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Abstract. We report on experimental work on a small prototype of a hollow sphere,
aiming at assessing the feasibility of such a resonator as a third generation g.w.
resonant detector. We measured the resonant frequencies and quality factors of the
spheroidal quadrupolar modes of a welded hollow sphere. The eigenfrequencies are
found where predicted by the theory, and the quality factors were degraded from a
minimum of 20 % to a maximum of 60 % with respect to the bulk sphere.

1. Introduction

Resonant detectors of gravitational waves (g.w.) are reliable machines that have proven

capable to operate for long uninterrupted periods of time. Cryogenic and ultracryogenic

bars have indeed carried out long term observation with meaningful sensitivity. Spherical

antennas were proposed [1] as next generation of such detectors, as they can offer, with

respect to a cylinder of the same linear dimension, larger mass (and therefore cross

section) and omnidirectionality: the miniGRAIL [2] group at Leiden University (NL)

has been carrying out, over the last several years, most of the pioneering experimental

work for the feasibility of a large scale spherical antenna, and the Mario SCHENBERG

project in São Paulo (BR) pursues a similar design with parametric readout [3].

Indeed, an omnidirectional resonant detector could complement observations by large

interferometers, adding information about a possible scalar component of g.w., predicted

in some metric theories [5]. Two choices are given, in this respect: explore higher

frequencies than those where interferometers are most sensitive or insist on the same

frequency band (f ≤ 1kHz) to correlate interferometer information with data gathered

on a different physical principle. The resonant frequency of the first spheroidal

quadrupolar modes is roughly [4] vs/4R, where vs is the sound velocity of the material

and R the sphere radius: for a 3m diameter sphere of Al5056 or CuAl this results in about

1 kHz. In some cases, one may want a lower frequency of sensitivity without dealing

with an unpractically large resonator. A hollow sphere [7] was proposed as an interesting
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solution: the resonant frequency of its lowest quadrupolar modes can indeed be chosen

with more flexibility with respect to the dimensions, simply by selecting appropriate

values of internal and external diameter. Recent theoretical and numerical work [8] on

the sensitivity of a hollow sphere confirms the interest in this kind of detector.

Further advantages of a hollow sphere are:

• A hollow sphere can be more easily fabricated in large dimensions, by welding

together either thick, curved plates or superimposed rings of the chosen material:

the fabrication is then reduced to a quasi-two-dimensional process. The loss in mass

is marginal (≤ 25% ) as long as the thickness t ≡ Rext − Rint exceeds one third

of the outer radius. In this paper we shall use, as natural expansion parameter,

the fractional thickness of the sphere wall: ξ ≡ t/Rext. The above requirement

therefore reads ξ > 0.3.

• A hollow sphere can be cooled more easily: the shell thickness t < Rext is cooled,

e.g. by exchange gas, at the same time from the external and the internal surface: in

this way we effectively reduce the thermal resistance and consequently the cooling

time, at least down to 4.2 K.

• The second quadrupolar modes {n = 2; l = 2;−2 ≤ m ≤ 2} of a spherical resonator

have a significant sensitivity to g.w. In a hollow sphere their resonant frequency,

and their cross section can be selected by proper choice on the ratio ξ. It is then

possible to position two different spectral windows of observation at frequencies of

interest or choose an “aspect ratio” such as to provide equal cross section at the two

frequencies. In all cases this corresponds to an effective widening of the bandwidth

of observation of a resonant detector.

Although most experimental aspects of a spherical detectors have been analyzed and

dealt with in recent years [2], a hollow sphere proposes several new practical challenges

and problems that need to be studied and question that need to be answered. In this

work we have tried to address the following issues:

• A hollow sphere cannot be suspended by its center of mass: will a surface suspension

affect the mechanical properties of the resonator ?

• Do welded joints in a solid body affect its normal modes of vibration ? Does the

welding discontinuity represent an obstacle for the elastic waves ? and if it does

not:

• To what extent do these welded joints increase the mechanical losses for the

vibrational modes of interest ? This last point is relevant because, as well known,

a high quality factor of the observed modes is required to achieve best sensitivity

in ultracrogenic detectors.

In order to find answers to these questions, we undertook experimenting with small metal

spheres: after some preliminary tests with spheres of Aluminum alloy, Rext = 125 mm,

we focused on a sphere made of CuAl 6% , the same material of the Minigrail detector,

with Rext = 75 mm. Interesting enough, despite the different dimensions, the two
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samples have comparable mass (about 14 kg) and resonant frequency (about 13 kHz),

due to the higher density and lower speed of sound of CuAl (ρCuAl = 8 · 103kg/m3 '
3ρAl; vs = 3860 m/s,).

We briefly recall here that the eigenmodes of a sphere represent a classical problem

in elasticity theory, that had already been tackled by Love [11]. The solution for a bulk

sphere boils down to a rather simple equation for its first quadrupolar modes[6] at

f{n=1,l=2} = 1.62vs/2πR; f{n=2,l=2} = 3.12vs/2πR; (1)

on the other hand, for a hollow sphere the calculation is more complex: the issue has

been recently developed further[7], yielding what is friendly called the “Lobo solution”:

the eigenfrequencies of the spheroidal modes, given by the roots of a 4 x 4 determinant

involving spherical Bessel functions and their derivatives, were numerically computed.

These results are summarized in the plot of fig.(1) where the eigenvalues kRext for the

n = 1 and n = 2 quadrupolar modes are plotted vs the fractional radial thickness ξ;

here k = 2πfn,2/vs

√
2(1 + σ) and σ is the Poisson ratio [9]

Figure 1. Eigenvalues of the first and second quadrupolar modes of a hollow sphere
vs the filling factor ξ = t/Rext (adapted from ref. [7]) The points corresponding to
our experimental configuration (ξ = .293) are marked. The bulk sphere limit (ξ = 1)
is found at the right edge. See text for the relation between kRext and the resonant
frequency

2. The benchmark: measurement on a bulk sphere

A hollow sphere can be produced in at least two ways: by fusion or by welding parts

together. Fusion with a melting core is probably the most straightforward method, as it

produces a resonator without seams, and represents, for a small sample, no serious
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technical challenge. Nevertheless we chose to investigate on a sample obtained by

welding two half spheres, for a twofold reason:

First, we were interested in exploring the feasibility of a large sphere, that would

most probably be fabricated out of plates, as discussed above. Moreover, in this way

we are able to compare the internal dissipation (measured by the Q of the oscillator) of

a hollow sphere with that measured, before machining, on the bulk sample of the same

material, size and instrumentation: in this way we can extract information about the Q

reduction due to re-assembly.

We started out with characterizing the bulk resonator from which we eventually

derived the hollow sphere: it is a sphere in CuAl 6% (94 % Copper, 6% Alluminum), 15

cm in diameter, that was previously used and characterized in Leiden University [10].

These measurements, as all those reported here, were made using two piezoelectric

ceramics (PZT) glued on the sphere surface, at polar angles θ = π/4; φ = ±π/4.

Alternatively, we also used small accelerometers and impulsive excitation provided by

a coil activated “hammer”. As these auxiliary sensors and actuators cannot be used in

cryogenic enviroment (due to excessive heat dissipation), the relevant data were in the

end taken by exciting with one PZT and reading out with the other.

Figure 2. An image of the sphere hanging from the cold plate of the cryostat vibration
isolation system. Note the suspension cable

Several suspension methods were tested, including 4 points loaded cantelivers, a

V-shaped cable passing through a ring fastened to a sphere pole and a Λ shaped cable
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hooked to two “ears” machined at the ends of an equatorial diameter. We describe

here in detail the one that was eventually chosen, as giving the highest Q and the best

isolation from external noise. We bored a hole across the sphere diameter, with two

different sizes (see fig 3): 5 mm diameter from one pole to its center, 6 mm diameter

from the center to the other pole. The hole was tapped M7 at the wider end and M6

near the center, making it possible to be hung via a suspension cable fastened either

near the sphere center of mass or on its surface. We used stainless steel cables, 1mm in

diameter and 300 mm long, terminated by two silver soldered brass cylinders, threaded

M6 at one end, to be fastened to the cold plate of the cryostat, and M6 or M7 at the

other end in order to suspend the sphere.

Eigenfrequency and Q measurements, carried out at room temperature in both

configurations and shown in fig.3, show no degradation due to surface suspension;

actually, the Q of the third quadrupolar modes was even larger (by 20%) than when

suspended near the center of mass. We did not extend this comparison down to low

temperature: our results closely replicate those obtained at 300K by by the Minigrail

group [10] with a similar suspension. Their measurements show, at all temperatures

down to 20 millikelvin, no difference in Q due to the suspension, up to within the 107

range.

Figure 3. Schematic of the sphere suspension: the hole is tapped both near the
center and at one end, so that the sphere can be tested, via one of the suspension
cables (scketched on the right) with either a center of mass or a surface connection.

This resonator was then cooled using the surface suspension, and its elastic

properties were measured to serve as a benchmark for the hollow sphere. Eq.(1) predicts

a value f0 = 13270Hz, fully compatible with our experimentally measured (at 4.2 K)

values, ranging from 13161 to 14593Hz. The spread of the five resonant frequencies is

due to the removal of degeneracy due to gravity, suspension, transducers etc. The Q
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Figure 4. Q values, at room temperature, of the quadrupolar modes of the bulk sphere
with center of mass and with surface suspension. There is no remarkable difference
on the influence that the two suspension methods have on the quality factor of the
quadrupolar modes of a bulk sphere.

values we recorded, consistent with previous measurement done in Leiden, were spread

around 105 at room temperature and just below 106 at liquid Helium temperature (see

table 4.1). Larger resonators, like MiniGRAIL, have shown Q values up to ten times

larger [12]: these lower values can be due to several possible causes: insufficient isolation

of the cryostat, larger surface to volume ratio and heavier influence of the surface

suspension and transducers on a smaller oscillator, small metallurgical differences in

the alloy or in the aging history of the sample.

3. Fabrication of a hollow sphere

Once the bulk sphere was properly characterized, we split it in two equal parts with

wire EDM machining, that removed the smallest amount of material (the cut was about

0.5 mm wide), in order to minimize deviations from sphericity after reassembling the

two halves. Both hemispheres were then carved out and reduced to shells with 22 mm

thickness, i.e. ξ = 0.293.

We considered three methods for reassembling the two half carved spheres:

• Electron Beam Welding (EBW): although high penetration welding is possible and

common on pure Copper, CuAl did not perform as well: a test weld on a small
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sample proved to be brittle, uneven, full of cracks and with a penetration of few

millimeters. Besides, we were unable to spot a company that could perform joints

thicker than a few cm; this technique is not therefore exportable to a large size

(Rext > 1m) sphere, where a penetration depth t ≥ 0.3m or larger would be

required.

• Diffusion Welding : it is a special soldering technique, where no foreign material is

interposed between two mating surfaces. The native alloy, brought to a temperature

close to the melting point, diffuses across the boundary, hopefully recreating the

same metallurgical bonds of the bulk. This approach appears promising with

respect to preserving the Q of the resonator, as no discontinuity is met by the

elastic wave traveling in the solid.

We carried out some tests on a CuAl cylinder, 224 mm long and 56 mm in diameter.

The cylinder was machined hollow to the same radial thickness t = 22mm we had

planned for the hollow sphere: on this simpler geometry it is straightforward to

verify whether the bond between two shorter cylinders recreates one long elastic

cylinder: the first longitudinal mode is simply related to the length (f1 = vs/2L)

and can be identified unambiguously. The two parts were kept for 1 hour under

mechanical pressure at 1020 oC, i.e. 50 degrees below the melting point of CuAl,

and then allowed to slowly cool in vacuum.

sample resonant frequency Q value

of mode 1L (Hz)

bulk cylinder 8335 Hz 2.6·105

hollow cylinder (uncut) 8312 Hz 2.6 ·105

2 halves diffusion welded 8500 Hz 1.9 ·105

2 halves diffusion welded

(after thermal cycle) 8500 Hz 1.1 ·105

2 halves silver brazed 8419 Hz 2.4·105

2 halves silver brazed

(after thermal cycle) 8419 Hz 2.4 ·105

Table 1. Resonant frequencies and Q values of the first longitudinal mode of vibration
of the hollow cylinder used to investigate bonding techniques. The increase in resonant
frequency of the re-assembled cylinder is due to the loss in length (2 mm out of 228)
caused by cutting. Measurement errors were about 2 Hz for freqencies and 5 · 103 for
Qs

Results at room temperature were encouraging for this test: the processes of cutting

and welding did not affect the resonant frequency, while Q of the first longitudinal

mode was reduced by one fourth (see table 1). At first, we considered this an

acceptable loss. However, when the sample was shock-cooled in liquid Nitrogen,

its Q was irreversibly degraded, most probably due to the insurgence of a crack in

the weld. This was probably a rougher test than required: a gentler and slower
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cooling (as it would undergo under vacuum) could, in principle, produce a less

disruptive result; however, in the spirit of the feasibility test for a larger sphere, we

applied the most severe conditions, in order to avoid qualifying a risky procedure

that could yield a faulty resonator. In the light of the subsequent tests, described

below, where the Q value did not change appreciably even after thermal cycling,

the immediate (i.e. before cooling) drop of 27% from the uncut value appears a

posteriori as indicator of an unsuitable joint.

• Silver brazing : we therefore turned to the traditional technique of oven brazing with

layer of silver based filler ((61.5% Ag, 24% Cu, 14.5% In). The filler was shaped

into a thin (∼ 50µm) washer and squeezed between the two short cylinders. The

cylinder was then hard brazed for an hour at 750 oC under vacuum. The sample

regained its initial Q and no effect was seen after shock cooling; as these tests were

passed with full satisfaction, so we proceeded to brazing the two spherical shells.

4. Experimental Results

4.1. Resonant frequencies

The hollow sphere so produced was extensively tested both at room temperature and in

cryogenic conditions. Low temperature tests were carried out in the laboratory of Tor

Vergata University, in a cryogenic facility specially built to test mechanical resonators

down to 4.2 K, with due attention to isolation from external mechanical disturbances.

For our sample, with ξ = 0.293, the plot of fig.(1) we read k12Rext = 1.54 yields

(with σ = 0.3) f{n=1,l=2} = 7823Hz. Analogously, for the second quadrupolar modes,

we get the value k22Rext = 5.24, i.e. f{n=2,l=2} = 26.6kHz.

We can summarize the experimental results as follows:

The quadrupolar modes of vibration of the sphere can be easily identified and are

found clustered around the expected frequency. The second quadrupolar modes were

also found at the expected frequencies. Unfortunately, our measuring apparatus was not

meant to operate at frequencies as high as f{2,2} ∼ 27kHz and so detailed information

could not be obtained.

From these measurements we deduce three important points:

(i) The elastic waves propagate across the bonding discontinuity of the resonator

without measurable effect on the resonances; although we had no provision for

visualizing the mode shapes, we can infer that the quadrupolar modes were not

affected by the presence of a layer of bonding material: in other words, brazing

reconstructs an elastic sphere.

(ii) We have found the five quadrupolar modes at 7072 ≤ f{1,2,m} ≤ 7602 Hz at room

temperature, to be compared with a predicted value of 7823 Hz: this is well within

the experimental uncertitudes on the values of vs and σ. We have therefore validated

the “Lobo solution” [7] that had never been tested.
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(iii) By carving a large internal cavity we removed about one third of the mass (from

14.4 to 9.4 kg). This would bear little consequence on the sensitivity of a real

detector. However the resonant frequency of operation is lowered to about half

(57% in our case) of the initial value, showing that this is an effective way to tune

the resonator to a given frequency. In a bulk sphere, one would need to double the

diameter to obtain the same result.

Bulk sphere Hollow sphere

Resonant frequency Q Resonant frequency Q

(Hz) (Hz)

13161.3 6.20 105 7370.2 8.0 104

13668.3 6.44 105 7759.3 1.82 105

13976.8 8.78 105 7782.3 2.92 105

14503.3 5.47105 7846.4 3.48 105

14593.5 8.71 105 7909.0 1.54 105

Table 2. Resonant frequencies and Q values of the five quadrupolar modes of a bulk
(left) and a hollow (right) sphere, both measured at 4.2 K using the surface suspension.
Experimental errors are 0.1 Hz on the frequencies and 2 · 103 (about 1%) on the Qs

We also performed a detailed finite element analysis of both the bulk and the

hollow sphere, where the suspension was modeled and taken into account. The resulting

computed eigenfrequencies very well agree (see fig.5) with the measured values, and

give a satisfactory quantitative account of the splitting of four modes out of the five

considered.

Figure 5. The resonant frequencies of the five lowest quadrupolar modes at room
temperature: the solid (black) line represents the value predicted by the theory of ref.
[7], where the degeneracy is not removed and no splitting is predicted. The triangles
above it (green) show the prediction of the Ansys finite element calculation while the
(red) circles are the measured values
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4.2. Internal friction and quality factors

Q measurements were carried out on the quadrupolar modes at temperatures between

300K and 4.2K. The results, showing the typical increase in Q values with decreasing

temperature, are shown in fig.6.

Figure 6. Quality factors of the quadrupolar (n = 1, l = 2) modes vs. temperature.

The measured Qs are consistently lower than those previously measured on the

bulk sphere: in fig.(7) we compare of the values measured at 300 K, 77 K and at 4.2 K.

We observe that at room temperature, as well as at 77 K, the Q loss is within a

factor 2, with a typical reduction, averaged among the 5 modes, to about 65 % of the

values of the bulk sphere. At liquid Helium temperature the effect is more relevant: the

measured values are between 0.8−3.5 ·105, with an average reduction to one third of the

bulk values. Unlike most similar experiments on metallic resonators, the quality factors

only marginally increase from 77 to 4 K, an indication that some dissipation mechanism

limits them at the 105 level.

4.3. Discussion of the results

In this final parargaph we switch to a more convenient notation: we introduce the loss

angle[13] φ ≡ 1/Q; this is advantageous in considering various contributions, because

loss angles due to different causes are simply summed, while, when dealing with Qs,

an harmonic sum is needed. We use superscript to indicate the hollow (h) or bulk

(b) configuration, and subscript to mark the different physical processes generating the

losses.
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Figure 7. Q vs. frequency behavior for the five quadrupolar modes of the hollow (left)
and bulk(right) sphere. The values reported are taken at room temperature (lowest),
77 K (middle) and 4.2 K (highest). Note the Q in the hollow sphere are consistently
lower (by about a factor 2) than in the bulk one. Note also that the spread of the
mode frequencies in the bulk sample is much wider than in the hollow one

Three obvious candidates are considered as causes of this increased dissipation: the

different geometry of the resonator, the welded bond and the suspension.

We sum up all contributions to the losses of a hollow sphere:

φhollow = φ0 + φh
susp + φh

geom + φbond (2)

where in φ0 we have summarized all the losses that are identical in both

configurations (material defects, transducers, residual gas...) and φbond contains all

the losses involved in the machining and assembling the two halves (machine hardening,

welding, roughness of the internal surface near the joint, different thermal contraction

of the filler etc.). Analogously, we write the losses of the bulk sphere:

φbulk = φ0 + φb
susp + φb

geom (3)

With regard to the influence of surface suspension, we notice that the five

quadrupolar modes have, at all temperatures, smaller dissipation in the bulk sphere

than in the hollow one, despite an identical suspension. Although the suspended mass

is somewhat different (thus marginally changing the load), we can safely state that the

losses measured on the hollow sphere were larger than the limits set by the suspension.

In any case, being the suspension identical in both cases, we shall absorb its contribution

φsusp into φ0.

Concerning the new geometry, we recall that the spheroidal vibrations we are

interested in belong to the class of volumetric waves [11] where no shear motion, that

involves frictional shifts of material layers, takes place in the bulk of the elastic body:
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all motion is radial and therefore we can adopt the usual approximation of considering

the elastic energy to be stored in the bulk and dissipated at the surface, where the wave

is scattered. By introducing a phenomenological “dissipation depth” δ that summarizes

all loss mechanisms of this species, it is customary to write: φgeom = (Area · δ)/V olume

From the data we gathered on the bulk sphere we can estimate an upper limit:

δ ≤ φbulkRext/3 = 30 ÷ 45 nm

We then expect, for any two solid bodies, the surface losses purely due to surface

effect to be related by the geometrical ratio:

G2/1 ≡
[
φ2

φ1

]

geom

=

(
δ · Surface

V olume

)

2

(
V olume

δ · Surface

)

1

(4)

When the φ values are scaled according to this factor, the remaining, unaccounted

for, difference in internal losses can be imputed to other, non geometrical causes like,

e.g. the welded joint or the lower resonant frequency (indeed, φ = 1/πfτ , and the decay

time τ is essentially unchanged in the two configurations). For a hollow vs bulk sphere,

the ratio of geometrical factors is

Gh/b =
2 − ξ

1 − ξ(1 − ξ)
(5)

For our ξ = 0.293, this ratio takes the value Gh/b = 2.15, consistent with the

intuitive notion that, as mentioned above, a hollow sphere has about twice the surface

and roughly the same volume than the bulk one. If we consider the ratio of the

lowest φ values achieved in the bulk (mode m=5) and hollow (m=4) configuration:

(φmin)hollow/(φmin)bulk = 2.5: we can conclude that the change of geometry accounts

for most (86%) of the increase in losses. The remaining is probably due to some cause

related to the welded joint; the large spread in the Qs of the hollow sphere is an evidence

of that, as different modes have different amplitude of motion at the equatorial plane,

where the weld is. So we can finally rewrite eq. (2) as:

φhollow = φ0 + Gh/b · φb
geom + φbond (6)

The two relations (3) and (6) are obviously unsufficient to determine the three

unknown: φb
geom, φ0 and φbond. However, a couple of interesting limiting cases can be

discussed:

• assume φgeom >> φ0, i.e. all the losses in the bulk sphere be due to surface effect.

Then

φbond = φhollow − Gh/b · φbulk = 4 · 10−7

• assume instead φgeom << φ0, i.e. no influence of the surface on the dissipation

(all the losses in the bulk sphere are due, e.g., to the suspension). In this case

φbond = φhollow − φbulk = 1.7 · 10−6

We can safely presume that the real situation lays somewhere in between these two

extremes, and therefore state that the dissipation due to the welding joint would limit

the Q of the resonator at a level that somewhere in the range 6 · 105 < Qbond < 2.5 · 106.
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A further geometrical consideration can be made: φbond is proportional to the fraction

of volume that is interested by the bond: this volume is 2πRexttd, where the tangential

height d is characteristic of the bonding technique and will not grow with the dimension

of the sphere. Therefore the ratio of this “lossy” volume involved in the weld to the

total volume, scaling as Vbond/V = 3dξ/2Rext(1 − ξ3) will decrease in a larger sphere,

as required for real detector, making the bonding losses less relevant. Besides, as the

resonator size increases, also losses due to transducers and suspension are bound to have

a smaller impact on the overall Q.

5. Conclusions and perspectives

We have described some experimental tests regarding construction and operation of

a hollow sphere, as this geometry is interesting for third generation resonant g.w.

detectors. We have verified that, in a bulk sphere, surface suspension does not degrade

the quality factor of the first quadrupolar modes. We tested various methods of bonding

two carved half shells to create the hollow resonator. In our tests the traditional silver

brazing gave the best result, and we used it to fabricate our resonator. The resonant

frequency of the first quadrupolar modes of oscillation was found exactly where the

theory (that had never been verified before) predicts it, thus showing that a welded

bond does not interfere with the propagation of elastic waves. We have measured the

quality factors of the quadrupolar modes from room temperature down to 4.2 K and

found them to be limited to about 105 and consistently lower than those of the bulk

sphere. The cause of this extra source of dissipation were investigated and, although no

quantitative conclusion can be drawn, it appears that the welded joint does not affect

these losses up to a value of at least Q > 6 · 105

Future work might include a systematic search of the source of extra dissipation.

A Q measurement on a hollow, seamless sphere (that can be obtained by fusion) would

give us the possibility to distinguish the geometrical losses from those due to the joint.

We also plan to further investigate the technique of diffusion welding, that appears

in principle the most promising: the problems encountered in the first tests could be

overcome by modifying the procedure, e.g. by increasing the pressure or the oven time,

or the temperature even closer to the melting point, in order to improve the bonding.

The results of our tests show that a fabricated hollow sphere, proposed years ago

as a versatile resonant g.w. detector, is a viable solution
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