomorphism invariant level, of the type motivated in [4, 5].
These expressions were given in section 5.12 Of course it still remains to regulate these expressions in
some way.

A side effect of the choice of generalized diffeomorphisms is that one is obliged to use the Rovelli-
Smolin volume operator [10] rather than the Ashtekar-Lewandowski volume operator [11] in defining
the dynamics. Arguments are present in the literature both in favor of the Rovelli-Smolin volume
operator [22, 9] and in favor of the Ashtekar-Lewandowski volume operator [27].13 The present
research does not directly add to this discussion; the only statements the present work can make on
this topic are (1.) if one uses the piecewise linear category, one is forced to use the Rovelli-Smolin
volume operator in the dynamics, and (2.) the exact embedding in this paper of LQC into LQG is
only possible if the Rovelli-Smolin volume operator is used.

We close with some remarks regarding the similarities of piecewise linear LQG to the framework
underlying the contruction of spinfoams. As argued, for example, in [8], the classical theory underlying
spinfoams is a certain discrete theory based on piecewise flat geometries. Furthermore, as touched
upon in appendix B of [8], in order for the discrete variables to fully describe the piecewise flat
geometry, one is implicitly assuming a given linear structure on each patch. Thus, one is actually
assuming a piecewise linear structure of spacetime. As seen in this paper, the use of piecewise linear

12As a side note, it may also be possible that there is another way to relate LQG to cosmology other than via the
piecewise linear framework presented here. For, as pointed out by Koslowski [28], it appears that, given any analytic

edge e, the holonomy along e as a function of the symmetric connection AS = r(c) = cÅi
a can be decomposed into

an almost periodic part [25] and a part vanishing as c approaches infinity. If true, it is not hard to see that this
decomposition must be unique, as there are no almost periodic functions that vanish at infinity. This would then
allow one to construct a projector Pap : r∗[Cyl] → CylS that projects out the almost periodic part. The projector
could then be used to construct embeddings ιc and ιb of LQC directly into Cyl∗: (ιcψ|Φ〉 := (ψ|Papr∗|Φ〉, and then

ιb := e−Ĉ∗ ◦ ιc ◦ eĈ∗
S . These embeddings would again satisfy the physical intertwining criterion used in [5]. As the

codomain of such embeddings would be directly Cyl∗, and Diff acts on Cyl∗, one would then be able to directly write
down a formal expression for ‘c’ and ‘b’ embeddings into diffeomorphism invariant states, similar to that in section 5 of
this paper. One could then check whether the resulting formal embedding is equivalent to the one given in this paper.
Of course, the resulting embedding would also have to be regularized.

13Although [27] says that the Rovelli-Smolin volume operator leads to an “inconsistent” quantization, one needs to
be careful as to the meaning of “inconsistent” here. It does not mean that there is a contradiction in the resulting
quantum theory. The work [27] shows that if one uses the Rovelli-Smolin volume operator, then a certain classical
relation, when regularized in a certain specific way, leads to an equation that does not hold in the quantum theory. But
it is well known that one cannot expect all classical relations to hold in the quantum theory; this is especially true if
a specific choice of regularization is involved. Furthermore, the work by Rovelli, Fairbairn [22], and Koslowski [9] give
independent arguments in favor of the Rovelli-Smolin volume operator that seem to many, including the author, to be
at least as convincing as those of [27].
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structures naturally leads to the use of simplicial complexes, and simplicial complexes are central in the
classical discrete theory underlying spinfoams. Whether the relation between plLQG and spinfoams
goes beyond these cursory remarks is not clear, and would be interesting to investigate.
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A General definitions and proof of a lemma

In this appendix, we first give the general definition of a piecewise linear structure, and the associated
more general versions of definitions given in the main text. With these more general versions of the
definitions, in fact all arguments in the present paper go through unchanged (except in section 5,
where the topology and piecewise linear structure are fixed by the desired application). We then
prove a lemma that is used in the main text, using these more general definitions.

A.1 General definitions

Although it is sufficient to use simplices to define the notion of a general piecewise linear structure,
it will be very useful for the next section to use cells. A cell in Rn is defined in the same way as
a simplex, except one does not require independence of the vertices. That is, a cell C̃ ⊂ Rn is the
convex hull of some finite set of points v1, ...vm

C̃ =

{∑

i

λivi such that
∑

i

λi = 1 and λi > 0 for all i

}
. (37)

Given a cell C̃ and an affine subspace P ⊂ Rn such that C \ P is connected, we call Ã := P ∩ C̃ a
face of C̃, and we write Ã ≤ C̃. For C̃ three dimensional, the vertices, edges, faces of C̃ in the usual
sense, as well C̃ itself, are faces of C̃.

Consider next a differentiable n-manifold Σ. If a subset C ⊂ Σ admits a coordinate chart ϕC :
O ⊂ Σ → O′ ⊂ Rn mapping C onto a cell in Rn, we call C a differentiable cell. Given any face Ã of
ϕC [C], A := ϕ−1

C [Ã] is also differentiable cell, we call it a face of C, and we write A ≤ C. Define a
differentiable cell complex to be a (locally finite) collection of differentiable cells K satisfying

1. if C ∈ K and B is a face of C, then B ∈ K and

2. if B,C ∈ K, then B ∩ C is a face of B and C.

One way to construct a general piecewise linear structure on Σ is then the following. Choose a
differentiable cell complex K covering all of Σ. For each n-dimensional cell C ∈ K, choose one of
the possible coordinate charts ϕC mapping C onto a cell in Rn, and let ∂a denote, within C, the
coordinate derivative associated with this coordinate chart. Piecing these connections together yields
a connection ∂a on Σ that is flat everywhere except possibly on submanifolds of dimension no greater
than n−2; it is this connection that defines the piecewise linear structure on Σ. A manifold equipped
with a piecewise linear structure we call a piecewise linear manifold. Any division of Σ into a cell
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complex that can also be used to construct this same ∂a we call a cellular decomposition compatible
with the piecewise linear structure.

More generally, any subset C of Σ admitting a coordinate chart ϕC mapping C onto a cell in Rn

and mapping ∂a into the standard flat connection on Rn we call a linear cell, or simply a cell, and
we call ϕC a local linear chart. A differentiable cell complex all of whose cells are linear we call a
linear cell complex, or simply a cell complex. In the case when the cells are in particular simplices,
this generalizes the notion of simplicial complex to an arbitrary piecewise linear manifold.

Given two general piecewise linear n-manifolds M and N , the definition of a piecewise linear
homeomorphism F : M → N is the same as in the main text, with the condition (6) for linearity in
each n-simplex formulated as

F ◦ ϕ−1

[
n∑

i=0

tiϕ(vi)

]
= (ϕ′)−1

[
n∑

i=0

tiϕ
′(F (vi))

]
(38)

where ϕ is any local linear chart for the n-simplex in M , and ϕ′ is any local linear chart for the
n-simplex in N .

The rest of the definitions in the main text, in terms of the above basic notions, remain unchanged.
We now come to the proof of the lemma used in the main text.

A.2 Existence of triangulation compatible with a graph

The lemma proved here is needed in section 3 for demonstrating the unitary isomorphism between
the diffeomorphism invariant Hilbert spaces of plLQG and LQG. For the purposes of this appendix,
we remind the reader, from section 3, that a 1-complex X is said to be compatible with a piecewise
linear graph γ if |X | is equal to the image of γ.

Given a cell complex K, we define |K| := ∪A∈KA as the polyhedron underlying K. Given two cell
complexes K and L, K is said to be a subdivision of L if |K| = |L| and every cell in K is contained
in a cell of L.

Next, given two points x,y in Rn, let xy denote the line segment between them. Given a cell Ã
in Rn, and a point p not in the plane determined by Ã, define the cone with vertex x and base Ã,
denoted xÃ, by xÃ := ∪y∈Ã(xy). Given now a cell C in M , a face A of C, and a point p ∈ C not in
A, letting ϕC denote the local linear chart on C, we define the cone pA by

pA := ϕ−1
C [ϕC(p)ϕC(A)] . (39)

A subdivision K of L is then said to be obtained by starring at a point p if K is obtained from L by
replacing each cell C ∈ L containing p by the collection of cells {pF |F ≤ C, a /∈ F} (see p.15 of [29]).

With these preliminaries out of the way, we come to the lemma.

Lemma 12. Given any piecewise linear manifold M and a piecewise linear graph γ thereon, there
exists a triangulation K of M containing a 1-dimensional subcomplex K1 compatible with γ.

Proof. Let K0 be any of the cellular decompositions of M compatible with its piecewise linear
structure. Let X̃ be the minimal 1-complex compatible with γ: that is, break up each edge of γ into
its straight parts, and define X̃ to contain all of these straight parts and their end points. X̃ is then
finite. Define

X := X̃ ∩K0 := {A ∩B|A ∈ X̃, B ∈ K0}. (40)

Because X̃ consists in a finite number of compact simplices, |X̃| is compact. This, together with
the local finiteness of K0, implies X is also finite. For each 1-simplex e in X , let e1, e2 denote the
end points. Construct a cell complex Ke1 by starring K0 at the point e1. Then construct Ke by
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starring Ke1 at e2. Because X is obtained via an intersection with K0, every 1-simplex e ∈ X is
contained entirely in a single simplex of K0. As a consequence, one can deduce that every cell of
Ke1 containing e2 possesses e1 as a vertex. The construction of Ke using the starring procedure then
gaurantees e2e1 = e will belong to Ke. Next, take the repeated intersection of the cell complexes Ke

so constructed,
Q := {∩e∈XAe|{Ae ∈ Ke}e∈X}. (41)

Noting example 2.8(5) of [29], this is again a cell complex14. Furthermore, Q is a subdivision of each
cell complex Ke. It therefore contains a subdivision ẽ of each e. Taking the union of these subdivisions
ẽ provides a 1-complex K1 that is a subcomplex of Q, and that is compatible with γ. Furthermore,
from proposition 2.9 of [29], Q can be subdivided further to obtain a simplicial complex K, without
adding any vertices, so that K1 is again a subcomplex of K. This gives a triangulation K of M
containing a one dimensional subcomplex compatible with γ, as desired. �
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