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Abstract Heterogeneous end constraints are imposed on multiwall carbon nanotubes

(MWCNTs) by sequentially clamping one end of their originally simply supported constituent

tubes. The finite element method is employed to study the vibration of such MWCNTs with an

emphasis on the effect of the mixed boundary conditions. The results show that the clamping

process constantly enhances the dynamic stiffness of MWCNTs, which leads to substantial

frequency increase up to 50% and in some cases, the transformation of the fundamental vibration

mode. In particular, the vibration frequency is always found to be most sensitive to fixing the

outermost tubes, showing the critical role of this individual tube in determining the structural

stiffness of the whole MWCNTs as a coupled system.
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1. Introduction

Carbon nanotubes (CNTs) [1] with extreme stiffness and low mass density [2-3] show

great potential to serve as nanoresonators in nanoelectronics, nanodevices and

nanoelectromechanical systems [4, 6-9]. The vibration of CNTs is thus crucial for their

successful applications in nanotechnology. Specifically, some vibration modes of CNTs, e.g.,

radial breathing mode [10-13], beam-like bending mode [5, 14] and longitudinal mode [15],

offers valuable probes for the molecular structures and the elastic properties of CNTs. On the

other hand, CNTs consisting of straight concentric layers with circular cross-section could lose

their structural symmetry due to the vibration in axial, circumferential and radial directions [16-

17]. This could result in a sudden change in their physical properties (e.g., the electrical

properties [18]) and in turn, significantly affect their performance in nanostructures. Thus,

similar to the buckling behaviour [19] the vibration of CNTs turns out to be a major topic of

great interest in nanomechanics. In the last two decades, considerable efforts [20] have been

devoted to capturing the fundamental vibration behaviours of CNTs by using experimental

techniques [10-11, 14-15] and multi-scale modelling tools [12-13, 16-17, 21-23].

Recently, the interest of the mechanics of CNTs has been transferred from their

fundamental behaviours to the effect of internal and external factors on the elastic properties [24-

26], buckling [27-30] and vibration [31] of CNTs. Such factors include thermal effects [25, 32-

34], the defects of CNTs [25-27, 32], the initial stresses [31] and the constraints on the two ends

of CNTs [29-30, 31]. Interesting phenomena have been observed, such as the negative Poisson

ratio of defective single wall CNTs (SWCNTs) [26] and the variation of buckling modes due to

the switch of the end constraints on multiwall CNTs (MWCNTs) [30].



The end constraint on CNTs has been identified as a major external factor that exerts

strong effects on the buckling of CNTs [29, 30]. This issue is of practical interest because

surrounding media will inevitably enforce a variety of constraints on the two ends of CNTs. In

particular, different constraints could be imposed on the individual tubes of MWCNTs, i.e., the

heterogeneous end constraints of MWCNTs. As a typical example, while the outer tube of a

double wall CNT is clamped the inner tube may still be free or simply supported. To our best

knowledge, such heterogeneous constraints were not considered for MWCNTs until our recent

buckling analysis of MWCNTs [30]. Specifically, the vibration analysis of the MWCNTs with

mixed boundary conditions still remains absent in the literature. It is thus of great interest to

further study the vibration of the MWCNTs with heterogeneous end constraints.

The present paper is focused on the effect of the heterogeneous end constraints on the low

frequency vibration modes of MWCNTs, which are of major engineering interest. The mixed

end constraints will be achieved by sequentially clamping one end of the constituent tubes of

originally simply supported MWCNTs. This task is challenging for analytic methods and

formidable for atomistic simulations. The finite element method will thus be employed in the

present analysis. Three types of MWCNTs will be considered, such as thin and short, thick and

short, and (almost) solid and slender MWCNTs. Thin, thick and (almost) solid MWCNTs are

defined by the innermost radius-to-thickness ratio > 5, ~1 and < 0.25, and short and slender ones

are defined by the length-to-the outermost diameter aspect ratio ~5 and ~10. The vibration modes

will be captured and their frequency dependence on the number of clamped tubes will be

calculated for the three types of MWCNTs studied here.



2. Finite element method for vibration of MWCNTs

MWCNTs comprise two to dozens layers of coaxial constituent SWCNTs. The individual

tubes are coupled via the normal interlayer van der Waals (vdW) interaction. The friction

between neighbouring tubes is usually very low and thus, will be neglected in the present study.

The model used in the present work for the free vibration analysis of MWCNTs are described in

this section.

In the present study, each constituent tube of MWCNTs will be modelled as an elastic shell

with equivalent wall thickness h, Young’s modulus E and Poisson ratio ν . When deformation

occurs, the radial pressure between adjacent tubes due to the interlayer vdW interaction is

calculated by ( )0 ip c w w= ⋅ − and the interaction between the other (non-adjacent) tubes as well

as the interlayer friction is ignored. Here, 0w and iw denote the radial displacements of the outer

and inner tubes of two adjacent layers, respectively. The constant c is the vdW interaction

coefficient defined by the second derivative of the interlayer potential energy with respect to the

interlayer spacing. The value of c at the equilibrium interlayer spacing 0.34nm is estimated as

102 /c GPa nm= [13, 35]. Here, the analytic method formulated for the MWCNTs with

homogeneous end constraints [13, 17, 35-37] cannot be further used in the present study where

heterogeneous end constraints are imposed. To circumvent this problem, a finite element (FE)

technique has been developed based on the methodology suggested by Wang et. al [29]. The

solid shell element is adopted, and the mesh design is selected such that each tube of MWCNTs

consists of 36 elements in the cross sectional area and
45
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elements in the longitudinal

direction. Here, iR is the innermost radius and L is the length of MWCNTs. The radial force

between adjacent tubes due to the interlayer vdW interaction is calculated based on a linear



spring model where the spring constant ( )
2 i o

c
K A A= + is obtained by multiplying the pressure

relationship by equivalent area
2

i oA A+
, where iA and oA are the mid-areas of the inner and

outer elements, respectively [30]. Obviously, the stiffness K is a constant for a specific tube but

varies between different individual tubes. For more details regarding the FE modelling

technique, reader may refer to Ref. [29]. Here, the ANSYS FE software package is used to

perform the buckling analysis of MWCNTs. In particular, this ANSYS model has been

efficiently used in the buckling analysis of MWCNTs with various homogeneous and

heterogeneous boundary conditions [30], where a good agreement has been achieved between

the present ANSYS model and other FE modes and analytical methods.

In the present vibration analysis of MWCNTs, the ends of each constituent SWCNT are

subjected to one of the following sets of boundary conditions, i.e.,

(1) The simply-supported (SS) boundary condition: 0u = , 0v = and 0w = , and

(2) The clamped (C) boundary conditions: 0u = , 0v = , 0w = and 0
w w

x θ
∂ ∂= =
∂ ∂

Here u , v and w are the displacements of the individual tubes in longitudinal, circumferential

and radial directions, respectively. In the FE analysis, imposing the clamped end constraints on

CNTs is straight forward and can be done by constraining the nodes of the CNT end(s) for

displacements and rotations. The simply-supported ends of solid cylinders can also be achieved

simply by restricting the tangential displacement of the concentric end nodes while allowing

their rotation about any axes. This method, however, is not applicable for hollow CNTs where

nodes do not exist in the concentric axis. To solve this problem, we shall introduce an imaginary

plane at the end of CNTs, which encloses the hollow CNTs and enables the aforementioned

constraint to be applied to its concentric nodes, thus reflecting a simply-supported end of CNTs.



Here it should be emphasized that the imaginary plane is not involved in the vibration of

MWCNTs since the constrained are applied on that plane. For this reason it will not have

significant effect on the vibrational modes and associated frequencies.

3. Low Frequency Vibration of MWCNTs

In what follows, we shall use the above obtained ANSYS model to study the five low

frequency vibrations of MWCNTs with heterogeneous end constraints, i.e., constituent tubes of

the MWCNTs have different boundary conditions. To introduce the heterogeneity at boundaries

we sequentially clamp one end of the constituent tubes of originally simply supported MWCNTs

until all the constituent tubes are consistently clamped at one end while the other end is still

simply supported. This clamping process is carried out in the following sequences: clamp the

outermost tube first, then its adjacent tube... and finally the innermost tube. This procedure yields

various heterogeneous boundary conditions where increasing number of the layers are clamped

at one end and simply supported at the other, while other layers are simply supported at both

ends. The present study will thus be focused on the effect of such boundary conditions on the

low frequency vibrations of MWCNTs. In particular, five-wall CNTs will be used as a typical

example of MWCNTs, which are classified into three categories as shown in Table 1, i.e., (1)

thin and short (Example 1), (2) thick and short (Example 2) and (3) almost solid and slender

(Example 3) MWCNTs where 5,iR

H
= 1 and 0.25, and

0

5,
L

D
= 5 and 10, respectively. Here, H

denotes the thickness of MWCNTs and 0D is the outermost diameter of the MWCNTs. The

values of equivalent material and geometric constants of constituent SWCNTs used in the



present study are Young’s modulus TPaE 5.3= , the effective wall thickness 0.1H nm= and

Poisson ratio 2.0=ν [38, 39]. The vibration modes of the lowest five frequencies are captured

for the three examples and the associated frequencies are calculated as functions of the number

(N), i.e., the number of the layers with one end clamped and the other simply supported. The

results are shown in Figs. 1, 2 and 3 for examples 1, 2 and 3, respectively.

3.1 Thin and short MWCNTs

Let us first study the vibration of example 1, a thin and short five-wall CNT with

/ 5iR H = and 0/ 5L D = . In this example, the five constituent SWCNTs have a radius rising

from 5 nm to 6.36 nm, and the length-to-diameter aspect ratio between 5 and 6.3. Obviously,

they are shell-type constituent tubes with comparable radius and the aspect ratio. In Fig. 1a, the

thin five-wall CNT is observed to behave like a single-layer elastic thin shell where the five

constituent tubes vibrate collectively with nearly identical displacements. As a result, in Fig. 1 a,

there is no significant change in the interlayer spacing during the vibrations. This unique feature

remains unchanged no matter what mixed boundary condition is imposed. Here the vibration

modes can be characterised approximately by (n, m), where n is the circumferential wave number

and m is the half axial wave number. Since example 1 has large radial size and thus, a low radial

rigidity, the circumferential wave number n of modes I, II, III, IV and V increases from 2 to 3

and to 4. In the mean time, the value of m only varies between 1 and 2.  

Fig.1b shows that, in general, the frequency of the five vibration modes in Fig. 1a increases

monotonically with the increase of the number (N) of the tubes with one end clamped. This is

simply because enforcing constraints on the rotation of the tube ends can normally strengthen the

constituent tube and thus, improve the dynamic stiffness of the whole MWCNT. This effect of



the clamped ends is found to be most significant for mode I associated with the lowest

frequency. It then becomes less pronounced for modes III and V associated with higher

frequencies. Indeed, as seen from Fig. 1b, when the number N increases from zero to five, the

frequency of mode I with (n, m) = (2, 1) increases from 18GHz to 25GHz. The frequency shift is

7GHz and the relative change defined by the frequency shift-to-the initial frequency (18GHz)

ratio is 39%. In the same process, the frequency of mode III with (n, m) = (3, 2), rises by 5.1GHz

from its initial value 39.7GHz giving a relative change 12.85% and that of mode V with (n, m) =

(4, 2) increases by 1.5GHz from 55.4GHz corresponding to a relative change 2.7%. It is well

known that the vibration displacement amplitude of shell-structures usually decreases with

increasing vibration frequency. Thus, clamping the ends of shell structures is expected to exert

stronger influence on the lower frequency vibration with larger displacement amplitudes. This

offers a plausible explanation for the decreasing effect of the boundary condition on the vibration

modes with higher frequencies. Next, let us further study mode II and IV of example 1 (Fig. 1a).

It is seen from Fig. 1b that with N rising from 0 to 5, the frequency shift of mode II and IV is

1.4GHz and 0.4 GHz corresponding to the relative change 5 % and 0.77%, respectively. Thus, as

compared with modes III and V, modes II and IV are less sensitive to the change in the end

constraint in spite of the fact that their frequencies are lower than those of mode III and mode V,

respectively. Here it is seen from Fig.1 a that the axial half wave number of modes II and IV is m

= 1 while that of modes III and V is m = 2, i.e., the axial wavelength of modes III and V are half

of those of modes II and IV. Accordingly, for simply supported example 1, the end rotary angle

in axial direction of modes III and V could be significantly larger than those of modes II and IV. 

In view of this analysis, it follows that imposing restriction on the end rotation in axial direction

(i.e., 0
w

x

∂ =
∂

) tends to exert more significant impacts on the vibration with larger axial half wave



number m or a smaller axial wavelength. In other words, raising the axial half wave number

tends to enhance the effect of clamped ends on the vibration of CNTs. This can at least partially

explain the aforementioned comparison between modes III and V, and modes II and IV.

MWCNTs are a coupled system comprising SWCNTs of different radii and the aspect

ratios. Thus, the contribution of the individual tubes (i.e., SWCNTs) to the structural stiffness of

MWCNTs could be significantly different. To exam this issue, we have calculated the frequency

shift due to the rotation restriction on one single layer based on the data shown in Fig. 1b. Here

let us label the outermost layer tube 1, the next layer tube 2, … and the innermost layer tube 5

and denote the frequency up-shift obtained by fixing one end of tube 1, 2,…, and 5 as 1f∆ , 2f∆

3f∆ 4f∆ and 5f∆ , respectively. The frequency up-shift ratio
5

kf

f

∆
∆

is plotted for all the five modes

of example 1 in Fig. 4a. Here k = 1, 2… 5 is the number of each constituent tube. It is interesting

to note in Fig. 4a that, for the five vibration modes of thin example 1 the frequency up-shift ratio

5

kf

f

∆
∆

decreases monotonically when the tube number k increases from 1 to 5. In particular, 1f∆

due to clamping the outermost layer is around 5 to 15 times of 5f∆ achieved by fixing the

innermost tube only. These results clearly show that, among the constituent tubes of example 1,

the outmost one contributes greatly to the dynamic structural stiffness of the MWCNT. The

contribution of the constituent tubes then declines rapidly from the outermost tube to the

innermost one. For examples 2 and 3, similar calculation has been done and the results are shown

graphically in Fig. 4b and c, respectively, which will be discussed in details in the following

sections.



3.2 Thick and short MWCNTs

Example 2 is a thick and short five–wall CNT with 1/ =HRi and 0/ 5L D = (see Table 1)

which is a mixture of four shell-type tubes with the aspect ratio 5 to 8, i.e., the outer four

SWCNTs, and one beam-type tube with the aspect ratio 10, i.e., the innermost SWCNT. The five

vibration modes of this example are shown in Fig. 2a where modes I, III, IV and V are the shell-

like vibrations similar to those observed in Fig. 1a while mode II is a beam-like vibration which

is not seen in Fig.1a. The shell-like vibration of example 2 can be attributed to the four shell-type

constituent tubes in the five-wall CNT, while the beam-like vibration is a result of the core

beam-type tube and the coupling between adjacent tubes via the interlayer vdW interaction.

Here, contrary to the case of thin example 1, the radii of individual tubes differ considerably in

thick example 2, which, in turn, results in noticeable difference in their transverse displacements

and the significant changes in the interlayer spacing (see the cross-sections in Fig. 2a). It is easy

to understand that thick example 2 with the innermost radius 1nm displays higher radial stiffness

than that of thin example 1 with the innermost radius 5nm. Thus, when the vibration mode

changes from modes I to V, the circumferential wave number n of example 2 alters between 1

and 3 while the axial half wave number m increases from 1 to 4 (Fig. 2a). This behaviour is

different from that of thin example 1, where from modes I to V, n rises substantially from 1 to 4

but m only varies between 1 and 2 (Fig. 1a).

Fig. 2b shows the number N-dependence of the frequencies associated with the five

vibration modes illustrated in Fig. 2a. It is seen from Fig. 2b that all the frequencies tend to

increase with the increasing number N. Specifically, clamping one end of all the five layers

raises the frequency of model I by 48GHz. Considering its initial frequency (at N = 0) 116.3GHz

the relative increment is calculated as 41.2%. For modes III (m = 2) and V (m = 4), respectively,



with higher frequencies, the corresponding frequency shift decreases to 23.3GHz and 30.2GHz,

and the relative increase reduces to 10.9% and 5.6%, which, however, are still larger than the

frequency shift 7.06 GHz and 9.1GHz, and the relative increase 4.65% and 2% obtained for

modes II (m =1) and IV (m = 3), respectively. These behaviours are qualitatively similar to those

observed for example 1 and thus, can be understood based on the same theories. In addition, it is

noted that the relative frequency changes of mode I to mode V obtained for example 2 are

41.2%, 4.7%, 11%, 2% and 5.6%, respectively, close to those of example 1, i.e., 39%, 5%, 12%,

0.77% and 2.7%. However, since the frequencies (or the dynamic stiffness) of example 2 are

around 10 times as much as their counterparts of thin example 1 the absolute frequency shift of

example 2 are 6 to 20 times that of thin example 1. Furthermore, Fig. 4b shows that for the five

modes of example 2, the frequency up-shift obtained by clamping one single layer decreases

from the outermost tube to the innermost one with the value of
5

1

f

f

∆
∆

around 9 to 20 for modes I

to IV.  It is noted that the slopes of the curves in Fig. 4b are generally greater than those shown

in Fig. 4a for example 1, which means that the outermost few tubes of example 2 generally play

an more important role in supporting the whole MWCNT than those of thin example 1. This can

be explained by the fact that, for thick example 2 substantial difference in the radius and the

aspect ratio exists between the constituent tubes, whereas such difference becomes much smaller

in thin example 1.

As shown above, clamping the constituent tubes has stronger impacts on mode I than mode

II. In Fig. 2b, when N = 0, i.e., the simply supported boundary condition for example 2, the

frequency of mode I is 34.6 GHz lower than that of model II; it then catches up with the

frequency of model II when N rises to 3, i.e., one end of the outermost three layers is clamped.

Further fixing the inner tube or the innermost two tubes the frequency of mode I turns out to be



even higher than that of mode II. In other words, for example 2, the vibration mode associated

with the fundamental frequency will transform from shell-like vibration with m = 1 and n = 2 to

beam-like vibration with m = n =1 when the one end of the tubes is clamped consecutively. Here,

it is reasonable to expect that such a mode transformation would occur earlier, i.e., at smaller N,

and result in the model I frequency much higher that of mode II, when both ends of the

constituent tubes are clamped. In practical applicaitons, the fundamental mode of shell structures

is of major interest, and the alteration of this vibration could either significantly affect the

performance of CNT-based nanostructures or have some potential applications directly

exploiting this unique feature. The output of the present study can thus provide useful guidance

to facilitate the design and development of these CNT-based nanotechnology. Here it is worth

mentioning that, similar transformation due to the boundary condition change has also been

observed for the critical buckling mode of the thick and short MWCNTs [30].

3.3 Solid and slender MWCNTs

In this section, we shall focus on a (almost) solid and slender five-wall CNT, i.e., example

3 in Table 1. It is easy to see that this example consists of five beam-type SWCNTs whose aspect

ratio increases from 10 (the outermost tube) to 50 (the innermost tube), much larger than those of

examples 1 and 2. On the other hand, example 3 is (almost) solid with a small innermost radius

0.34nm. It therefore exhibits radial stiffness even higher than that of example 2. As a result, it is

seen in Fig. 3a that, in modes I, II, III and IV, the vibration of example 3 follows the beam-like

bending modes where n = 1 remains unchanged (i.e., the cross-section is circular without any

deformation) while m increases substantially from 1 to 4. In clamping one end of the constituent



tubes, the maximum frequency shift obtained for modes I, II, III and IV is 24.8GHz, 37GHz,

41.3GHz and 43.7GHz, respectively, (Fig. 3b) and the corresponding relative change is

calculated as 52%, 20.6%, 11.3% and 7.6%. These values are significantly larger than those

obtained for shell-like vibration of examples 1 and 2, showing that the beam modes of a slender

CNT are more sensitive to clamping the constituent tubes in axial direction. This observation can

probably be explained by the fact that the energy of the beam modes of slender example 3 is

completely determined by its bending in axial direction. However, the energy of the shell-like

vibrations of short examples 1 and 2 comes not only from off-plane bending but also from in-

plane stretching/compression of the tube walls. On the other hand, it is interesting to see in Fig.

2b that, in contrast to the case of slender example 3, the beam mode of short example 2 (mode II

in Fig. 2a) cannot be significantly affected by the clamped tube ends. Here the major difference

is that, without the interlayer vdW interaction, the five beam-type tubes of example 3 would still

vibrate in the same beam-like bending mode whereas, in the thick and short example 2, while its

beam-type tube is likely to oscillate in the beam mode, other four shell-type tubes would be

inclined to vibrate in shell-like modes. Thus, the predominant beam mode achieved in example 2

is originated from its beam-type innermost tube and the coupling between the motions of the

neighbouring tubes. In other word, the interlayer vdW interaction plays a more significant role in

the bending mode of example 2 (mode II). This naturally leads to less pronounced end constraint

effect on the beam-like vibration of example 2. In addition, shell-like vibration is also observed

for slender example 3 (mode V in Fig. 3a), whose frequency is found to be almost a constant

independent of the number N of clamped tubes (Fig. 3b).



The frequency up-shift kf∆ (k = 1, 2 …5) due to one clamped tube is also calculated for

modes I to IV of example 3. The ratio
5

kf

f

∆
∆

(k = 1, 2 …5) is presented in Fig. 4 c. As seen from

the figure, the tendency of
5

kf

f

∆
∆

(k = 1, 2… 5) to change with the tube number k is similar to

those shown in Fig. 4 a and b for examples 1 and 2. On the other hand,
5

kf

f

∆
∆

(k = 1, 2… 5) of

example 1 increases greatly from modes I to mode V, and is up to more than one order of

magnitude larger than those of examples 1 and 2 (Fig. 4 a and b). This reveals that clamping one

end of the outer tubes (with a larger radius) has much stronger effect on the structural stiffness of

slender MWCNTs vibrating in beam modes. Specifically, this effect turns out to be more

prominent for the beam like vibrations with a larger axial half wave number or a smaller half

wavelength. The more important role of the outer tubes in example 3 can be attributed to the fact

that the dynamic stiffness of the MWCNT vibrating in beam modes is largely dependent on the

inertial moment of the constituent tubes, which increases almost exponentially from the

innermost tube to the outermost one. Further, the strain and stress withstood by individual tubes

also rise linearly with the radius of these tubes which are bent like elastic beams.

4. CONCLUSIONS

The finite element method has been used to study the low frequency vibration of

MWCNTs with heterogeneous end constraints, which cannot be easily conducted by using

analytical methods. The heterogeneity is introduced by sequentially clamping one end of the

constituent tubes of originally simply supported MWCNTs. The attention of this study is thus



focused on the effect of clamping the tube ends on the free vibration of MWCNTs. Three types

of MWCNTs are considered, namely, thin and short, thick and short, and (almost) solid and

slender MWCNTs defined by / 5iR H ≥ , 1≈ and 25.0≤ , and 50 ≤DL and 10≥ , respectively.

The major conclusions arising from the present study are summarized as follows,

1. Clamping the ends of constituent tubes of MWCNTs significantly enhances the dynamic

stiffness of the whole MWCNTs. Thus, sequentially fixing the ends of these tubes results in

continuous frequency up-shift for almost all vibration modes of three types of MWCNTs under

consideration.

2. The most significant effect of clamping the tube ends occurs for the vibration mode I

associated with the lowest frequency and normally, the largest displacement amplitude. Such an

effect then decreases for the vibration modes II to V with higher frequencies and usually, smaller

displacement amplitudes. The maximum frequency increase around 40 to 50% has been achieved

for mode I and up to 20% for modes II to V of the three MWCNTs studied here.

3. In addition, enforcing clamped end on the outermost tube of MWCNTs can most efficiently

upshift the frequency of all the vibration modes for the three types of MWCNTs. The result

shows that the outmost tube plays the most important role in determining the dynamic stiffness

of MWCNTs as a coupled system. The contribution of individual tubes to the structural stiffness

of MWCNTs then declines from the outermost layer to the innermost one.

4. For a thick and short MWCNT, consecutively fixing its constituent tubes not only upshifts

its vibration frequency but also transforms its fundamental vibration modes, e.g., from the shell-

like vibration with deformation in both axial and circumferential directions to the beam-like



vibration with bending in axial direction only. Such a mode transformation could have potential

influences on the application and proper functioning of CNT-based nanostructures.
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Table 1 Five-wall CNTs as typical examples of MWCNTs considered in the present study

Examples

1 2 3

Thin Thick Solid/Slender

Ri (nm) 6.8 1.36 0.34

H (nm) 1.36 1.36 1.36

L (nm) 81.6 27.2 34

L/(D0) 5 5 10

Ri/H 5 1 0.25



(I) (II) (III) (IV) (V)

(a)

(b)

Fig.1 (a) The five low frequency vibration modes of Example 1, i.e., mode I, II, III, IV and V, and (b) the
dependence of the frequency associated with the five modes on the number of tubes with one end
clamped.
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(a)

(b)

Fig.2 (a) The five low frequency vibration modes of Example 2, i.e., mode I, II, III, IV and V, and (b) the
dependence of the frequency associated with the five modes on the number of tubes with one end
clamped.
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(a)

(b)

Fig.3 (a) The five low frequency vibration modes of Example 3, i.e., mode I, II, III, IV and V, and (b) the
dependence of the frequency associated with the five modes on the number of tubes with one end
clamped.
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(a) (b) (c)

Fig. 4 The frequency up-shift ratio
5f

fk

∆
∆

(k = 1, 2… 5) as a function of tube number k (k = 1,

2…5) calculated for modes I, II, III, IV and V of (a) example 1, (b) example 2 and (c) example 3

in Table 1. Here 1f∆ , 2f∆ 3f∆ 4f∆ and 5f∆ represent the frequency up-shift achieved by

clamping the outmost tube 1, the next tube 2 … and finally, the innermost tube 5 in the process

of sequentially clamping one end of constituent tubes described in section 3.


	Contents of paper.doc
	Go to page 1 of 23
	Go to page 2 of 23
	Go to page 3 of 23
	Go to page 4 of 23
	Go to page 5 of 23
	Go to page 6 of 23
	Go to page 7 of 23
	Go to page 8 of 23
	Go to page 9 of 23
	Go to page 10 of 23
	Go to page 11 of 23
	Go to page 12 of 23
	Go to page 13 of 23
	Go to page 14 of 23
	Go to page 15 of 23
	Go to page 16 of 23
	Go to page 17 of 23
	Go to page 18 of 23
	Go to page 19 of 23
	Go to page 20 of 23
	Go to page 21 of 23
	Go to page 22 of 23
	Go to page 23 of 23


