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We present the 1+3 Hubble-normalized conformal orthonormal frame approach to Einstein field equations, and specialize it to a source that consists of perfect fluids with general barotropic equations of state. We use this framework to give specific mathematical content to conjectures about generic spacelike singularities that were originally introduced by Belinskii, Khalatnikov, and Lifshitz. Assuming that the conjectures hold, we derive results about how the properties of fluids and generic spacelike singularities affect each other.

Introduction

Although the singularity theorems say little about the nature of singularities, the very definition of a singularity implies that there exists a variable scale-the affine parameter distance from/to the singularity of a causal inextendible geodesic that is used to define it, furthermore, the one dynamical input that goes into the theorems, the Raychaudhuri equation for the expansion θ,1 also implies a variable scale given by the expansion itself, since θ has unit (time) -1 (or, equivalently, (length) -1 , since we set the speed of light c to one). In this paper we study detailed asymptotic dynamical aspects of generic singularities, and this brings the expansion and the coupling of the Raychaudhuri equation to the remaining Einstein's equations into focus. We will locate the singularity in the past and we therefore refer to it as a 'cosmological' singularity. Since we study asymptotic temporal developments, we consider timelike reference congruences for which θ > 0 in the vicinity of the singularity, where θ → +∞ asymptotically, i.e., we are interested in 'crushing' singularities. Furthermore, due to the 'cosmological' context we will replace θ with the Hubble variable H which is defined as H = 1 3 θ (note that it is common in FRW cosmology to refer to H -1 as a characteristic time scale, also known as the Hubble radius when referred to as a length scale).

The asymptotic blow up of H suggests that we should asymptotically 'factor out' H, and thereby the associated variable scale, toward the singularity, preferably so that the two following desirable features are incorporated into the formalism:

(i) Preservation of causal structure, since it is reasonable to believe that there is a close connection between causal structure and the nature of singularities.

(ii) Adaption to scale-invariance, since there are many known as well as conjectured links between scale-invariant, i.e., self-similar, solutions and asymptotic properties of many types of singularities.

The natural way to accomplish this is by means of a conformal transformation (satisfies (i)) with a conformal factor that involves H (factoring out of H) so that the key variables are (conformally) scale-invariant, i.e., dimensionless, and thus adapted to the properties of self-similar solutions, since such solutions are scale-invariant (satisfies (ii)). Hence we use a conformally Hubble-normalized scale-invariant formulation based on the conformal transformation

G = H 2 g ⇔ g = H -2 G, (1) 
where we assume that H > 0 in the vicinity of the singularity; g is the physical metric, which like H -2 naturally carries dimension (length) 2 , and hence it follows that the unphysical metric G is dimensionless. Because of this, scalars constructed from G take constant finite values for self-similar models that admit spacetime transitive homothetic symmetry groups. This leads to a major advantage: Asymptotically bounded variables for a system of coupled regularized field equations.

We also find it advantageous to express the field equations as a system of first order partial differential equations. A natural way to do this within the conformally Hubblenormalized scale-invariant context is to use the Hubble-normalized Conformal OrthoNormal Frame approach (subsequently shortened to the acronym CONF). In this approach one chooses a frame field that is orthonormal to the dimensionless metric G, and not to the physical metric g, i.e., we introduce Hubble-normalized conformal orthonormal vector fields ∂ ∂ ∂ a that are dual to Ω a , i.e., Ω a , ∂ ∂ ∂ b = δ a b , such that

g = H -2 G = H -2 η ab Ω a Ω b , ( 2 
)
where η ab = diag(-1, 1, 1, 1), and a, b = 0, 1, 2, 3. Furthermore, since we are interested in asymptotic temporal behavior, we let ∂ ∂ ∂ 0 be tangential to the reference congruence, i.e., ∂ ∂ ∂ 0 ∝ ∂/∂x 0 , where x 0 is the time coordinate along the reference congruence (see Appendix A). This naturally leads to the 1+3 Hubble-normalized CONF formulation, which is a specialization of the 1+3 CONF formulation, introduced in [START_REF] Röhr | Conformal regularization of Einstein's field equations[END_REF], to a conformal factor related to H as described above; we present the 1+3 Hubble-normalized CONF field equations in Appendix A.

In this paper we consider a source that consists of several perfect fluids. The i:th perfect fluid yields a stress-energy tensor component,

T ab (i) = (ρ (i) + p(i) )ũ a (i) ũb (i) + p(i) g ab , (3) 
to the total stress-energy tensor, T ab = i T ab (i) , where ρ(i) and p(i) are the energy density and pressure, respectively, in the rest frame of the i:th fluid, while ũa (i) is its 4-velocity; throughout we assume that ρ(i) ≥ 0. It is natural to make a 1+3 split of ũa (i) w.r.t. the vector field u a that is tangential to the reference congruence, and introduce a 3-velocity v a (i)

according to 2 ũa (i) = Γ (i) (u a + v a (i) ); u a v a (i) = 0, Γ (i) = 1/ 1 -v 2 (i) . ( 4 
)
The i:th fluid is, apart from its 3-velocity, conveniently characterized by its energy-density w.r.t. u a , ρ (i) , which is defined in terms of ρ(i) and v2 (i) according to

ρ (i) = Γ 2 (i) G (i) + ρ(i) , G (i) ± = 1 ± w (i) v 2 (i) , w (i) = p(i) ρ(i) . ( 5 
)
Throughout, we are going to assume that the perfect fluids satisfy barotropic equations of state, i.e., p(i) = p(i) (ρ (i) ), and hence w (i) (ρ (i) ); special cases of interest are dust, w = 0, radiation, w = 1 3 , and stiff fluids, w = 1. To conform with standard convention in cosmology, we Hubble-normalize ρ (i) as follows

Ω (i) = ρ (i) 3H 2 , ( 6 
)
where H is the Hubble variable associated with u a . A 1+3 irreducible Hubble-normalized decomposition of the stress-energy tensor, see Appendix A, yields

Q α (i) = (1+w (i) )(G (i) + ) -1 Ω (i) v α (i) ; P (i) = w (i) Ω (i) + 1 3 (1-3w (i) )Q (i) α v α (i) ; Π (i) αβ = Q (i) α v (i)
β , [START_REF] Heinzle | Mixmaster: Fact and Belief[END_REF] where Q α (i) , P (i) , Π

αβ are the Hubble-normalized components of the energy flux, pressure, and stress tensor, respectively (w.r.t the temporal reference congruence), and hence the Hubble-normalized stress-energy tensor of the i:th fluid is characterized by Ω (i) , v α (i) , and w (i) (α, β = 1, 2, 3).

The 1+3 Hubble-normalized CONF formulation of the field equations for I fluids involve the following quantities, see Appendix A, Hubble-normalized frame variables: {M, M α , E α i }.

Hubble-normalized connection/commutator variables:

{W α , U α , R α , Σ αβ , A α , N αβ }.
Hubble-normalized perfect fluid variables: {Ω (1) , v α (1) , ...., Ω (i) , v α (i) , ...., Ω (I) , v α (I) }. Apart from the already described fluid quantities, the quantities M and M α are the Hubblenormalized threading lapse and shift functions respectively, while E α i are the Hubblenormalized spatial frame components. The quantities W α , U α , Σ αβ describe the vorticity, acceleration, and shear of the Hubble conformal reference congruence, while R α describes the rotation of the spatial frame w.r.t. a Fermi frame in the space orthogonal to the reference congruence. Finally A α and N αβ gives the commutator functions (or, equivalently, the spatial Hubble-conformal connection coefficients) of the Hubble-normalized spatial frame.

The outline of the paper is as follows. In the next section we formulate two conjectures, originally introduced by Belinskii, Khalatnikov, and Lifshitz, in terms of the above Hubblenormalized variables. In Section 3 we explore the consequences of these conjectures and derive a number of results concerning the past stability and instability on the so-called silent boundary; in particular we present the past attractors on the silent boundary (note that since there exists a dynamical one-to-one correspondence between the silent boundary and the spatially homogeneous models, it follows that our results also pertain to the latter case). Then the stability of these results are investigated in the context of the full state space in Section 4, where we also discuss possible temporal gauge choices, and in particular if it is possible to use fluid congruences as temporal reference congruences to describe so-called asymptotically silent and local singularities; we find that this is only possible if there exist fluids with a sound speed that is equal to or larger than the speed of light. We conclude with a summary and some remarks about our results in Section 5, together with some comments about some open issues. Appendix A establishes conventions and notation by giving the 1+3 Hubble-normalized CONF field equations explicitly. Finally we describe a number of important subsets in Appendix B.

BKL conjectures

In [START_REF] Belisnkii | A general solution of the Einstein equations with a time singularity[END_REF] p656 Belinskii, Khalatnikov, and Lifshitz made the following important conjecture: Conjecture. "...in the asymptotic vicinity of the singular point the Einstein equations are effectively reduced to a system of ordinary differential equations with respect to time: the spatial derivatives enter these equations 'passively' without influencing the character of the solution."

In the present 1+3 Hubble-normalized CONF framework we reformulate this conjecture in terms of two intertwined conditions:

Conjecture [START_REF] Röhr | Conformal regularization of Einstein's field equations[END_REF].

(a) Asymptotic surface formation : lim

x 0 →-∞ (M α , W α , Uα , r α ) = 0, 0 < C 1 ≤ lim x 0 →-∞ M ≤ C 2 < ∞. ( 8a 
)
(b) Asymptotic locality condition : lim

x 0 →-∞ (E α i , ∂ ∂ ∂ α X) = 0, (8b) 
where

C 1,2 = const and X = (M, M α , W α , U α , R α , Σ αβ , A α , N αβ , Ω (1) , v α (1 
) , ..., Ω (I) , v α (I) ), where I denotes the number of perfect fluids.

Condition (a) implies that the spatial frame is asymptotically hypersurface forming; in addition Uα = 0 implies that the timelike congruence is conformally geodesic, which amounts to an inverse mean curvature flow for the original physical spacetime, while r α = 0 implies that a foliation is a constant mean curvature foliation in the physical spacetime. Furthermore, Uα = r α = 0 implies that the reference timelines are geodesics in the original physical spacetime. Finally, the condition that M is asymptotically bounded implies that the reference congruence asymptotically gives rise to a foliation that yields a simultaneous bang function when x 0 → -∞. 3The field equations for the 1+3 Hubble-normalized CONF-variables for a source that consists of several perfect fluids are given by equations (73), (75), and (79) in Appendix A. This system admits an invariant subspace called the silent boundary, see Appendix B, which is characterized by

(M α , W α , Uα , r α , E α i ) = 0. ( 9 
)
As discussed in Appendix A the equations on this subset form a coupled system of ODE that is identical to the system that describes the dynamics of spatially homogeneous Bianchi models. If conjecture (1) holds along a timeline we may say that the dynamics become asymptotically local , since the dynamics then is asymptotically described by the silent boundary on which the dynamics for a timeline is governed by what happens along the timeline alone, and hence it would perhaps be more appropriate to refer to the silent boundary as the local boundary. 4 Finally, a singularity that obeys 'the locality conjecture' (1) will be referred to as an asymptotically local singularity.

The dynamical relevance of the silent/local boundary depends on if the conditions in conjecture (1) holds. From now on we will assume that this is the case and derive the consequences of this assumption. A necessary condition for the dynamics of a timeline to approach the silent/local boundary is that E α i → 0 toward the past singularity, which is equivalent to that the conformally Hubble-normalized contravariant spatial 3-metric

3 G ij = δ αβ E α i E β j (10) 
tends to zero. Due to (73c), 3 G ij satisfies the equation

∂ ∂ ∂ 0 3 G ij = 2(qδ αβ -Σ αβ )E α i E β j . ( 11 
)
The vanishing of E α i to the past is equivalent to the condition that the time integral to the initial singularity of the eigenvalues of the matrix (qδ α β -Σ α β ) negatively diverge for all of the eigenvalues,

-∞ x0 eig(qδ α β -Σ α β )Mdx 0 = -∞, (12) 
where x0 describes some reference point along the timeline. It has implicitly been shown that the condition ( 12) is fulfilled for vacuum and orthogonal fluid Bianchi models of type IX [START_REF] Ringström | The Bianchi IX attractor[END_REF][START_REF] Heinzle | A new proof of the Bianchi type IX attractor theorem[END_REF][START_REF] Heinzle | Mixmaster: Fact and Belief[END_REF], but this, of course, does not imply that it is true in general. However, we will in the following assume that condition [START_REF] Wainwright | Dynamical systems in cosmology[END_REF] holds and work out the consequences of that assumption, which leads to a consistent picture. Our assumption that there exist generic dynamics that is asymptotically described by the silent boundary suggests an analysis in two steps:

1. Identification of the past attractor5 on the silent boundary.

2. Perturbation of the past attractor in the full inhomogeneous state space to establish if it is stable or not.

A proof that identifies the attractor and shows its stability in the full infinite dimensional state space amounts to a proof of a singularity theorem that concerns the details of a generic singularity. This is a tall order, and we will therefore only provide proofs about some aspects in the context of that our 'BKL-like' assumptions hold.

There exists a second conjecture proposed by Belinskii, Khalatnikov, and Lifshitz [9, 10] that is relevant in this context: the asymptotic 'matter does not matter' conjecture.

Conjecture.

For a typical cosmological model, the matter content is not dynamically significant near the initial singularity.

In our case of a source of several perfect fluids we formulate this conjecture in terms of our variables as: Conjecture [START_REF] Belisnkii | A general solution of the Einstein equations with a time singularity[END_REF]. lim

x 0 →-∞ Ω tot = 0, (13) 
where the total Hubble-normalized energy-density of the source is given by

Ω tot = i Ω (i) . ( 14 
)
Note that Ω tot = 0 implies Ω (i) = 0 ∀i, since ρ(i) ≥ 0, and from this it follows that the entire total Hubble-normalized stress-energy tensor is zero. Hence 'the matter does not matter' conjecture [START_REF] Belisnkii | A general solution of the Einstein equations with a time singularity[END_REF] asserts that the Hubble-normalized stress-energy tensor asymptotically approaches zero toward the singularity. As pointed out by BKL themselves in the context of one fluid, this is not to be expected for all equations of state, e.g., not for a stiff fluid.

Past stability and instability on the silent boundary

To proceed with step 1 we first give the equations on the silent boundary, which are obtained by restricting the full system of equations, (73), (75), and (79) in Appendix A, to the silent boundary invariant subspace, (M α , W α , Uα , r α , E α i ) = 0. As discussed in Appendix B, the equations on the silent boundary are the same as in the spatially homogeneous Bianchi case, and hence all results in this section also pertain to these models.

Equations on the silent boundary

Instead of the peculiar 3-velocity v α we find it useful to introduce v ≥ 0 and the unit vector c α = v α /v as variables. This leads to the following state vector on the silent boundary:

S = (Σ αβ , A α , N αβ ) ⊕ (Ω (1) , v (1) , c α (1) ) ⊕ ... ⊕ (Ω (I) , v (I) , c α (I) ). (15) 
Note that we have not included R α in the state vector since there exists no evolution equation for R α , which is due to that R α represents the freedom to rotate the spatial frame (nor M, which represents the freedom to reparameterize the reference timelines). On the silent boundary we have the following evolution equations and constraints that govern the dynamics of S.

Evolution equations:

∂ ∂ ∂ 0 Σ αβ = -(2 -q)Σ αβ + 2 γδ α Σ β δ R γ -3 S αβ + 3Π αβ , (16a) ∂ ∂ ∂ 0 A α = F α β A β , (16b) ∂ ∂ ∂ 0 N αβ = (3qδ γ (α -2F γ (α )N β)γ , ( 16c 
) ∂ ∂ ∂ 0 Ω = (2q -1 -3w) Ω + [(3w -1) v α -Σ αβ v β + 2A α ] Q α , (16d) ∂ ∂ ∂ 0 v = Ḡ-1 -(1 -v 2 ) 3c 2 s -1 -2 c 2 s A β c β v -Σ αβ c α c β v, ( 16e 
)
∂ ∂ ∂ 0 c α = -[δ α β -c α c β ][Σ β γ c γ + v A β + β γδ (R δ + v N δ ν c ν ) c γ ]. ( 16f 
)
Constraint equations:

0 = 1 -Σ 2 -Ω k -Ω, ( 17a 
) 0 = (3δ α γ A β + αδ γ N δ β ) Σ β γ -3Q α , (17b) 0 = A β N β α , ( 17c 
)
where

F α β = q δ α β -Σ α β -α β γ (W γ + R γ ), q= 2Σ 2 + 1 2 (Ω + 3P ), (18a) 
3

S αβ = B αβ + 2 γδ α N β δ A γ , B αβ = 2N αγ N γ β -N γ γ N αβ , ( 18b 
) 3 R = -1 2 B α α -6A 2 , Ω k = -1 6 3 R, ( 18c 
) Ḡ-= 1 -c 2 s v 2 , c 2 s = dp dρ , ( 18d 
)
where Σ 2 = 1 6 Σ αβ Σ αβ , and where c 2 s can be interpreted as the speed of sound when nonnegative. Note that it is the complete stress-energy-momentum objects that appear in (16a), (17a), (17b), and (18a), while the perfect fluid equations (16d) and (16e), (16f) describe the dynamics of an individual perfect fluid component, where we have dropped the index (i) to avoid cluttered notation. To obtain the perfect fluid equations we have assumed that the Hubble-normalized interactions between the different fluids are zero, see Appendix A. It follows from (16e) that v = 0 is an invariant subset and so is v = 1 when c 2 s = 1, i.e., when the equation of state of the fluid is not stiff. Remarkably, w does not appear in the peculiar velocity equations (16e) and (16f), nor do Ω and q -the equation of state enters via c 2 s only, and thus a general barotropic equation of state leads to formally the same expressions as that of a linear equation of state! However, in general c 2 s is a function of a suitable matter variable, e.g. c 2 s (ρ), while c 2 s = w = const in the linear case. Moreover, the equation for the peculiar velocity direction c α , i.e. (16f), contains neither c 2 s nor w, i.e., it contains no direct coupling to the equation of state at all! For completeness we here give the evolution equation for the peculiar velocity v α on the silent boundary:

∂ ∂ ∂ 0 v α = Ḡ-1 - (1 -v 2 )(3c 2 s -1 -c 2 s A β v β ) + (1 -c 2 s )(A β + Σ γ β v γ ) v β v α -[Σ α β + α βγ (R γ + N γ δ v δ )] v β -A α v 2 . ( 19 
)
It is of interest to also give the evolution equations for ρ and ρ, for a fluid component, on the silent boundary (i.e., let (E α i , M α , W α , Uα , r α ) = 0 in the equations for these objects):

∂ ∂ ∂ 0 (ln ρ) = -(1 + w)G -1 + [3 -2A α v α + (v 2 + Σ αβ v α v β )], (20a) 
∂ ∂ ∂ 0 (ln ρ) = -(1 + w) Ḡ-1 -[3 -2A α v α -(v 2 + Σ αβ v α v β )], (20b) 
where we again have dropped the index (i) in [START_REF] Strauss | On asymptotically autonomous differential equations[END_REF] and [START_REF] Ringström | Curvature blow up in Bianchi VIII and IX vacuum spacetimes[END_REF] to avoid cluttered notation.

Past evolution on the silent boundary

Proposition 3.1. The past asymptotic limit in a regime where H > 0 resides on the type I -V II part of the silent boundary if the strong energy condition is asymptotically fulfilled.

Proof. We have

∂ ∂ ∂ 0 det(N αβ ) = 3q det(N αβ ), (21) 
on the silent boundary, where

q = 2Σ 2 + 1 2 (Ω tot + 3P tot ). ( 22 
)
If the strong energy condition Ω tot + 3P tot ≥ 0 holds, 6 then q ≥ 0, and q = 0 only when Ω tot + 3P tot = 0 and Σ 2 = 0, but then

∂ ∂ ∂ 2 0 det(N αβ )| q=0 = 0, ∂ ∂ ∂ 3 0 det(N αβ )| q=0 = 2 [ 3 S γδ 3 S γδ ] det(N αβ ), (23) 
where 3 S γδ 3 S γδ > 0 when det(N αβ ) = 0; it follows that det(N αβ ) → 0 [START_REF] Van Elst | General Relativistic 1+3 Orthonormal Frame Approach Revisited[END_REF] toward the past singularity. Thus the past asymptotic limit of the dynamics must reside on the det(N αβ ) = 0 subset, i.e., the Bianchi type I-VII part of the silent boundary.

Corollary 3.1. lim

x 0 →-∞ |Σ αβ | ≤ 2.
6 It is likely that there exist generic solutions with only a positive cosmological constant as source (with Ωtot + 3Ptot = -2Ωtot < 0) that asymptotically behaves as generic vacuum solutions with asymptotically silent and local past singularities, and hence it should be possible to relax the condition Ωtot + 3Ptot ≥ 0, but for simplicity we refrain from doing this.

Proof. det(N αβ ) = 0 implies that Ω k ≥ 0, which, together with the Gauss constraint 1-Σ

2 = Ω k + Ω ≥ 0, yields Σ 2 ≤ 1 ⇒ -2 ≤ Σ αβ ≤ 2. ( 25 
)
On the silent boundary

∂ ∂ ∂ 0 A 2 = 2(qδ α β -Σ α β )A α A β , ( 26 
)
and hence, assuming the validity of 'the locality' conjecture' (1), and thereby that Eq. ( 12) holds,

A α → 0 ( 27 
)
toward the singularity, i.e., the past attractor has to reside on the subset that consists of the union of the class A (A α = 0) type I, II, VI 0 , and VII 0 subsets on the silent boundary.

On the class A part of the silent boundary (16e) reduces to

∂ ∂ ∂ 0 v = Ḡ-1 -(1 -v 2 ) (3c 2 s -1 -Σ αβ c α c β ) v. ( 28 
)
Corollary (3.1) and Eq. ( 28) indicate that there is a bifurcation in the dynamics of the particular velocities of the fluids when c 2 s = 1. We will therefore below distinguish between three main cases, based on the asymptotic properties of the equations of state:

(i) There exists at least one fluid with an asymptotically ultra-stiff equation of state, i.e.,

c 2 s > 1, w > 1 when x 0 → -∞.
(ii) All perfect fluids have asymptotic equations of state such that c 2 s < 1, w < 1 when x 0 → -∞, except for at least one fluid which has an asymptotically stiff equation of state, i.e., c s = 1, w = 1 when x 0 → -∞.

(iii) All perfect fluids have asymptotic equations of state such that c 2 s < 1, w < 1 when x 0 → -∞, i.e., all equations of state are softer than a stiff equation of state asymptotically.

We will denote the three cases as the (asymptotically) ultra-stiff , stiff , and soft cases, respectively; as we will see, their past dynamics is associated with an increasingly complicated and challenging analysis. 7To proceed we prove, under assumption [START_REF] Wainwright | Dynamical systems in cosmology[END_REF], the following Lemma:

Lemma 3.2. -∞ x0 eig(2δ α β -Σ α β )Mdx 0 = -∞. ( 29 
)
Proof. Case (i): As shown next, Σ αβ → 0 in case (i), and hence the integral diverges. Case (ii) and (iii): Eq. ( 7) yields Ω tot ≥ P tot , which leads to the inequality

q = 2Σ 2 + 1 2 (Ω tot + 3P tot ) = 2 -3 2 (Ω tot -P tot ) -2Ω k ≤ 2.
This combined with Eq. ( 12) gives

-∞ x0 eig(2δ α β -Σ α β )Mdx 0 = -∞ x0 eig (2 -q)δ α β + (qδ α β -Σ α β ) Mdx 0 ≤ -∞ x0 eig(qδ α β -Σ α β )Mdx 0 = -∞. ( 30 
)
Proposition 3.2. The past asymptotic state in case (i) is characterized by

Ω ultra-stiff → 1; (Σ αβ , N αβ , v ultra-stiff , Ω (i) ) → 0, ∀i = ultra-stiff. ( 31 
)
Proof. Corollary (3.1) and Eq. ( 28) give that lim x 0 →-∞ v ultra-stiff = 0. On the class A v ultra-stiff = 0 boundary Eq. (16d) yields

∂ ∂ ∂ 0 ln(Ω (i) /Ω ultra-stiff ) = 3(w ultra-stiff -1) + (G + ) -1 (i) [3(1 -w (i) )(1 -v 2 (i) ) + (1 + w (i) )(2δ αβ -Σ αβ )v α (i) v β (i) ] > 0, ( 32 
)
where the (i):th fluid has a comparably asymptotic soft equation of state. For simplicity we have assumed that the ultrastiff fluid obeys an asymptotically linear ultra-stiff equation of state such that w ultra-stiff = lim ρultra-stiff →∞ (w); in the case of several fluids with the same asymptotic ultra-stiff asymptotic equation of state, Ω ultra-stiff , represent their total contributions. Since the r.h.s. of ( 32) is strictly positive it follows that Ω (i) /Ω ultra-stiff → 0 toward the past, and since Ω ultra-stiff is bounded, because of the Gauss constraint 1 -Σ 2 -Ω k -Ω tot = 0 and the non-negativity of the energy densities and Ω k , this leads to that the ultra-stiff fluid(s) dominates toward the singularity, and hence Ω (i) → 0; thus the attractor in the ultra-stiff case (i) resides on the class A Bianchi type I -VII 0 part of the silent boundary with v ultra-stiff = 0, Ω (i) = 0, for all i except for the i associated with the ultra-stiff fluid(s), subset. This leads to that (16d) asymptotically yields

∂ ∂ ∂ 0 Ω ultra-stiff = -[3(w ultra-stiff -1)(1 -Ω ultra-stiff ) + 4Ω k ] Ω ultra-stiff , ( 33 
)
and hence, due to that Ω ultra-stiff ≤ 1, asymptotically Ω ultra-stiff = 1 and Ω k = 0, and thus, because of the Gauss constraint, Σ 2 = 0. That Ω k = 0 and Σ 2 = 0 yield that the past attractor in the ultra-stiff case must reside on the isotropic type I subset or the isotropic type VII 0 subset; in the latter case we can choose a Fermi frame in which

N αβ = diag(0, N, N), or cycle, which yields ∂ ∂ ∂ 0 N = qN = 1 2 (1 + 3w ultra-stiff
)N , and hence N → 0, i.e., the past attractor is located on the isotropic type I subset, which is a frame independent statement; we will refer to the silent isotropic type I subset as the silent Friedmann subset F.

The above arguments are easily generalized to the situation when the most ultra-stiff equation(s) of state does not have a limit, but a lower bound w - ultra-stiff > 1; one still obtains that the past attractor resides on F with Ω ultra-stiff = 1, Ω (i) = 0, v ultra-stiff = 0, Σ 2 = 0, even though q has no limit.

Proposition 3.3. The past asymptotic state in case (ii) is characterized by

q → 2, (N αβ , v stiff , Ω (i) ) → 0, ∀i = stiff. ( 34 
)
Proof. The analysis of the stiff case (ii) proceeds with similar arguments as in the proof of case (i), but with the extra condition of Lemma 3.2. This leads to that v stiff = 0 asymptotically, and that Ω (i) = 0 asymptotically for all fluids with equations of state that are asymptotically softer than the asymptotically stiff fluid(s). Hence the past asymptotic state resides on the union of the class A Bianchi type I, II, VI 0 , VII 0 subsets for a single orthogonal stiff fluid, where c α (i) and v (i) act as test fields, i.e., fields that do not affect the spacetime geometry but are affected by it. The past asymptotic dynamics for the single orthogonal stiff fluid case in Bianchi types I, II, VI 0 , VII 0 is well known [START_REF] Ringström | The Bianchi IX attractor[END_REF][START_REF] Wainwright | Dynamical systems in cosmology[END_REF], and from this it follows that the past attractor resides on the type I subset where Ω stiff = Ωstiff , q = 2, where we have introduced the convention of using hats on purely spatially dependent, i.e., temporally constant, quantities. It therefore follows that the past attractor in case (ii) resides on the type I subset where

Ω tot = Ω stiff = Ωstiff , Ω (i) = 0, v stiff = 0, q = 2; ( 35 
)
we will refer to this subset as the silent Jacobs subset J (the exact solutions for a single stiff perfect fluid in Bianchi type I were first found by Jacobs [START_REF] Jacobs | Spatially homogeneous and Euclidian cosmological models with shear[END_REF]).

We now turn to the behavior of Ω (i) in the soft case (iii). For this case we have no proof, but we expect that the 'matter does not matter' conjecture (2) holds, and that Ω (i) → 0 for all i toward the past singularity, and that the past attractor hence resides on the vacuum subset Ω tot = 0. The reason for the expectation that Ω tot = 0 asymptotically is that there exists evidence for that this happens when one has one fluid with a soft equation of state [START_REF] Ringström | The Bianchi IX attractor[END_REF][START_REF] Heinzle | A new proof of the Bianchi type IX attractor theorem[END_REF][START_REF] Uggla | The past attractor in inhomogeneous cosmology[END_REF], and it seems reasonable that one can apply this result for each fluid individually; furthermore, in the vacuum case there exists evidence that the past attractor resides on the union of the silent vacuum type I subset, known as the silent Kasner subset K, and the silent vacuum type II subset [START_REF] Andersson | Asymptotic Silence of Generic Singularities[END_REF][START_REF] Ringström | The Bianchi IX attractor[END_REF][START_REF] Heinzle | A new proof of the Bianchi type IX attractor theorem[END_REF][START_REF] Uggla | The past attractor in inhomogeneous cosmology[END_REF][START_REF] Heinzle | The cosmological billiard attractor[END_REF]. Moreover, in two previous studies of tilted multi-fluid models of Bianchi type I [START_REF] Sandin | Bianchi type I models with two tilted fluids[END_REF][START_REF] Sandin | Tilted two-fluid Bianchi type I models[END_REF] we presented evidence that indicated that the past attractor of the Bianchi type I models with two soft fluids resided on K, and since we expect that K plays a 'dominant' role in the asymptotic dynamics this gives further support for the claim that Ω tot → 0.

From Proposition 3.2 in case (i), Proposition 3.3 in case (ii), and the 'matter does not matter' conjecture (2) in case (iii), it follows that asymptotically toward the past

Q α tot = 0 and Π αβ tot = 0, ( 36 
)
in all cases, since Ω (i) = 0, for all i, except for the asymptotically 'dominant' ultra-stiff fluid(s) in case (i) and the asymptotically stiff fluid(s) in case (ii), but in those cases v ultra-stiff = 0 and v stiff = 0, respectively. For all Class A models with Q α tot = 0 and Π αβ tot = 0 it is possible to simultaneously diagonalize N αβ and Σ αβ in a Fermi frame. The reason for this is as follows: In class A Q α tot = 0 leads to that the Codazzi constraint (17b) takes the form αδ γ N δ β Σ β γ = 0, which implies that N αβ and Σ αβ are simultaneously diagonalizable for a given arbitrary value of x 0 (N αβ transforms as a tensor density on the silent boundary under spatial frame rotations). Furthermore, the preservation of the simultaneous diagonalization during evolution is possible because Π αβ tot = 0, but it also requires that one uses a Fermi frame. We hence expect that it is possible to asymptotically diagonalize Σ αβ and N αβ in a frame that is asymptotically a Fermi frame8 so that

R α = 0, Σ αβ = diag(Σ 1 , Σ 2 , Σ 3 ), N αβ = diag(N 1 , N 2 , N 3 ); Σ 1 + Σ 2 + Σ 3 = 0. (37)
In all fluid cases, the silent Bianchi type I subset plays a prominent role, indeed, according to the previous analysis the past attractors for the ultra-stiff and stiff cases reside there, and we therefore now turn to this subset in more detail.

The silent Bianchi type I subset

As follows from the previous subsection for cases (i) and (ii), and as conjectured for case (iii), sources that consist of multiple perfect fluids lead to that the past asymptotic subset for Bianchi type I resides on the subset with Ω (i) = 0 ∀i, except for the 'dominant' matter component(s) Ω ultra-stiff = 1 (where also v α ultra-stiff = 0) and Ω stiff = Ωstiff (where also v α stiff = 0) in cases (i) and (ii), respectively. This implies that the past asymptotic dynamics on the silent type I boundary resides on F, J , and K, for the ultra-stiff, stiff, and soft cases, respectively, where K constitutes the boundary of J in the stiff case. In Σ αβ -space the field equations for Bianchi type I immediately lead to that these subsets are characterized by the following eigenvalues for Σ αβ :

F : Σ α = Σα = 0, ∀ α, Σ 2 = 0 ⇔ Ω tot = 1. (38a) J : Σ α = Σα , ∀ α, Σ 2 = Σ2 = 1 -Ω tot = 1 -Ωstiff . (38b) K : Σ α = Σα , ∀ α, Σ 2 = 1 ⇔ Ω tot = 0. ( 38c 
)
The eigenvalues Σ α = Σα can be expressed in terms of the shape parameters p α , see [START_REF] Lim | Asymptotic Silence-breaking Singularities[END_REF], defined according to

( Σ1 , Σ2 , Σ3 ) = (3p 1 -1, 3p 2 -1, 3p 3 -1), p 1 + p 2 + p 3 = 1, (39) 
where we have omitted the hats on the spatially dependent p α to conform with standard notation. In terms of the shape parameters, the past asymptotic states on the silent Bianchi type I subset for the three subsets are described by:

F : (p 1 , p 2 , p 3 ) = 1 3 (1, 1, 1). ( 40a 
)
J : p 2 1 + p 2 2 + p 2 3 = 1 -2 3 Ωstiff < 1. ( 40b 
)
K : p 2 1 + p 2 2 + p 2 3 = 1. ( 40c 
)
Even though Ω (i) = 0 ∀i (with the exception of Ω ultra-stiff = 1 and Ω stiff = Ωstiff in cases (i) and (ii), respectively), the subsets F, J , and K also involve the equations for c α (i) and v (i) , which act as test fields, i.e., fields that do not affect the spacetime geometry but are affected by it, and hence a complete past asymptotic description also involves the asymptotic determination of these fields. For this purpose we use a shear diagonalized Fermi frame so that Σ αβ = diag(3p 1 -1, 3p 2 -1, 3p 3 -1) and R α = 0, and insert A α = 0, N αβ = 0, which characterizes Bianchi type I, into the equations (16f) for c α ; this leads to:

∂ ∂ ∂ 0 c 1 = 3[(p 2 -p 1 )c 2 2 + (p 3 -p 1 )c 2 3 ] c 1 , (41a) ∂ ∂ ∂ 0 c 2 = 3[(p 3 -p 2 )c 2 3 + (p 1 -p 2 )c 2 1 ] c 2 , ( 41b 
)
∂ ∂ ∂ 0 c 3 = 3[(p 1 -p 3 )c 2 1 + (p 2 -p 3 )c 2 2 ] c 3 , ( 41c 
)
where we again for simplicity have dropped the index (i). These equations, which decouple from the equation for v, can be treated as a separate dynamical system that satisfies the constraint c α c α = 1, i.e., we have a dynamical system on a sphere with unit radius, parameterized by p 1 , p 2 , and p 3 . We note that this system is the same as that for v α when v 2 = 1, i.e., the dynamics for c α is the same as for the extreme tilt subset v 2 = 1, which in [START_REF] Uggla | The past attractor in inhomogeneous cosmology[END_REF] was examined by means of spherical coordinates in the case p 1 < p 2 < p 3 . Cases (ii) and (iii) can be treated collectively. We first note that if p α < p β < p γ , where (αβγ) = (123), or a permutation thereof, then the system (41) admits the invariant subsets C 12 on which c 3 = 0, and cycle, leading to a division of the sphere into six disjoint subsets with the subset C Proof. This follows immediately from the proof of (3.4).

We now turn to the past asymptotic behavior for the peculiar test speeds v on the type I subset. By regarding c α as time-dependent coefficients in the evolution equation for v, we can apply a theorem by Strauss and Yorke [START_REF] Strauss | On asymptotically autonomous differential equations[END_REF] that implies that v is past asymptotically determined by the past asymptotics of c α . Corollary 3.3 then reduces Eq. ( 28) for v to

∂ ∂ ∂ 0 v = 3 Ḡ-1 -(1 -v 2 )(c 2 s -p max ) v, where p max = max(p 1 , p 2 , p 3 ). ( 42 
)
Consequently v is monotonically decreasing (increasing) toward the past if

c 2 s > p max = 1 3 (1 + Σmax ) (c 2 s < p max = 1 3 (1 + Σmax ))
, and hence v = 0 (v = 1), while v = v if c 2 s = p max , asymptotically toward the past; in these formulas c 2 s refers to the asymptotic limit of c 2 s when ρ → ∞ (for simplicity we assume that c 2 s has such a limit, however, many of our results are easily generalized to the case when c 2 s has asymptotic bounds, but no limit).

Case (i):

p max = 1 3 and hence v → 0 when c 2 s > 1 3 ; v → v when c 2 s = 1 3 ; v → 1 when c 2 s < 1 3 .
Case (ii): Eqs. ( 39) and (40b) yield that

1 3 (1 + Σ) ≤ p max ≤ 1 3 (1 + 2 Σ) < 1, where Σ = 1 -Ωstiff < 1. Hence c 2 s < 1 3 ⇒ v → 1 toward the past; if c 2 s > 1 3
there exist some p max values on J for which v → 0, some for which v → v, and some for which v → 1, depending on if c 2 s > p max , c 2 s = p max , or c 2 s < p max (the smallest possible p max value is 1 3 and occurs when Σ 2 = 0). Case (iii): Eqs. ( 39) and (40b) yield that 2 3 ≤ p max < 1.9 Hence

c 2 s < 2 3 ⇒ v → 1 toward the past. If c 2 s > 2 3
there exist some points on K for which v → 0 and some for which v → 1.

It is of interest to note that c 2

s → 1 ⇒ v → 0 everywhere on J and K.10 

Stability and instability of the type I subset on the silent boundary

For the ultra-stiff case (i) it is easily seen that F is a stable subset w.r.t. perturbations of E α i , A α , N αβ , Σ αβ , Ω (i) , and hence there exists a past attractor in the full state space that resides on F in this case, a statement that is also supported by the analysis in [START_REF] Coley | Asymptotic analysis of spatially inhomogeneous stiff and ultra-stiff cosmologies[END_REF]. We therefore turn to the past attractor for the stiff and soft cases (ii) and (iii), respectively.

To identify the past attractor subset on the silent boundary we next linearly perturb J and K by using a Fermi frame in which the perturbed Bianchi type I subsets are expressed in a Fermi frame with diagonalized shear Σ αβ = diag( Σ1 = 3p 1 -1, Σ2 = 3p 2 -1, Σ3 = 3p 3 -1):

A -1 α ∂ ∂ ∂ 0 A α | J ,K = 2 -Σα = 3(1 -p α ), (43a) 
N -1 α ∂ ∂ ∂ 0 N α | J ,K = 2(1 + Σα ) = 6p α where N α = N αα , ( 43b 
)
N -1 αβ ∂ ∂ ∂ 0 N αβ | J ,K = 2 -Σγ = 3(1 -p γ )
where (αβγ) = (123) and cycle, (43c)

Ω -1 (i) ∂ ∂ ∂ 0 Ω (i) | J ,K = 3G -1 + (1 -w)(1 -v 2 ) + (1 + w)(1 -p max ) v 2 , ( 43d 
)
where the above equations refer to separate components. The notation | J ,K indicates evaluation at J in the stiff case (ii), and at K in the soft case (iii). Note that we have obtained the same form for the equations in the stiff case (ii) and the soft case (iii), since q = 2 in both cases. Moreover, in the case of Ω (i) we have in addition inserted the type I past attractor value associated with J , K for Σ αβ c α c β according to Corollary 3.3. Notably there are no equations for Σ αβ in (43). The reason for this is that the stability analysis of Σ αβ depends on the choice of spatial frame. However, Eqs. (43) hold for any spatial frame that admits Σ αβ = diag( Σ1 , Σ2 , Σ3 ) and R α = 0 as an invariant subset on J and K; furthermore, when projecting out the peculiar velocities, which we will do in the reminder of this subsection, these sets form sets of fix points for the projected system of equations. Nevertheless, in the full state space, as well as on the silent boundary where in general A α = 0, Q α = 0, Π αβ = 0, the shear cannot be diagonalized in a Fermi frame, and thus when we consider the general dynamics we cannot assume that Σ αβ = diag( Σ1 , Σ2 , Σ3 ) and R α = 0. For our purposes, however, it suffices to consider an asymptotic spatial frame choice. In this paper we will use an asymptotic Fermi frame, i.e., R α = 0, 11 but note that we cannot e.g. diagonalize the shear in such a frame, except possibly asymptotically. On the Kasner subset K, and the Jacobs subset J , a Fermi frame choice leads to that the Σ αβ evolution equation (16a) immediately yields

Σ αβ = Σαβ , ( 44 
)
since q = 2 in both cases. Thus, because of that Σ 2 = Σ2 = 1-Ωstiff there exists a ellipsoidal ball (ellipsoid) of fix points in the (shear projected) J (K) case, which corresponds to a center manifold. However, in this case a temporally constant rotation of axes that diagonalizes Σ αβ so that Σ αβ = diag( Σ1 , Σ1 , Σ1 ), which leads to (43).

From (43) it follows that A α , N αβ , when α = β, and Ω (i) ((i) = stiff) are stable toward the past everywhere on J and K, with the exception of the non-transversallyhyperbolic so-called Taub points on K, where (p 1 , p 2 , p 3 ) = (1, 0, 0), and cycle (or equivalently ( Σ1 , Σ2 , Σ3 ) = (2, -1, -1), and cycle). However, we have shown that if Lemma 3.2 holds, which depends on that the condition (12) holds, then A α and Ω (i) both tend to zero toward the singularity and thus the states A α = 0 and Ω (i) = 0 are past stable, even though they are not linearly stable everywhere. 12 The decoupling of the Ω (i) equations (43d) from each other, and their shared linear stability properties in conjunction with the previous nonlinear stability result, gives some support for the 'matter does not matter' conjecture [START_REF] Belisnkii | A general solution of the Einstein equations with a time singularity[END_REF], in the context of that the condition (12) holds, cf. also [START_REF] Ringström | The Bianchi IX attractor[END_REF][START_REF] Heinzle | Mixmaster: Fact and Belief[END_REF][START_REF] Heinzle | The cosmological billiard attractor[END_REF].

The stability toward the past of N α depends on the sign of p α = 1 3 (1 + Σα ). In the stiff case (ii) it follows from (43) that the part of J that obeys Σα = -1 ∀α, i.e. with Σα > -1 or, equivalently, p α > 0, is stable w.r.t. N α perturbations toward the past; we will denote this part of J as J ∆ . Outside J ∆ , J have an unstable mode associated with N α when Σα < -1, or, equivalently, when p α < 0. This follows from that only one of p 1 , p 2 , and p 3 is negative, because p 1 + p 2 + p 3 = 1 and p 2 1 + p 2 2 + p 3 3 = 1 -2 3 Ωstiff yields

1 3 (1 -2 Σ) ≤ p α ≤ 1 3 (1 -Σ) ≤ p β ≤ 1 3 (1 + Σ) ≤ p γ ≤ 1 3 (1 + 2 Σ), (45) 
where Σ = 1 -Ωstiff , and where (αβγ) = (123), and cycle. Since we showed in Proposition 3.3 that the past attractor in the stiff fluid case must be confined to J we immediately get from requiring consistency with the stability analysis that it must be contained in the closure of the stable part of J ∆ , i.e J ∆ . In the soft case (iii), it follows from (43) that K is unstable everywhere toward the past (except at the excluded points p max = 1) with an unstable N α -mode when Σα < -1, or, equivalently, when p α < 0, since p 1 + p 2 + p 3 = 1 and p 2 1 + p 2 2 + p 3 3 = 1 yields

-1 3 ≤ p α ≤ 0 ≤ p β ≤ 2 3 ≤ p γ ≤ 1, (46) 
where (αβγ) = (123), and cycle.

11 There exists other interesting choices, e.g. Rα = α Σ βγ , where (αβγ) = (123), or cycle, and where α is equal to ±1; α = (-1, 1, -1) is connected with the Iwasawa frame used in e.g. [START_REF] Heinzle | The cosmological billiard attractor[END_REF], α = (1, 1, 1) is the frame choice used in [START_REF] Uggla | The past attractor in inhomogeneous cosmology[END_REF]. For these choices Rα destabilizes parts of the fix point sets on J , K by inducing so-called frame transitions (also known as centrifugal bounces in a Hamiltonian context, see [START_REF] Heinzle | The cosmological billiard attractor[END_REF]), trajectories that connect one fix point representation of a type I solution with another, by means of an axes permutation [START_REF] Heinzle | The cosmological billiard attractor[END_REF]. 12 There hence exists an intricate connection between avoidance of the Taub points, which in turn are part of the Taub subset described in Appendix B, and asymptotic locality via Lemma 3.2 and condition [START_REF] Wainwright | Dynamical systems in cosmology[END_REF]. Determining exactly what this connection is poses a formidable and important challenge. In this context it is worth mentioning that there may exist an open set of solutions with so-called weak null singularities, which are not asymptotically silent or local; moreover, these singularities seem to be intimately associated with the Taub subset [START_REF] Lim | Asymptotic Silence-breaking Singularities[END_REF].

The past instabilities in the stiff and soft cases are associated with so-called silent Bianchi type II curvature transitions, to use the nomenclature of [START_REF] Heinzle | The cosmological billiard attractor[END_REF], i.e., orbits associated with Bianchi type II. We therefore take a closer look at this silent subset for the stiff and soft cases in a Fermi-propagated simultaneously diagonalized Σ αβ and N αβ frame.

The type II subset

In the past asymptotic limit v α stiff = 0 in the stiff case, and Ω (i) = 0 in the stiff and soft cases, where i refers to a fluid with an asymptotically soft equation of state. We are thus interested in the subset on Bianchi type II that is described by a single stiff fluid with v α stiff = 0 in the stiff case (ii), and the vacuum type II subset in the soft case (iii). We choose a Fermipropagated shear eigenframe with Σ αβ = diag(Σ 1 , Σ 2 , Σ 3 ), and project the dynamics onto Σ α -Ω stiff -space, i.e., we disregard the test fields v α (i) ; in addition we set N αβ = 0, except for a single component N γγ = N γ , which we determine via the Gauss constraint, which yields

N 2 γ = 12(1 -Σ 2 -Ω stiff ).
Eqs. (16a) and (16d) then yield

∂ ∂ ∂ 0 (2 -Σ α ) = -(2 -q)(2 -Σ α ), (47a) ∂ ∂ ∂ 0 (2 -Σ β ) = -(2 -q)(2 -Σ β ), (47b) ∂ ∂ ∂ 0 (4 + Σ γ ) = -(2 -q)(4 + Σ γ ), (47c) ∂ ∂ ∂ 0 Ω stiff = -2(2 -q)Ω stiff , ( 47d 
)
where (αβγ) = (123), and cycle, and where q = 2(Σ 2 + Ω stiff ), where Ω stiff = 0 in the vacuum case.

It follows that the solutions to (47) are trajectories that are straight lines when projected onto Σ α -space. Since -2 ≤ Σ α ≤ 2, α = 1, 2, 3, and q < 2 on the type II subset, equations (47) show that Σ γ (Σ α , Σ β ) is monotonically increasing (decreasing) toward the past and approaches a limit value on the type I boundary where q = 2. Together with the previous stability analysis, this implies that the solutions originate from Jacobi/Kasner fixed points with Σ γ < -1 and end at Jacobi/Kasner fixed points with Σ γ > -1, when the direction of time is taken to be toward the singularity. Hence the global future attractor of (47) is given by the fix points on K ∪ J (K in the vacuum case) for which Σ γ ≤ -1, while the past attractor of (47) is given by the fixed points on K ∪ J (K in the vacuum case) with Σ γ ≥ -1. Using the nomenclature of [START_REF] Heinzle | Mixmaster: Fact and Belief[END_REF][START_REF] Heinzle | The cosmological billiard attractor[END_REF], the solution trajectories are denoted as single curvature transitions, and they reflect and describe the outcome of the past instabilities associated with N αβ described in the previous subsection.

Past attractors on the silent boundary

Combining the previous linear and non-linear stability analysis with the results in subsection 3.3, notably the past asymptotic consequences for v α (i) that were obtained via Eq. ( 42), now allows us to make some firm statements about the past attractors on the silent boundary in cases (i) and (ii), and we also make some predictions about the past attractor in case (iii). Throughout we use an asymptotic Fermi frame.

The ultra-stiff fluid case (i): Proposition 3.5. The ultra-stiff fluid case (i): If the past attractor A - ultra-stiff is contained on the silent boundary, then it is given by

A - ultra-stiff = F -, where F -is characterized by (Σ αβ , N αβ , A α ) = (0, 0, 0), Ω tot = 1, Q α tot = 0, Π α tot = 0,
and

Ω tot = Ω ultra-stiff = 1; v α ultra-stiff = 0; Ω (i) = 0; v α (i) = 0 when (c 2 s ) (i) > 1 3 ; v α (i) = vĉ α (i) when (c 2 s ) (i) = 1 3 ; v α (i) = ĉα (i) when (c 2 s ) (i) < 1 3 .
induce a sequence of 'tilt' (peculiar velocity) transitions. As the dynamics approach the attractor it follows that the asymptotic vacuum dynamics spend an increasing time near the Kasner fix points. This leads to that the asymptotic test fields v (i) have increasingly long periods of time to reach their past asymptotic states on the Kasner subset. This in turn implies that velocities for increasingly long times are either almost aligned, antialigned, or one or two of the associated speeds are zero, depending on (c 2 s ) (i) , (c 2 s ) (j) (i = j), and p max , see subsection 3.3. However, this correlation is temporally broken and changed whenever there is a curvature transition. But since the curvature transitions are increasingly dominated in time by the Kasner states it follows that the probability of finding v α (i) and v α (j) in the previously described correlated state increases with time.14 

Past stability and instability in the full state space

We now turn to the discussion of the role of the past attractors on the silent boundary of the stiff and soft cases in the full physical state space. We have previously assumed that the dynamics approach the silent boundary toward the past and that E α i → 0, and we have subsequently worked out the consequences of these assumptions. To check the consistency of this it is of interest to compute E α i 'on' the past attractors by inserting the attractor subset variable values in F α β in the evolutions equation

∂ ∂ ∂ 0 E α i = F α β E β i
, thus yielding a lowest order past attractor perturbation of E α i in the full state space. Since the past attractor resides on the type I subset in the stiff case (ii) and since we expect the type I subset to 'dominate' the Mixmaster dynamics in the soft case (iii) (the ultra-stiff case (i) has already been discussed previously), we insert the diagonalized shear values on J /K in F α β ; this yields the following equation for the individual E α i components:

(E α i ) -1 ∂ ∂ ∂ 0 E α i | J ,K = 2 -Σα = 3(1 -p α ), (53) 
and thus we see that E α i is stable toward the past everywhere on J /K, except at the Taub points, as is to be expected, but which nevertheless yields support for the assumption E α i → 0.

Next we discuss r α . Recall that r α = -E α i ∂ i ln H, and since E α i → 0, then r α → 0 if we have chosen a gauge so that ∂ i ln H does not blow up too fast. A way at looking at the evolution of r α is to heuristically regard the evolution equation (78a) for r α asymptotically as an equation of the form ∂ ∂ ∂ 0 r α = a α β r β +b α , where a α β is F α β computed on the past attractor, while b α is (∂ ∂ ∂ α + Uα )(q + 1) calculated 'on' the past attractor, where E α i in ∂ ∂ ∂ α is computed by inserting the attractor values in F α β , which leads to the evolution equation

∂ ∂ ∂ 0 E α i = a α β E α i .
This leads to that one can regard a α β and b α as time dependent coefficients on a given timeline, effectively leading to an ODE for r α where the solution for r α is given by the solution to the homogenous equation ∂ ∂ ∂ 0 r α = a α β r β added to a particular solution associated with b α . However, due to that the homogenoeus equation for r α has the same character as that for E α i it follows that the homogeneous solution tends to zero. Thus we require a gauge that is such that the particular solution also tends to zero, where the freedom in the gauge choice is reflected in the term b α ; we expect that we require a gauge such that (∂ ∂ ∂ α + Uα )(q + 1) tends to zero reasonably fast. Considering that q is 2 in the stiff case or 'almost always' 2 in the soft case due to 'Kasner dominance' this suggest that this is presumably a rather wide class. 15 For an example of a gauge with (M α , W α ) = (0, 0) for which there is numerical support that r α → 0 (as well as Uα → 0), see [START_REF] Andersson | Asymptotic Silence of Generic Singularities[END_REF].

We now turn from considering reference congruences in general, to the issue if there are fluid congruences for which the Hubble normalized vorticity W α and acceleration U α will vanish asymptotically. Choosing the timelike reference congruence as one of the fluid congruences implies that for that fluid v α = 0, ρ = ρ, p = p, and Q α = Π αβ = 0, while P = wΩ (again we drop the index (i)). The fluid equations reduce to (obtained by specializing the total matter equations (77) in Appendix A to a single comoving perfect fluid)

∂ ∂ ∂ 0 Ω = [2q -1 -3w] Ω, ( 54a 
) 0 = c 2 s (∂ ∂ ∂ α -2r α ) Ω + (1 + w)( Uα + r α )Ω, ( 54b 
)
or equivalently,

∂ ∂ ∂ 0 ρ = -3(ρ + p), ( 55a 
) 0 = ∂ ∂ ∂ α p + ( Uα + r α )(ρ + p). ( 55b 
)
Assuming that the weak energy condition holds strictly for the fluid component at hand, i.e., ρ > 0 and ρ + p > 0, makes it possible to introduce the particle density n and the chemical potential µ,

dn n = dρ ρ + p , µ= ρ + p n , dµ µ = dp ρ + p , ( 56 
)
which, together with (55), yields

∂ ∂ ∂ 0 n = -3n, (57a) 0 = (∂ ∂ ∂ α + Uα + r α )µ, (57b) 
where a suitable function of n may be useful as a matter variable in the case w = const, see [START_REF] Heinzle | Matter and dynamics in closed cosmologies[END_REF]. By applying ∂ ∂ ∂ 0 to (57b) and using (78a) and (68a) we obtain

∂ ∂ ∂ 0 Uα = [F α β + (3c 2 s -1 -q)δ α β ] Uβ + ∂ ∂ ∂ α (3c 2 s -q). ( 58 
)
Equations ( 57) and (78b) together with applying (68b) to ln µ, and using the relation

d ln µ/d ln n = c 2 s = dp/dρ, yield 1 2 C α β Uβ = (3c 2 s -q -1) W α , ( 59 
)
which allows equation (73b) to be written on the form

∂ ∂ ∂ 0 W α = (F α β + (3c 2 s -1) δ α β + 2Σ α β ) W β . ( 60 
)
Following Taub [START_REF] Taub | Stability of Fluid Motions and Variational Principles. Proceeding of the 1967 Colloque on[END_REF][START_REF] Van Elst | General Relativistic 1+3 Orthonormal Frame Approach Revisited[END_REF], we let

M = M 0 µ , ( 61 
)
where M 0 = M 0 (x 0 ), which, via (67), (73a), and (73c) yields that

M i = M i (x j ) = Mi , ( 62 
)
which gives that the time dependence of M α is determined by

E α i since M α = E α i Mi . ( 63 
)
Applying equations (75a) and (75c) to this result gives

W α = 1 2 ME β i C α β
Mi (a relation that is equivalent to the non-normalized coordinate frame expression ω ij = M∂ [i Mj] ). Since Eq. ( 63) implies that if E α i → 0 then M α → 0 it remains to investigate if W α and Uα tends to zero toward the past.

In the ultra-stiff case (i) it follows straight forwardly that W α → 0 for the ultra-stiff fluid in the neighborhood of F. If in addition ∂ ∂ ∂ α (3(c 2 s ) ultra-stiff -q) → 0 sufficiently fast, which can be shown to be a consistent condition by means of an analysis similar to that of other isotropic singularities undertaken in [START_REF] Lim | Asymptotic isotropization in inhomogenoeus cosmology[END_REF] (see also [START_REF] Coley | Asymptotic analysis of spatially inhomogeneous stiff and ultra-stiff cosmologies[END_REF]), then also Uα → 0; this is to be expected since v ultra-stiff = 0 asymptotically when measured some congruence that is assumed to satisfy the asymptotic surface formation condition (8a) (we also expect that soft fluids with c 2 s > 1 3 in the ultra-stiff case satisfy the asymptotic surface formation condition since they lead to v α → 0, cf. subsection 3.3).

Let us turn to the stiff (ii) and soft cases (iii). In analogy with subsection 3.4, let us study the stability of W α and Uα by making a perturbation of J ∆ /K in a shear diagonalized Fermi frame. Eq. ( 60) then yields

W -1 α ∂ ∂ ∂ 0 W α | J ∆ ,K = 1 + 3c 2 s + Σα = 3(c 2 s + p α ), (64) 
which requires c 2 s + p α > 0 ∀ α in order for W α → 0. On J ∆ , the stable Σα satisfies Σα > -1, ∀ α (p α > 0, ∀ α), and on this part W α → 0 when c 2 s ≥ 0. In the soft case (iii) min(p 1 , p 2 , p 3 ) = -1 3 on K and thus c 2 s > 1 3 leads to that W α → 0 everywhere on K, but for fluids with c 2 s < 1 3 , parts of the K become past unstable with respect to the vorticity, and for dust (w = c 2 s = 0) all of K is unstable (except at the non-transversally-hyperbolic Taub points); hence the vorticity of dust does not vanish in the approach to the singularity. For 0 < c 2 s < 1 3 it is the cumulative effect over time of the factor c 2 s + p α that matters; to determine this effect would require a study by means of methods used in [START_REF] Heinzle | The cosmological billiard attractor[END_REF], which we will refrain from since it is not enough that the vorticity tends to zero in order for the asymptotic surface formation condition (8a) to be fulfilled, it is also required that Uα → 0. The analysis of (58) of the past asymptotic behavior of Uα is complicated by the term

∂ ∂ ∂ α (3c 2
s -q). However, by considering its asymptotic expression, by inserting the asymptotics for q and c 2 s , and by solving the evolution equation for E α i 'on' the silent boundary (i.e., by perturbing the past attractor to lowest order), this term can be regarded as a time-dependent inhomogeneous term; similarly one can compute the factor before Uα on the r.h.s., which yields an equation of the form ∂ ∂ ∂ 0 Uα = a Uα + b α , where a and b α can be regarded as given time dependent functions on a given timeline. Hence the general solution can be obtained by adding a particular solution to the general solution of the homogeneous part, ∂ ∂ ∂ 0 Uα = a Uα . In order for the fluid to be asymptotically surface forming (8a) it is required that Uα → 0 generically, and a necessary condition for this is that Uα → 0 according to the homogeneous equation, which, when computed in a Fermi frame on J ∆ /K, yields

U -1 α ∂ ∂ ∂ 0 Uα | J ∆ ,K = 3c 2 s -1 -Σα = 3(c 2 s -p α ). (65) 
In the stiff case (ii) Uα → 0 requires that c 2 s > p max on J ∆ , i.e., the same condition as required for v α → 0 (which of course is to be expected). The condition that Uα → 0 holds everywhere on J ∆ , and in this sense holds for a generic solution, requires that c 2 s -p max > 0 everywhere on J ∆ , which leads to that c 2 s = 1, i.e., none of the softer fluids will in this case fulfill condition (8a).

In the soft case (iii) there will always be parts of K that are past unstable with respect to the fluid accelerations, the asymptotic behavior then depends on the cumulative effect of the factor (c 2 s -p α ), as it does with the vorticity; for fluids with c 2 s < 2 3 all of K is unstable in at least one mode, since one of the p α ≥ 2 3 ; hence the acceleration does not vanish for any fluid with low sound speed. This in turn probably leads to that the condition on the particular solution for r α breaks down and hence r α does not tend to zero either. Hence comoving gauges for fluids with c 2 s < 2 3 are not gauges that are compatible with the asymptotically surface forming condition (8a), and it may be that this is also the case when c 2 s ≥ 2 3 (to provide plausible arguments for this would require an extensive study using methods described in [START_REF] Heinzle | The cosmological billiard attractor[END_REF]).

We conclude this section with a discussion of the asymptotic behavior of ρ (i) and ρ(i). The evolution equation for ln ρ (i) on the silent class A subset is governed by the sign of the factor -[3

+ v 2 (i) + Σ αβ c α (i) c β (i) v 2 (i) ] = -[2 + (1 -v 2 (i) ) + (2δ αβ + Σ αβ )c α (i) c β (i) v 2 (i) ]
, see Eq. [START_REF] Ringström | Curvature blow up in Bianchi VIII and IX vacuum spacetimes[END_REF].

Because of Corollary (3.1), v 2 (i) ≤ 1 leads to that the factor associated with ρ (i) is strictly negative, and hence it follows that lim x 0 →-∞ ρ (i) → ∞, ∀ i if a solution approaches the attractor on the silent boundary.

The evolution equation for ln ρ(i) on the class A boundary is governed by the sign of the factor

-[3 -v 2 (i) -Σ αβ c α (i) c β (i) v 2 (i) ] = -[3(1 -v 2 (i) ) + (2δ αβ -Σ αβ )c α (i) c β (i) v 2 (i) ]
, see Eq. ( 20). Lemma 3.2 and v 2 (i) ≤ 1 suggests that lim x 0 →-∞ ρ (i) → ∞, ∀ i, but unfortunately, we do not have a strict inequality in this case, and since ρ(i) needs to be evaluated in the interior physical state space it is not certain that the quantities that have been neglected in the above equation do not prevent ρ(i) → ∞; nevertheless ρ(i) → ∞ is normally what is assumed in a BKL context and we do so here as well. Thus e.g. when c 2 s appears in an equation that is used in an asymptotic context it refers to the limit when ρ(i) → ∞, and either represents an actual limit or a bound.

Conclusions

We have studied the past asymptotic dynamics of spacetimes with an arbitrary number of perfect fluids with non-zero peculiar velocities, and with general barotropic equations of state, where it has been assumed that the Hubble-normalized interactions can be neglected. Using dynamical systems methods on a system of equations obtained from the 1+3 Hubble-normalized conformal orthonormal frame approach, we have reformulated two well known conjectures by Belinksii, Khalatnikov and Lifshitz, about properties at the vicinity of a generic spacelike cosmological singularity, to conditions on our variables ('the locality conjecture' (1) and 'the matter does not matter' conjecture (2)) and worked out the consequences of these assumptions.

We have shown that from the assumption of 'the locality conjecture' (1) alone follows:

-In the case where there exists at least one fluid with an equation of state that is ultra-stiff asymptotically to the past (i.e., the speed of sound c s satisfies the inequality c 2 s > 1), then the Hubble-normalized shear and spatial curvature will vanish asymptotically along with the Hubble-normalized energy densities Ω (i) of all the fluids but the one with the asymptotically stiffest equation of state, which will have a Hubble-normalized density parameter Ω ultra-stiff of unity and a vanishing peculiar velocity. The peculiar velocities v α (i) for fluids with Ω (i) = 0 asymptotically vanishes in this case when (c 2 s ) (i) < 1/3 while v 2 (i) = 1 if (c 2 s ) (i) > 1/3. -In the case where no fluid is asymptotically ultra-stiff, but at least one fluid is asymptotically stiff (w = c 2 s = 1), the past asymptotic temporal behavior is given by a Jacobs solution. In this case v α stiff = 0 and Ω (i) = 0 asymptotically, ∀i = stiff such that (c 2 s ) (i) < 1. The peculiar velocities v α (i) → 0 tend to zero when (c 2 s ) (i) > p max , where p max is the maximal shape parameter, while v 2 (i) → 1 when c 2 s < p max . -In the case when there are no stiff or ultra-stiff fluids, but an arbitrary number of fluids with soft equations of state (c 2 s < 1), the past asymptotic state resides on the union of the Bianchi type I, II, VI 0 or VII 0 subsets on the silent boundary.

-In the soft fluid case we have made the additional assumption that 'the matter does not matter' conjecture (2) holds, and have provided some arguments that the past attractor is Mixmaster like, with oscillations between Bianchi type I and II vacuum solutions on the silent boundary. The peculiar velocities of the fluids-which become test field-become forever oscillating, both in direction and amplitude as the oscillations change the shear via the so-called Kasner map (see e.g. [START_REF] Heinzle | Mixmaster: Fact and Belief[END_REF]). Interestingly the extreme properties of the asymptotic spacetime geometry induces 'correlation effects' among the different peculiar velocities.

By studying the vorticity and acceleration in a fluid comoving frame we come to the conclusion that the fluid comoving gauges for stiff and ultra-stiff fluids obey the 'locality conjecture' [START_REF] Röhr | Conformal regularization of Einstein's field equations[END_REF] and is therefore acceptable gauges. However, this is not the case for models with only fluids with asymptotically soft equations of state. In such models fluid comoving gauges for fluids with c 2 s < 2/3, which notably include dust and radiation equations of state, are not compatible with the gauge requirement associated with 'the locality conjecture' (1), and fluid comoving gauges for fluids with 2/3 ≤ c 2 s < 1 may be inadmissible as well, although the latter is an open issue.

In all, our results for spacetimes with multiple fluids agree with previous studies of special models with soft (e.g. [START_REF] Uggla | The past attractor in inhomogeneous cosmology[END_REF][START_REF] Hewitt | The Asymptotic Regimes of Tilted Bianchi II Cosmologies[END_REF][START_REF] Hervik | The asymptotic behaviour of tilted Bianchi type VI 0 universes[END_REF]), stiff (e.g. [START_REF] Andersson | Quiescent cosmological singularities[END_REF]), and ultra-stiff single fluid models [START_REF] Coley | Asymptotic analysis of spatially inhomogeneous stiff and ultra-stiff cosmologies[END_REF]. However, we here studied asymptotic dynamics in a general infinite-dimensional dynamical systems setting, where we pursued the consequences of BKL-like assumptions, and this led e.g. to the conclusion that comoving fluid gauges are, for the most physically interesting fluid cases, incompatible with BKL-like behavior. It follows that a matter element will always move w.r.t. to a frame that obeys the gauge requirements of 'the locality conjecture' (1), furthermore, even in the fluid comoving gauge a matter element will accelerate and pick up momentum w.r.t. the rest frame of the fluid. In this sense matter momentum will matter toward the singularity (which is not the case for fluids with stiff or ultra-stiff equations of state), even though 'matter does not matter' for the asymptotic spacetime geometry, answering a speculation posed in [START_REF] Uggla | The past attractor in inhomogeneous cosmology[END_REF]. It was also beneficial to consider multiple fluids, since this made it possible to investigate the relative evolution of the fluid themselves with some interesting results, like the dominance of the stiffest fluid, Eq. ( 32), and the peculiar velocity shear alignment in type I (Corollary 3.3), which led to suggestive results about asymptotic correlations between different peculiar velocities for asymptotic oscillatory behavior, as discussed in subsection 3.6.

Our analysis has rested on the assumption that the silent boundary is approached, and in the soft fluid case on the further assumption of asymptotic vacuum dominance, and even though we found support for our assumptions it would be desirable for further study to establish firm results on all points. We therefore list three open problems.

-There seems to exist an intricate connection between asymptotically approaching the Taub subset, described in Appendix B, and the violation of Lemma 3.2 and the condition [START_REF] Wainwright | Dynamical systems in cosmology[END_REF]. Furthermore, in [START_REF] Heinzle | The cosmological billiard attractor[END_REF] it was shown that one statistically with increasingly probability find the state of a solution in a small neighborhood of the Taub subset in the approach to an oscillating singularity. Moreover, there seems to be a connection between weak null singularities and the Taub subset [START_REF] Lim | Asymptotic Silence-breaking Singularities[END_REF]. Hence there is a need for a detailed separate study of the Taub subset, but such an analysis is unfortunately likely to pose a major challenge.

-Another less formidable future possibility is to apply the methods in [START_REF] Heinzle | The cosmological billiard attractor[END_REF] to study cumulative trends for peculiar velocities, discussed in subsection 3.6.

-A third possible investigation would be to investigate what BKL-like conjectures, analogous to the presently formulated ones, would imply for other sources. When does 'matter does not matter' toward the initial singularity hold in this more general context?

A The 1+3 conformally Hubble-normalized dynamical systems approach

To establish conventions and notation, we in this Appendix briefly introduce the conformal 1+3 Hubble-normalized dynamical systems approach. This constitutes a specialization of the results in [START_REF] Röhr | Conformal regularization of Einstein's field equations[END_REF], in combination with that we derive the general perfect fluid equations; for further details and motivation we refer to [START_REF] Röhr | Conformal regularization of Einstein's field equations[END_REF].

In the conformal Hubble-normalized orthonormal frame approach, cf. [START_REF] Röhr | Conformal regularization of Einstein's field equations[END_REF][START_REF] Uggla | The Nature of Generic Cosmological Singularities[END_REF], we introduce a conformal 'Hubble-normalized' orthonormal frame of g (or, equivalently, an orthonormal frame of G) according to g = H -2 G = H -2 η ab Ω a Ω b , where the one-forms Ω a are related to the conformal orthonormal vector fields ∂ ∂

∂ a via Ω a , ∂ ∂ ∂ b = δ a b .
We align ∂ ∂ ∂ 0 with a timelike reference congruence, which leads to that ∂ ∂ ∂ 0 and ∂ ∂ ∂ α are given by:

∂ ∂ ∂ 0 = H -1 e 0 = M -1 ∂ x 0 , ∂ ∂ ∂ α = H -1 e α = M α M∂ ∂ ∂ 0 + E α i ∂ i , (66) 
where M and M α are the conformally Hubble-normalized threading lapse function and shift vector, respectively; x 0 denotes the time coordinate along the timelike reference congruence, while ∂ i = ∂ x i , where x i are spatial coordinates (i = 1, 2, 3). Throughout we express the derivatives in all equations by means of the derivative operators ∂ ∂ ∂ 0 and ∂ ∂ ∂ α . Partial derivatives are thus 'weighted' with conformally normalized frame variables, and this is one of the main advantages of the present formalism.

The deceleration parameter q and r α are objects that are kinematically defined by

∂ ∂ ∂ 0 H = -(q + 1) H, ∂ ∂ ∂ α H = -r α H. ( 67 
)
For dimensional reasons, the above equations for the dimensional Hubble variable H, associated with the timelike reference congruence in the physical spacetime associated with g, must decouple from all equations that only involve dimensionless variables and operators.

It is useful to write the dimensionless commutator equations on the following operator form:

0 = (∂ ∂ ∂ α + Uα )∂ ∂ ∂ 0 -(δ α β ∂ ∂ ∂ 0 -F α β ) ∂ ∂ ∂ β , (68a) 0 = 2W α ∂ ∂ ∂ 0 -C α β ∂ ∂ ∂ β , (68b) 
where

F α β = -[H δ α β + Σ α β + α β γ (W γ + R γ )] = q δ α β -Σ α β -α β γ (W γ + R γ ), (69a) 
C α β = α γβ (∂ ∂ ∂ γ -A γ ) -N α β , (69b) 
where we have used ∂ ∂ ∂ 0 H = -(q + 1) H to obtain the relationship q = -H = -1 3 Θ, which relates the deceleration parameter q to the (Hubble-) conformal Hubble scalar H and expansion Θ; for the physical interpretation of the other quantities, see Section 1.

We will be concerned with general relativity and hence we impose Einstein's field equations:

G ab = T ab , (70) 
where we have chosen c = 1 = 8πG as units, where c is the speed of light in vacuum and G is Newton's gravitational constant. We make a 1+3 split of the stress-energy tensor T ab w.r.t. the tangential 4-velocity u a of the reference congruence in the physical spacetime g according to:

T ab = ρ u a u b + 2q (a u b) + p h ab + π ab , ( 71a 
)
h ab = u a u b + g ab ⇒ h ab u b = 0; q a u a = 0, π ab u a = 0, π a a = 0, (71b) 
and hence the total stress-energy is encoded in the objects (ρ, p, q α , π αβ ), where π α α = 0. The conformal transformation naturally yields new dimensionless matter variables by scaling ρ, p, q α , π αβ with H -2 , however, to conform with the standard definition Ω = ρ/(3H 2 ), we instead scale the matter variables as follows:

{Ω, P, Q α , Π αβ } = {ρ, p, q α , π αβ }/(3H 2 ). ( 72 
)
The field equation for the dimensionless frame and commutator variables (obtained from the commutator equations, the Jacobi identities, and the Einstein equations) are conve-niently grouped into evolution equations, and constraint equations:

Evolution equations: ∂ ∂ ∂ 0 M α = F α β M β + (∂ ∂ ∂ α + Uα )M -1 , (73a) ∂ ∂ ∂ 0 W α = (F α β + qδ α β + 2Σ α β ) W β + 1 2 C α β Uβ , (73b) ∂ ∂ ∂ 0 E α i = F α β E β i , (73c) ∂ ∂ ∂ 0 Σ αβ = -(2 -q)Σ αβ + 2 γδ α Σ β δ R γ -3 S αβ + 3Π αβ -2W α R β + (∂ ∂ ∂ α + U α + A α ) Uβ + 2(∂ ∂ ∂ α -r α + A α ) r β -γδ α N β γ ( Uδ + 2r δ ), (73d) 
∂ ∂ ∂ 0 A α = F α β A β + 1 2 (∂ ∂ ∂ β + Uβ )(3qδ α β -F α β ), (73e) 
∂ ∂ ∂ 0 N αβ = (3qδ γ (α -2F γ (α )N β)γ + γδ(α (∂ ∂ ∂ γ + Uγ )F δ β) , (73f) 
where

F α β = q δ α β -Σ α β -α β γ (W γ + R γ ). ( 74 
)
Constraint equations:

0 = C α β M β -2M -1 W α , (75a) 0 = (∂ ∂ ∂ α -Uα -2A α ) W α . (75b) 0 = C α β E β i , (75c) 0 = 1 -Σ 2 -Ω k -Ω + 1 3 W 2 -2 3 W α R α -1 3 (2∂ ∂ ∂ α -4A α + r α ) r α , (75d) 0 = (3δ α γ A β + α δγ N δβ ) Σ β γ -3Q α -(∂ ∂ ∂ β + 2r β ) Σ α β -[C α β + 2 α γβ ( Uγ + r γ )] W β -2r α , (75e) 0 
= A β N β α -1 2 ∂ ∂ ∂ β ( α βγ A γ + N α β ) -(F α β -2qδ α β + 2Σ α β ) W β , ( 75f 
)
where Σ 2 = 1 6 Σ αβ Σ αβ , W 2 = W α W α , and where

C α β = α γβ (∂ ∂ ∂ γ -A γ ) -N α β , ( 76a 
) q = 2Σ 2 + 1 2 (Ω + 3P ) -2 3 W 2 -1 3 [∂ ∂ ∂ α + Uα -2(A α -r α )] ( U α + r α ), (76b) 
3

S αβ = B αβ + 2 γδ α N β δ A γ + ∂ ∂ ∂ γ (δ γ α A β + γ α δ N β δ ), (76c) 
Ω k = -1 6 3 R; 3 R = -1 2 B α α -6A 2 + 4∂ ∂ ∂ α A α , (76d) B αβ = 2N αγ N γ β -N γ γ N αβ , (76e) 
where A 2 = A α A α . 16 The expression for q in (76b) was obtained from the Raychadhuri equation, which gives q its dynamical content; 3 S αβ , 3 R can be interpreted as the trace-free and scalar parts, respectively, of the Hubble-normalized three-curvature, if the reference congruence is hypersurface forming (W α = 0). The notation ... stands for the trace-free part of a symmetric spatial tensor, i.e. A αβ = A αβ -1 3 δ αβ A γ γ . The equations (73d), (75d), (75e), (76b), were all obtained from Einstein's field equations, and are thus dynamical in nature, furthermore, note that it is the total stress-energy content {Ω, P, Q α , Π αβ } that enters into these equations; all remaining equations were obtained from the commutator equations and the Jacobi identities, and are thus kinematical. If we want to stress that a quantity refers to the total stress-energy content below we will provide it with the subscript tot, e.g., Ω tot .

These equations need to be supplemented with matter equations that depend on the chosen matter content, however, local conservation of the total energy-momentum yields ∇ b T ab = 0 for the total T ab , which for the 1+3 splitted matter variables yields: 17Total matter equations:

∂ ∂ ∂ 0 Ω = (2q -1) Ω -3P + 2A α Q α -Σ αβ Π αβ -[∂ ∂ ∂ α + 2( Uα + r α )] Q α , ( 77a 
)
∂ ∂ ∂ 0 Q α = (F α β -(2 -q) δ α β ) Q β + (3δ α γ A β + α δγ N δβ ) Π β γ + 2 α βγ W γ Q β -(∂ ∂ ∂ β + Uβ + 2r β ) (P δ α β + Π α β ) -Uα Ω -r α (Ω -3P ). ( 77b 
)
It is sometimes useful to apply the commutator equations (68) to log(H) and consider the following resulting auxiliary equations for r α (also possibly extending the above state space to include r α ):

∂ ∂ ∂ 0 r α = F α β r β + (∂ ∂ ∂ α + Uα )(q + 1), (78a) 0 = C α β r β -2(q + 1) W α . ( 78b 
)
In this paper we assume that the matter consists of several perfect fluids with general barotropic equations of state. The stress-energy component of the i:th fluid satisfies, ∇ a T ab (i) = I b (i) , where I b (i) represents the non-gravitational interaction term of the i:th fluid with the other fluids; since ∇ a T ab tot = 0 it follows that i I a (i) = 0. We are here going to assume that the Hubble-normalized interaction terms asymptotically tend to zero toward the singularity, and that the fluids, in this sense, are asymptotically non-interacting (this can still be the case even if the interaction energies tend to infinity). Using the Hubblenormalized version of the relation ∇ a T ab (i) = 0, since we assume that the Hubble-normalized interaction terms are asymptotically zero, leads to the following equations for Ω and v α (to obtain less cumbersome expressions we drop the index (i)):

∂ ∂ ∂ 0 Ω = (2q -1 -3w) Ω + [(3w -1) v α -Σ αβ v β + 2(A α -Uα -r α ) -∂ ∂ ∂ α ] Q α , ( 79a 
)
∂ ∂ ∂ 0 v α = Ḡ-1 - (1 -v 2 )(3c 2 s -1 -c 2 s A β v β ) + (1 -c 2 s )(A β + Σ γ β v γ ) v β v α -[Σ α β + α βγ (R γ + N γ δ v δ )] v β -A α v 2 + α βγ W γ v β -(δ α β -v α v β ) Uβ -(1 + w) -1 (1 -v 2 )[(1 -w)δ α β -4w c 2 s Ḡ-1 -v α v β ]r β - v Q (δ α β + 2c 2 s Ḡ-1 -v α v β )∂ ∂ ∂ γ (P δ β γ + Π β γ ) -(1 + c 2 s ) Ḡ-1 -v α ∂ ∂ ∂ β Q β , ( 79b 
)
where Ḡ-= 1 -c 2 s v 2 , c 2 s = dp/dρ. In the above expressions all 'matter objects' refer to the i:th fluid component, except in q in (79a), since q obtains its dynamical content from the total source. A cosmological constant Λ can formally be regarded as a perfect fluid contribution with w = -1, which leads to the following Hubble-normalized stress-energy contribution: Ω Λ = Λ/(3H 2 ) = -P Λ , while Q α Λ = 0 = Π αβ Λ . Due to its definition and equation (67

), Ω Λ satisfies ∂ ∂ ∂ 0 Ω Λ = 2(1 + q)Ω Λ , ∂ ∂ ∂ α Ω Λ = 2r α Ω Λ .

B Invariant boundary subsets

The physical interior of the state space is characterized by det(E α i ) = 0, and, in the case of the interior of the perfect fluid state space, Ω tot = 0. However, the asymptotes of most interior solutions reside on the boundaries of the interior state space, and hence it becomes necessary to study the dynamics on these boundaries as well. Some of these boundaries play a particularly important role. Notably we have the vacuum subset Ω tot = 0 (and hence Ω (i) = 0 ∀ i), and what we call the partially silent and the silent boundary subsets [START_REF] Lim | Asymptotic Silence-breaking Singularities[END_REF]. The existence of these latter subsets is intimately connected with the homogeneity of (73c), which leads to the existence of boundary subsets of the interior subset (det(E α i ) = 0) such that the rank of the matrix E α i is two, one, or zero.

Let us begin with the rank zero case. Our later discussion suggests that only a part of the subset E α i = 0 is of generic importance, namely the invariant boundary subset (E α i , M α , W α , Uα , r α ) = 0, (80) see ( 73) -( 77), which we denote as the silent boundary, where M α = 0, E α i = 0 yields ∂ ∂ ∂ α = 0. On this subset, described by a state vector S (see Eq. ( 15) for the case of several perfect fluids), there exists a coupled set of ordinary differential equations and algebraic constraints that are identical to those of spatially homogeneous models. This can be seen as follows. In the spatially homogeneous case a spatially homogeneous foliation with orthogonal timelines (M α = W α = 0) leads to (M, H, S) = (M (x 0 ), H(x 0 ), S(x 0 )), and hence Uα = r α = 0 and ∂ ∂ ∂ α S = E α i ∂ i S = 0, and as a consequence the equations for E α i (det(E α i ) = 0) decouple from the rest of the variables in S, and thus one often only considers the equations for the 'essential' variables of the state vector S, cf. [START_REF] Heinzle | Monotonic functions: Why they exist and how to find them[END_REF]. Although the equations for S coincide for the spatially homogeneous case and the silent boundary, there is a fundamental difference; in the spatially homogeneous case the constants of integration are really constants, but on the silent boundary the integration coefficients are spatial functions, since the state space in this case corresponds to an infinite set of identical copies-one for each spatial point.

A similar phenomenon happens when the rank of the matrix E α i is one or two, which leads to boundary subsets on which the dynamics is identical to that of models with spatial symmetry orbits of dimensions two or one, respectively. We refer to these subsets as partially silent boundaries; in these cases there are two or one spatial coordinates, respectively, that act as an index set, in analogy with what happens for the state vector in the silent boundary case.

Yet another, overlapping, boundary is of interest-the Minkowski subset. In the present formulation this subset corresponds to the Minkowski solution/spacetime in foliations for which H > 0. Hence it is characterized by that the Hubble-normalized curvature is zero, i.e., both Ω tot and the Hubble-normalized Weyl tensor are zero.

There are many subsets on the Minkowski boundary, but one seems to be of particular importance, the Taub subset (so denoted because it is related to the Taub representation of the Minkowski spacetime), which we define as a subset that, in addition to Ω tot = 0, satisfies 3 R = 0, i.e., Ω k = 0, and (M α , W α , Uα , r α ) = 0, and hence Σ 2 = 1 and q = 2. Furthermore, these conditions implies det(Σ αβ ) = 2, and that it is possible to introduce a Fermi propagated frame in which Σ αβ = diag(2, -1, -1), or cycle.

Proposition 3 . 4 .

 34 The past asymptotic state of the system (41) is given by: Case (i): c α = ĉα .Cases (ii) and (iii): Let(αβγ) = (123), or a permutation thereof. (a) If p α ≤ p β < p γ , then c α , c β → 0, c γ → ±1 when c γ ≷ 0. (b) If p α < p β = p γ , then c α → 0, c β , c γ → ĉβ , ĉγ , ĉ2 β + ĉ2 γ = 1.Proof. In case (i) where (p 1 , p 2 , p 3 ) = 1 3 (1, 1, 1), it follows directly that ∂ ∂ ∂ 0 c α = 0 and hence c α = ĉα .

Corollary 3 . 3 .

 33 [START_REF] Wainwright | Dynamical systems in cosmology[END_REF] , C 23 , C 31 as boundaries, furthermore, the intersections of these subsets yield the fix points C ± α for which c α = ±1, c β = c γ = 0, (αβγ) = (123), and cycle. If p α = p β = p γ , where (αβγ) = (123), and cycle, then the system (41) also admits subsets when one of the components c 1 , c 2 , or c 3 is zero, but the subset C αβ on which c γ = 0 reduces to a circle of fix points withc α = ĉα , c β = ĉβ , ĉ2 α + ĉ2 β = 1, which we denote by C αβ . If p α ≤ p β < p γ , then ∂ ∂ ∂ 0 c 2 α > 0,and hence c α → 0. This reduces the system to the subset C βγ where pβ < p γ gives ∂ ∂ ∂ 0 c 2 β > 0, ∂ ∂ ∂ 0 c γ = f (c β ) c γ ,where f (c β ) < 0, and hence c β → 0 and c γ → ±1 toward the past when c γ ≷ 0. If p α < p β = p γ , then c α → 0 still holds, but in this case the system reduces to the circle of fix points C βγ . The past asymptotic peculiar velocity direction(s) c α of the test fields coincide with the asymptotic eigenvector(s) of Σ αβ associated with the eigenvalue(s) Σmax = max( Σ1 , Σ2 , Σ3 ) = max(3p 1 -1, 3p 2 -1, 3p 3 -1).

In the case of timelike geodesics; in the null geodesic case an analogous equation plays a similar role.

One reason for why this is convenient is that since the components of the

3-velocity v α (i) in the orthonormal frame of g are dimensionless they coincide with the 3-velocity components of the conformal 4-velocity in the Hubble-normalized frame of G.

This follows from that we can reparameterize the congruence according to x0 = exp(x 0 ), so that the past singularity occurs at x0 = 0. However, we believe that the condition on M can be weakened, which, however, we have refrained from doing in order to keep the discussion reasonably simple. The central restriction is to choose a reference congruence that asymptotically yields a spacelike foliation that has a simultaneous bang function, cf. the discussion about the synchronous gauge in[START_REF] Belisnkii | A general solution of the Einstein equations with a time singularity[END_REF].

Asymptotic silence is defined as the formation of particle horizons that shrink to zero size in all directions along any timeline that is not asymptotically null toward the singularity, thus asymptotically prohibiting communication. When the nomenclature silent boundary was introduced it was believed that asymptotic silence implied asymptotical local dynamics, however, the discovery of recurring spike formation[START_REF] Andersson | Asymptotic Silence of Generic Singularities[END_REF][START_REF] Lim | Spikes in the Mixmaster regime of G 2 cosmologies[END_REF] shows that this is not the case. Although we expect that conjecture (1) holds for most timelines for an open set of solutions, the existence of recurring spike formation suggests that there exist generic singularities with special timelines with 'non-BKL' behavior for which conjecture (1) does not hold.

The past attractor of a dynamical system given on a state space X is defined as the smallest closed invariant set A -⊆ X such that the α-limits of all p ∈ X, apart from a set of measure zero, satisfy α(p) ⊆ A -[START_REF] Milnor | On the concept of attractor[END_REF].

The physical status of an ultra-stiff equation of state can be questioned since cs is larger than the speed of light, however, it is of interest for structural stability reasons to study sources with fluids with such an equation of state, moreover, in[START_REF] Coley | Asymptotic analysis of spatially inhomogeneous stiff and ultra-stiff cosmologies[END_REF], and references therein, the study of problems associated with ultra-stiff equations of state is motivated by considering broader theoretical contexts than general relativity.

At least generically, the results in[START_REF] Heinzle | The cosmological billiard attractor[END_REF] show that some degrees of freedom only seem to be statistically suppressed, and that there may be a few timelines with different behavior; hence there may be some timelines with different asymptotic dynamics than that we presently describe.

We exclude that pmax = 1; this is intimately connected with that the assumption (12) holds. Note that pmax = 1 has been proved to be excluded for the non-LRS Bianchi types VIII and IX cases[START_REF] Ringström | The Bianchi IX attractor[END_REF][START_REF] Heinzle | A new proof of the Bianchi type IX attractor theorem[END_REF][START_REF] Ringström | Curvature blow up in Bianchi VIII and IX vacuum spacetimes[END_REF].

Except for the excluded points with pmax = 1.

This subset consists of the union of six disjoint Bianchi type II subset representations, each characterized by the sign of a single non-zero eigenvalue of N αβ .

In[START_REF] Heinzle | The cosmological billiard attractor[END_REF] it was shown that one can expect that oscillations yield cumulative trends over time. This also pertains to the peculiar velocities, and the results in[START_REF] Heinzle | The cosmological billiard attractor[END_REF] suggest that such trends depend on the stiffness of the equation of state; this is also suggested by numerical experiments for special models (Lim and Hervik, private communication).

In[START_REF] Andersson | Asymptotic Silence of Generic Singularities[END_REF], where Mα = Wα = 0, it was noted that Eα i = 0, Uα = 0 yields an invariant boundary subset, where rα = 0 leads to the same equations as those for spatially self-similar models. In[START_REF] Andersson | Asymptotic Silence of Generic Singularities[END_REF] we referred to this subset as the silent boundary, but since ∂ ∂ ∂ 0 r 2 = (qδα β -Σα β )rα r β on this subset, which leads to that rα → 0, we have chosen to focus on the subset with rα = 0, which we here has referred to as the silent boundary. Furthermore, note that rα is stable toward the past on the 'extended' silent boundary.

In[START_REF] Röhr | Conformal regularization of Einstein's field equations[END_REF] there are sign errors in front of the terms α βγ R β Wγ , γδ α N β γ Uδ , and α βγ R β Wγ , in the equations that corresponds to (75f), (73d), and (73b), respectively.

Note that this is also a reasonable demand in the context of other metric theories than general relativity, i.e., (77) has a broader area of application than the present general relativistic one.
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Proof. This follows directly from Propositions 3.2 and 3.4, and the results that followed from Eq. (42).

The stiff fluid case (ii):

Proposition 3.6. The stiff fluid case (ii): If the past attractor A - stiff is contained on the silent boundary, then it is given by

where (J ∆ ) -is characterized by

)

where ( Σ1 , Σ2 , Σ3 ) = (3p 1 -1, 3p 2 -1, 3p 3 -1) are the (non-ordered) eigenvalues of Σαβ , and (apart from the stiff fluid(s) for which Ω stiff = Ωstiff = Ω tot ):

Proof. Follows directly from Proposition 3.3, Eq. ( 42), and the linear analysis of (43). Note that the velocity directions refer to the 'dominant' shear eigen-directions, as discussed after Eq. (42).

The soft fluid case (iii):

In the soft fluid case we have no proof, but the previous analysis suggests that there exists a past attractor A - soft subset, on the vacuum part of the silent boundary, that describes the asymptotic dynamics of a timeline in terms of Mixmaster like behavior (see [START_REF] Wainwright | Dynamical systems in cosmology[END_REF] sec. 6.4), where the asymptotic dynamics is approximated by an infinite heteroclinic sequence that reside on A - soft , which hence breaks asymptotic self-similarity [START_REF] Wainwright | Asymptotic self-similarity breaking at late times in cosmology[END_REF];

where Σ αβ on the Kasner subset K is described by

since we use a Fermi frame, and where B vacuum II is the silent vacuum Bianchi type II subset. 13 Since the conjectured attractor consists of the vacuum type I and II subsets, we expect that we (at least generically, recall footnote 8) can asymptotically diagonalize Σ αβ and N αβ (although the diagonalized shear directions will typically be different for different timelines). To describe the asymptotic dynamics we hence perform a constant rotation that diagonalizes an 'initial asymptotic' Kasner point Σi αβ , which leads to that the subsequent dynamics is described by the same heteroclinic sequence (Kasner states joined by type II curvature transitions) as in the vacuum Bianchi type VIII and IX cases, see e.g. [START_REF] Wainwright | Dynamical systems in cosmology[END_REF].

In the soft fluid case the description of A - soft also involves the asymptotic test fields v α (i) . Just as Σ αβ and N αβ oscillate perpetually, so do the fields v α (i) . The effects of a sequence of Kasner transitions by means of curvature type II transitions is two-fold: (a) a change of Kasner state, (b) a change of ordered Kasner shear eigen-directions associated with p α ≤ p β ≤ p γ , where (αβγ) = (123), or a permutation thereof. The curvature transitions