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Abstract

This paper presents a simple analytical model of a longitudinal hollow cathode discharge used

in metal vapor lasers. The model describes the principle relations between the voltage,

current, plasma density, and the axial structure of the discharge. Contrary to standard DC

discharges, this discharge does not require electron multiplication in the cathode fall to

produce ions, but rather to satisfy the electron energy balance. A self-sustainment condition is

obtained from the energy balance per electron-ion pair. From this, it follows that there is a

maximum voltage at which the cathode fall thickness tends to zero and the current density

tends asymptotically to infinity. The discharge develops axial non-uniformity and an axial

electric field in order to evacuate the created electrons to the anode, such that the

characteristic time for transport losses is the same for electrons as for ions. The axial profiles

of the current density, plasma density, and potential are obtained from the electron continuity

equation. It is shown that additional energy absorption from the axial field, similar to electron

heating in DC positive columns, modifies the self-sustainment condition and thus leads to a

shift in the voltage-current characteristic, depending on the cathode length.

Confidential: not for distribution. Submitted to IOP Publishing for peer review  15 September 2010



2

1. Introduction

Hollow cathode discharges (HCDs) are widely used in applications in different fields: laser

technology, atomic spectroscopy, UV generators, vacuum microelectronics, materials

processing, etc. Although these discharges feature a large variety of configurations, they are

generally characterized by the so-called hollow cathode effect: an exceptionally high

discharge current, compared to conventional DC discharges at the same voltage, due to the

cathode surface surrounding (a large part of) the plasma. The hollow cathode effect is

accompanied by exceptionally high plasma density, intensive light emission, and cathode

sputtering, properties of great interest for the applications.

The general physical principles of HCDs have been studied for many decades and are

discussed in many papers on the basis of experiments, analytical models, and numerical

simulations. [1-14] Several phenomena are considered responsible for the hollow cathode

effect, in particular the electrostatic trapping of fast electrons in an oscillating motion inside

the cathode, known as the pendulum effect [4,6], and the enhanced secondary-electron

emission by UV photons [1] and ions [9] created in the negative glow plasma inside the

cathode. A number of papers is devoted to the role of metal vapor atoms due to cathode

sputtering. [2,10] However, the importance of each of these phenomena depends on the HCD

geometry. [9]

In this paper we present a simple analytical model of HCDs that are used in metal vapor

lasers, both as a metal vapor source by cathode sputtering and as an active medium to excite

the laser transition of the metal atoms or ions. [15] These HCDs have an elongated cylindrical

cathode geometry, coinciding with the laser cavity. Different configurations are used for the

anode. In the so-called transversal configuration, the anode is positioned beyond a narrow slit

in the cathode cylinder all along its length. This paper, however, focuses on the longitudinal

configuration, where the anode is a ring at the end of the cathode cylinder and the discharge

involves axial electron transport.

The longitudinal configuration has a more stable discharge operation but leads to axial non-

uniformity of the discharge. Experimentally, it was observed [11,16-18] that (1) the current

density and optical emission decrease along the cathode cylinder axis as a function of distance
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from the anode; (2) the voltage-current characteristic is very flat but shifted in voltage when

the cathode length is changed; (3) these features are rather independent of pressure, gas

composition, and metal vapor. In several previous publications [16-18], we reproduced these

experimental findings by comprehensive two-dimensional numerical simulations. The

analytical model presented here aims at interpreting our previous results. We revisit and

combine some elementary theories and extend them to account for the axial non-uniformity of

the longitudinal HCD. In view of our earlier findings, we focus on the main discharge

properties such as current density, plasma density, and potential distribution, rather than

plasma chemistry and metal vapor dynamics. The next section gives a more detailed

introduction to the issues addressed in this paper.

2. Discharge configuration and physical principles considered in this paper

The geometrical configuration considered in this paper is shown schematically in figure 1. It

consists of a copper cylindrical hollow cathode with an inner radius of a few millimeters and a

length of a few centimeters, bounded on either side by a thin dielectric ring and an anode ring

of the same inner radius. The geometry is symmetric around the center of the cathode (both

axially and azimuthally). A DC voltage of a few hundred volts is applied between the cathode

and anodes to sustain the discharge. The discharge gas is typically helium with a small

admixture of argon at an intermediate gas pressure of a few kPa, with argon ions dominating

the discharge. Some typical parameter values are given in Table 1; these values will be used

to evaluate the analytical expressions derived in this paper.

The discharge operation is illustrated in Figure 2 by the results of our previous two-

dimensional numerical simulations [16-18]. These simulations are based on the self-consistent

solution of continuity and drift-diffusion equations for different plasma particle species, an

electron energy equation, and Poisson’s equation. The particle species taken into account are

electrons and different ionic and excited neutral species of helium, argon, and copper. Particle

source terms due to ionization, excitation, and other plasma chemistry are calculated using

rate coefficients as a function of the electron mean energy. Wall recombination, secondary

electron emission, and copper sputtering are accounted for by wall-flux boundary conditions.
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Figure 2 shows that, owing to the presence of a plasma, the anode potential propagates along

the cylinder axis inside the cathode, such that most of the applied voltage falls in the radial

direction across a thin space-charge sheath in front of the cathode, called cathode fall region

or simply cathode fall (CF) in this paper. Outside the CF, the potential is close to the anode

potential, with small radial variations of the order of the electron temperature to ensure quasi-

neutrality of the plasma, and a relatively small axial gradient to ensure continuity of the

plasma current.

The electron and ion transport in the CF are mainly radial and control the current and plasma

density. The plasma is sustained by volume ionization (figure 2d) using the energy absorbed

by electron acceleration in the CF (figure 2e), similar to the plasma in the negative glow

region of conventional DC discharges, and is therefore regarded entirely as a negative glow

plasma. What distinguishes this discharge from conventional DC discharges is that the ions

created in the plasma are all transported to the cathode and make an important contribution to

the secondary electron emission, so that less electron multiplication in the CF is needed to

sustain the discharge. As a result, the CF becomes thinner, the ion density in the CF higher,

and the discharge operates at higher current density. We will analyze this in the first part of

this paper, in sections 3-4.

The discharge develops non-uniformity along the axial direction in order to generate an axial

electron current that transports all created electrons to the anode. This is analyzed in the next

part of this paper, in sections 5-6. We will show that the non-uniformity involves an axial

electric field from which the plasma electrons absorb additional energy, leading to a shift in

the current-voltage characteristic as a function of cathode length.

The potential profile inside the hollow cathode (figure 2a) traps the electrons in the radial

direction, which makes it possible to sustain the discharge at low gas pressures where the

electron mean free path exceeds the plasma size. The electrons accelerated in the CF then

make multiple passes through the plasma at high velocity, each time reflected by the CF on

the other side. This phenomenon is known as the pendulum effect and is generally considered

essential for the HCD operation. The pendulum effect cannot be described by electron fluid

equations and was studied previously by electron particle simulations [4,7] and a nonlocal

approximation of the electron Boltzmann equation [6]. However, our previous simulations

(figure 2) are based on electron fluid equations and thus neglect the pendulum effect. To get
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more insight in the role of the pendulum effect and the possible consequences of neglecting it

(in our fluid simulations), we consider in this paper the following two limit cases. First, we

will derive the analytical model (sections 3-6) by assuming that the electron mean free path is

much shorter than the plasma radius, so that the pendulum effect can be neglected, as in the

fluid simulations. Then, in sections 7-8, we will revisit the equations derived in the previous

sections, assuming that the electron mean free path is very much larger than the plasma

radius. The reality can be expected to be in between these two cases. We will show that some

of the main principles of the HCD operation are similar for the two cases.

3. Self-sustainment condition

It is well known that in DC discharges, the thickness of the CF adjusts to satisfy the self-

sustainment condition: an electron emitted from the cathode by ion impact must cause, during

its life time, the creation of enough ions to ensure the emission of a new electron. More

precisely, if γ is the secondary emission coefficient characterizing the effective emission

probability per ion, then each emitted electron must create exactly 1/γ ions that are transported

to the cathode. In conventional DC discharges, most of the ions impacting the cathode are

created in or near the CF. The emitted electrons must then multiply by a factor 1+1/γ as they

cross the CF region. Equating this factor to exp(αd), the Townsend expression for the electron

multiplication factor, we obtain the well known self-sustainment condition [19]

1 1
ln 1d

α γ
 

≈ + 
 

, (1)

where d is the CF thickness and α is the Townsend coefficient, characterizing the mean

ionization probability per unit traveled length, which is relatively constant for the high

electron energies in the CF. In the steady state of conventional DC discharges, the CF has

developed such that its thickness approximately satisfies equation (1).

However, equation (1) does not hold for HCDs because the ions created in the plasma beyond

the CF are nearly all transported to the cathode and make an important contribution to the

secondary electron emission, almost regardless of their position of creation. Let us analyze

this for the HCD geometry of figure 1. The electron and ion transport across the CF is

essentially radial. We assume that the CF thickness d << cathode inner radius R so that the
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curvature of the CF can be neglected, i.e. the radial position coordinate r behaves as a

Cartesian coordinate for R−d < r < R. For simplicity, we also assume that the coefficients α

and γ are constant and that the electrons have so many collisions that they quickly lose their

high energy after leaving the CF, so that they cannot penetrate in the CF on the other side of

the plasma (i.e. we neglect the pendulum effect).

According to the Townsend model [19], the electron flux Γe in the CF grows exponentially as

a function of distance from the cathode:

( )( ) ( )exp ( )e ir R R rγ αΓ = − Γ − ; (2)

the ion flux Γi follows from current conservation:

( )( ) 1 exp ( )
1i

Jr R r
e

γ α
γ

 
Γ = − − + 

, (3)

where ( )i eJ e= Γ −Γ is the current density which is constant across the CF (for d << R). From

equation (3) we can observe that if a significant ion flux enters the CF from the plasma,

( ) 0i R dΓ − > , then the CF must be thinner than in equation (1):

1 1
ln 1d

α γ
 

< + 
 

. (4)

However, to find the value of the CF thickness d we need to know how many ions are created

in the plasma beyond the CF. This can be estimated from the electron energy balance, e.g. by

balancing the average energy absorption and the energy losses associated with the creation

and loss of a single electron-ion pair, as follows. We assume that the radial profile of the

potential Φ in the CF is parabolic so the electric field E is linear:

( )2
( ) 1 ( ) /r V R r dΦ = − − − (5)

( )2
( ) 1 ( ) /

VE r r R d
r d

∂Φ= − = − − −
∂

(6)

where V is the total voltage. Combining equations (2) and (6), the electric energy absorbed by

electrons in the CF is then

CF

1
( ) ( )

( )

R

e
i R d

H e r E r dr
R −

= − Γ
Γ ∫ 2

exp( ) 1
2

( )

d d eV
d

α α γ
α

− −= , (7)

on average per ion impacting the cathode. Since each electron-ion pair created in the volume

corresponds to an ion impacting the cathode, HCF from equation (7) is directly the average

absorbed energy per electron-ion pair. This absorbed energy depends on the electron
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multiplication because also the new electrons created in the CF absorb energy, leading to

‘multiplication’ of the absorbed energy. So the thicker the CF, the higher the absorbed energy

per electron-ion pair. The lower limit for the absorbed energy is γeV, corresponding to the

case d = 0 when the emitted secondary electrons do not multiply in the CF.

The electron energy losses can be conveniently represented by the energy per electron-ion

pair W, which is a rather constant parameter, typically a few times the ionization potential,

determined mainly by the discharge gas and weakly dependent on the electron energy (for the

energy range of interest here). This parameter W is often used and given in the literature for

high-energy electron beams [20] but it can be defined for gas discharges in general [21,22].

For our HCD, the total energy per electron-ion pair consists of different contributions due to

collisions and transport [21]:

collision
tr

ionization

lost power

ionization rate

j j j
j

i i
i

k
W W

k

ε χ

χ
=

=

= +
∑
∑

� (8)

where ε is the mean energy lost in a collision (constant for inelastic collisions), k is the rate

coefficient, χ is the fractional density of the target species, and the sums run over all collision

processes j and over the ionization processes i only. The last term Wtr is the energy loss

associated with electron transport loss to the anode, which is effectively felt in the cathode

region by thermal conductivity. From the numerical simulation results, the two terms of

equation (8) can be estimated to be approximately 37 eV and 13 eV, adding up to W ≈ 50 eV

(see table 1). For simplicity we assume that W is constant.

Equating the absorbed energy HCF and the lost energy W, we find:

2

exp( ) 1
2

( )

d d eV W
d

α α γ
α

− − = . (9)

This energy balance can be seen as a self-sustainment condition for HCDs and controls the CF

thickness d, meaning that d adjusts such that the right amount of energy is absorbed to create

the ions necessary to sustain the discharge by secondary emission. The left-hand side of

equation (9) is a monotonically rising function of αd that can be well approximated by Taylor

expansion (of its logarithm) so that d can be solved. This yields:

( ) max
max

6 3
1 ln( / ) 1 1

Vd V V
Vα α

 ≈ − − ≈ − 
 

, (10)
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where V cannot exceed the maximum voltage

max

WV
eγ

= . (11)

The first approximation in equation (10) is accurate to within a few percent over the entire

range of V. The second simpler approximation is valid only in case the CF is so thin that αd <

0.3 but in practice this is often the case; this expression was given previously in the context of

HCDs [9]. The exact solution of equation (9) and the approximate solutions (10) are shown in

figure 3. The maximum voltage (11) corresponds to the point where the energy balance is

satisfied without electron multiplication in the CF. Beyond this voltage the absorbed energy

always exceeds the energy loss, regardless of d, so the energy balance cannot be satisfied.

Substituting some typical values γ = 0.1 and W = 50 eV from table 1, we find a maximum

voltage of 500 V.

4. Radial ion transport

Given the CF thickness, the ion density ni in the CF follows from Poisson’s equation:

2

i 0 02 2

2Ven
r d

ε ε∂ Φ= − =
∂

, (12)

where we have used equation (5) and neglected the electron charges and the curvature of the

CF (as before). From this, the current density can be estimated as

i(1 ) ( ) (1 )i iJ e R enuγ γ= + Γ +� , (13)

where ui is the ion mean velocity in the center of the CF fall. Note that the ion velocity can be

expected to vary across the CF much more than the flux Γi, which is not fully consistent with

our assumption of uniform ni and parabolic Φ(r), but the resulting errors are minimized if we

take ui in the center of the CF at position r = R − d/2. Assuming that ui is of the form βE1/2,

which a good approximation for collisional noble gas ions in high field [19], the current

density is then

i(1 )
VJ en
d

γ β+�
3/2

0
5/2

2(1 ) V
d

γ ε β+= . (14)

On the other hand, if the ion mean free path > d so that ui is limited by inertia rather than

collisions, the current density is
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1/2 1/2 3/2
0

i 1/2 2

2 (1 )
(1 )

2 i i

e VeVJ en
m m d

γ εγ ++ =� , (15)

where mi is the ion mass. This latter situation can arise in gas mixtures where the dominant

ions correspond to a minority component of the mixture so that they undergo few charge

transfer collisions, e.g. Ar+ ions in He-Ar mixtures with a small Ar fraction.

When substituting equation (10) in equation (14/15), as in figure 4, we see that the current

density J increases rapidly as V approaches the maximum voltage Vmax and the CF thickness

approaches zero. This an important advantage of HCDs, essential for the hollow cathode

effect: the current density can become much higher than in standard DC discharges because

the self-sustainment condition allows a very thin CF. In fact, HCDs are usually operated at

high current density close to the maximum voltage V ≈ Vmax to within 10% or so. This implies

that αd < 0.3 and that most ionization happens in the plasma rather than the CF, so that the

ion flux is very nearly constant across the CF:

( ) ( )
(1 )i i
JR d R
eγ

Γ − ≈ Γ =
+

(16)

to within a few % as can be seen from equation (3). In the following we neglect that some

ions are created in the CF and assume that the ion flux is totally created in the plasma; we will

simply write Γi for the ion flux anywhere in the CF.

Given the ion creation in the plasma, the plasma density n is determined by the ion transport

losses to the CF. Following the standard elementary theory for DC positive columns and

many other discharges [19,22], we assume that the electrons in the plasma have a uniform

temperature Te that controls both their pressure and ionization frequency νiz. The ions are

transported by the ambipolar electric field Eamb ≈ −Te∇ n/n resulting from the electron

momentum balance. Neglecting axial ion transport, the ion transport equation is

( )amb iz

1 1
( ) ( ) ( )i i e e

nr E n r T r T n r
r r r r r

µ µ ν∂ ∂ ∂ = − = ∂ ∂ ∂ 
 (17)

where µi is the ion mobility at low electric field. The solution is a Bessel profile:

0 0( ) ( )rn r n J k r= % iz
r

i e

k
T

ν
µ

= . (18)
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Neglecting the CF thickness (d << R) and the ion density in the CF (ni << n0), we impose the

boundary condition that the ion density is zero at the cathode, which yields an implicit

equation for the electron temperature:

2

iz ( ) 2.405e
i

e

T
T R

ν µ  =  
 

(19)

Since νiz(Te) is a very steep function, Te is determined quite precisely by this equation and not

very sensitive to changes in the gas density or radius R. The amplitude of the plasma density

profile can be found by equating the total ionization rate (integrated over the cross section of

the plasma) to the ion flux in the CF (integrated over its circumference):

2
iz iz0

( )
R

in r rdr R n Rν π ν π π2 = = 2 Γ∫ , (20)

hence the radial-average plasma density is

2
iz

2 2

2.405 (1 )
i

i e

Rn J
R e Tν γ µ

= Γ =
+

. (21)

i.e. the plasma density is proportional to the current density in the CF. Equation (21) can be

combined with equation (14/15) to find the plasma density from the CF voltage.

5. Axial electron transport

While the ions are lost by radial transport to the cathode, the electrons are lost by transport in

the axial direction toward the anode. This requires an axial electric field Ez in the plasma,

corresponding to a decrease of the CF voltage V as a function of the axial distance z from the

anode, and leads to a decrease of the plasma density n and the CF current density J as a

function of z. In this section we derive the axial profiles J(z), ( )n z , V(z), etc, from the

equations for the axial electron transport. The axial coordinate z is defined in figure 1b.

The axial electron flux results from both the electric drift and diffusion due to the density

gradient. Integrated over the cross section of the plasma, the electron continuity equation with

drift-diffusion flux is

2 2 (1 )e z e e i
nR E n T R

z z
π µ µ π γ∂ ∂ − − = + Γ ∂ ∂ 

 (22)



11

where µe is the electron mobility and the right-hand side is the total rate of electron creation

by secondary emission and volume ionization. We assume that µe and Te are independent of z

and substitute equations (21) and (16):

2
2.405

(1 )z i

e e

E JJ J
z T z R

µγ
µ

 ∂ ∂  + = − +   ∂ ∂   
, (23)

where we have chosen to work with the CF current density J; however, this is directly

proportional to the average plasma density n . To calculate the axial profiles, we could now

substitute Ez = −∂V/∂z and J(V) from equation (14/15) and then try to solve for V(z), but this

is cumbersome. Rather, we linearize equation (23) by assuming that Ez is uniform, in

agreement with the numerical simulation results in figure 2. As a first boundary condition we

assume that J = 0 at the cathode-anode interface at z = 0. This is consistent with the fact that

the plasma density drops to zero within a small distance ~R inside the anode, as is shown by

the numerical results in figure 2. For the second boundary condition, considering the axial

symmetry of the geometry, we impose that the axial electron flux is zero at the position z = L

corresponding to the center of the cathode:

( ) 0z

z Le

E JJ L
T z =

∂ + = ∂ 
 (24)

where the two terms come from drift and diffusion. (Note that, taking Ez constant, we cannot

impose the Neumann boundary condition ∂J/∂z = 0 because this would lead to nonphysical

inflow of electrons at z = L.)

The appropriate solution of equation (23) is

0 1 2( ) exp( )sin( )J z J k z k z= − (25)

where J0 is a normalization constant and k1 and k2 are space constants given by

1 2
z

e

Ek
T

= (26)

2 2
2 0 1k k k= − (27)

0

2.405
1 i

e

k
R

µγ
µ

= + . (28)

In these equations, the axial electric field Ez is not a free input parameter, but an eigenvalue

parameter (similar to Te in equations (18-19)) to be determined from the boundary condition
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(24). Together with (27), this boundary condition yields the following implicit equations for

k1 and k2:

2

2 0

sin( ) 1k L
k L k L

= 1 0 2cos( )k k k L= − , (29)

whose solution is shown in figure 5. In a good approximation (obtained by Taylor expansion

around k2L = π) equation (29) yields

2
2

1 0
0

4
1 1 1

8
k k

k L
π  

 ≈ − + −     
. (30)

This determines the axial electric field through equation (25):

12z eE T k= , (31)

i.e. the field adjusts to satisfy the boundary conditions. Note that the value of Ez selected by

our boundary conditions is also the smallest Ez value allowed by the general solution of

equation (23), corresponding to the most uniform current density J(z).

Equations (30-31) show that the axial electric field depends on the cathode length. The field is

weaker as the cathode is shorter, decreasing from 2Tek0 for very long cathodes, to zero for k0L

= π/2. For still shorter cathodes the electric field is reversed:

02
L

k
π< ⇒ 0zE < . (32)

Substituting the values from Table 1, we find that k0 = 201 m-1 so the field reversion occurs

for L < 7.8 mm, which agrees quite well with our previous numerical simulation results

[17,18] (note that in these references, the cathode length l corresponds to the whole cathode

cavity, i.e. l = 2L). Figure 6 shows a comparison, for different cathode lengths, of the

analytical potential −Ezz and the on-axis potential in the numerical simulations. This figure

also compares the analytical current density profile (25) with the current density at the

cathode in the numerical simulations. Note that for very short cathodes with strong field

reversion (L = 5 mm) the assumption of constant Ez is no longer reasonable and the analytical

solution (25) is no longer appropriate.
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6. Influence of axial electric field on self-sustainment

To normalize the current density profile J(z) and calculate the total discharge current, we use

equation (14/15) obtained from Poisson’s equation, in combination with the CF thickness d

from the energy balance. In order to do this rigorously, we should establish the energy balance

integrated (or averaged) over the axial position z, since the energy is not necessarily lost at the

same position where it has been absorbed, but nearly the same results can be obtained in a

much simpler way by applying the energy balance locally at the position z = zm where J is

maximum. This maximum takes place some distance inside the cathode (for long enough

cathodes with k0L > π/2) and is given by

m
2

z L
k
π= − (33)

2
m m 0 1 m

0

( ) exp( )
kJ J z J k z
k

≡ = − , (34)

so the current density profile (25) can be written as

( )0
m 1 m 2

2

( ) exp ( ) sin( )
kJ z J k z z k z
k

= − − . (35)

We now estimate Jm by substitution of equation (10) in equation (14/15), as shown in figure 4.

The CF voltage V at z = zm differs from the applied discharge voltage by the anode sheath

voltage and by the axial voltage drop in the plasma Ezzm < 2Te but in total this voltage

difference so small that it can be reasonably neglected. We simply use the applied voltage for

V in equation (10).

However, the energy balance from section 3 requires an important modification in order to

account for the axial electric field Ez. The electrons can absorb energy from this field, in

addition to the energy HCF absorbed in the CF. Although the axial field is relatively weak, it

can have a significant influence because it acts upon all electrons everywhere in the plasma,

whereas the CF field acts only upon part of the electrons in a small part of the volume. Per

electron-ion pair, the energy absorbed from the axial electric field is

2

2z e z e e z
i

R nH E n T E
R z

π µ µ
π

∂ = − − − Γ ∂ 
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2
1

2
0 1

1
(1 )4 1

2e
k JeT
k k J z

γ
 ∂= + + ∂ 

. (36)

The last factor in brackets, accounting for electron diffusion, is negligible near the point z = zm

as well as on average over the cathode length. Including the additional absorbed energy in the

energy balance, HCF + Hz = W, we see that Hz compensates for some of the energy losses,

thereby reducing the maximum voltage in equation (10) and further. For the point z = zm we

find

2
1

max 2
0

1
(1 )4z

e
W H kV W eT
e e k

γ
γ γ

 −= = − + 
 

(37)

rather than equation (11). Upon substitution of the ratio k1/k0 from equation (30) and figure 5,

it turns out that the maximum voltage now depends on the cathode length, decreasing

monotonically by approximately 4Te/γ as the cathode length is increased from very short to

infinity.

The total discharge current I is directly related to Jm as

0
2 ( )

L
I R J z dzπ= ∫ 1 m

m
0

exp( )
2

k zRL J
k L

π= . (38)

Calculating this for different voltages V, we find the voltage-current characteristic V(I),

which is shown in figure 7 for different cathode lengths and compared with numerical

simulation results. The V-I curves for different cathode lengths are shifted in voltage due to

different energy absorption Hz from the axial field, following the trend of the maximum

voltage (37). The shifts between the analytical curves are somewhat larger than between the

numerical curves, which is consistent with the axial potential profiles in figure 6, varying

more in the analytical model than in the numerical simulations. Similar voltage shifts are

observed in experimental V-I curves [17,18].

It is interesting to remark that most of the results in this and the previous section actually do

not depend directly on the cathode length L, but rather on the parameter

0 2.405 1 i

e

Lk L
R

µγ
µ

= + , (39)

i.e. on the aspect ratio length/radius, so decreasing the radius has the same effect as increasing

the length. This was found earlier in [18]. The appearance of k0L as a scaling parameter is due

to the fact that the characteristic time for transport losses is the same for the ions (lost by
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radial transport) as for the electrons (lost by axial transport), which is necessary to obtain a

quasi-neutral plasma.

7. Influence of pendulum effect on self-sustainment

In the previous sections we assumed that the electrons have so many collisions that they

rapidly lose their energy in the plasma and pass through the CF only once. This assumption is

consistent with our previous fluid simulations, but its validity is doubtful. In fact, the

electrons accelerated in the CF can have such a long mean free path that they penetrate in the

CF on the other side of the plasma, and this is generally considered essential for the HCD

operation. Therefore, in this section, we investigate the possible consequences of a long

electron mean free path for the above analytical model. We consider the extreme limit case

that the electron mean free path >> cathode radius. Then, the electrons coming from the CF

oscillate in the potential well formed by the CF surrounding the plasma, passing through the

plasma at high velocity many times before loosing their energy, each time penetrating into the

CF on the other side and reflected by it. We will call these electrons fast electrons; their

oscillating motion is the pendulum effect. As in section 3, we describe the electron collisions

by a constant Townsend coefficient α (ionization probability per unit traveled length) and

constant energy loss per ionization W. We assume that the fast electrons are only forward-

scattered in the collisions, so that their velocities remain in the radial direction, and that any

new electrons are created with zero initial energy.

Let us first analyze how the pendulum effect modifies the self-sustainment condition (9)

derived in section 3. Consider a secondary electron emitted from the cathode, becoming a fast

electron. During a single pass through the plasma (from the CF to the CF on the other side)

the electron is expected to produce ~ 2αR ionizations and lose an energy ~ 2αRW, where we

neglect the CF thickness d << R. As the electron loses energy, it can penetrate less deeply into

the CF. After m passes through the plasma the electron has lost an energy 2mαRW and

penetrates into the CF up to a position rm given by

( )2
( ) 1 ( ) / ( 2 )m me r eV R r d eV m RWαΦ = − − − = − − , (40)

where we have used the potential profile from equation (5). Hence the number of times that

the electron passes at a given position r in the CF is
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( )( )2
2 ( ) 1 1 ( ) /

eVm r R r d
RWα

= − − − , (41)

where the factor 2 takes into account that the electron passes twice through the CF (forth and

back) for each pass through the plasma. The expected number of ionizations that this electron

produces inside the CF is

2
2 ( )

3

R

R d

d eVm r dr
R W

α
−

=∫ . (42)

The resulting new electrons are accelerated through part of the CF voltage and also become

fast electrons. The total energy absorbed from the CF by the secondary electron plus the new

fast electrons is

2 ( ) ( )
R

R d
U eV m r e r drα

−
= − Φ∫

2
1

15

d eVeV
R W

 = + 
 

. (43)

Note that the new fast electrons create other fast electrons, which then also absorb energy, etc,

but this additional energy is proportional to higher powers of d/R and can be neglected for the

case d/R << 1 considered here. Dividing the absorbed energy U by the energy per ionization

W, we find the total number of ionizations M in both the CF and the plasma, due to a single

secondary electron emitted from the cathode:

2
1

15

U eV d eVM
W W R W

 = = + 
 

. (44)

A similar expression was given by [9] as an upper limit of the multiplication factor (except

that 2/15 is replaced by 1/4). This number is much larger than the number of fast electrons

created in the CF from equation (42), so most electrons are electrons created outside the CF in

the plasma, where they remain at relatively low energy and form the bulk of the plasma.

However, in our longitudinal HCD geometry these bulk electrons can absorb energy from the

axial electric field and cause additional ionization. Therefore, in order to find the self-

sustainment condition and CF thickness, we write again the electron energy balance per

electron-ion pair, including the energy Hz absorbed from the axial field:

CF z zH H U H Wγ+ = + = (45)

which yields

max15
1

2

VWd R
eV V

 = − 
 

max
zW HV

eγ
−= . (46)

This agrees with equation (10) in section 3, if we replace

2

5

eV
WR

α → . (47)
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Substituting the values from table 1, we see that α = 1333 m-1 is to be replaced by a somewhat

larger value ≈ 2000 m-1. This suggests that for these conditions, the pendulum effect is

important but not completely dominant. It also suggests that our previous fluid simulations

somewhat underestimate the electron multiplication.

Note that according to some previous papers [4,6], the essence of the pendulum effect is that

it allows the fast electrons to create new electrons inside the CF, which also become fast

electrons, and so on, leading to an exponential increase of fast electrons and absorbed energy

(per secondary electron). However, this mechanism is not specific for the pendulum effect but

is also present if the electrons pass through the CF only once. This is the reason why equation

(46) has same form as equation (10) in section 3. The pendulum effect just allows the

electrons to ionize the gas at arbitrarily low pressure. The discharge then becomes

independent of the Townsend coefficient α, according to equation (47).

8. Influence of pendulum effect on plasma properties

Finally, let us briefly discuss the consequences of the pendulum effect for the plasma

properties. We need to take into account that there are two groups of electrons with different

kinetic behavior. The fast electrons are responsible for most of the ionization but do almost

not contribute to the plasma density and ambipolar field, which are determined mainly by the

bulk electrons. Assuming that the bulk electrons can be characterized by a uniform

temperature Te and neglecting the fast-electron density, the ion transport equation is

fast iz

1
( ) ( ) ( )i e e

nT r S r T n r
r r r

µ ν∂ ∂ − = + ∂ ∂ 
, (48)

where Sfast is the ionization rate due to fast electrons and n, Te, and νiz represent only the bulk

electrons. The solution of this equation is no Bessel profile as in section 4 because the fast-

electron ionization Sfast(r) is not proportional to bulk-electron density n(r). In fact, in view of

the essentially radial motion of the fast electrons, Sfast(r) can be expected to be peaked around

the axis due to focusing of the electron trajectories. We will not calculate the radial profiles;

we simply integrate equation (48) over the cross section of the plasma:

2
fast iz

0

2 2 2 ( )
R

i i e
r R

nR R T S r rdr R n
r

π π µ π π ν
=

∂ Γ = − = + ∂  ∫ . (49)



18

The density gradient at the boundary can be written as

r R

n nC
r R=

∂  = ∂ 
, (50)

where C is a numerical constant which is approximately 3 to 4 for any kind of physically

reasonable profile n(r); for a Bessel profile C = 2.4052/2 = 2.892. Hence, the first two

members of equation (49) yield

(1 )
i

i e i e

R Rn J
C T C e Tµ γ µ

Γ= =
+

, (51)

which remains close to equation (21) in section 4 even if n(r) is not exactly a Bessel profile.

Furthermore, the integral of Sfast must be consistent with the number of fast-electron

ionizations calculated in equation (44):

fast0
2 ( ) 2

R

iS r rdr R Mπ π γ= Γ∫ 2 1 z
i

HR
W

π  = Γ − 
 

, (52)

where we have also used equation (45). Substituting equations (51-52) in equation (49), we

obtain an equation for the bulk-electron temperature:

iz
2

( ) 2e i z

e

T C H
T R W

ν µ= . (53)

Comparing this with equation (19) in section 4, we see that the right-hand side is smaller by

approximately a factor Hz/W, leading to a lower electron temperature, and consequently to a

higher plasma density from equation (21/51). Expressing the absorbed energy Hz in terms of

the axial electric field Ez, as in equation (36), equation (53) can also be written as

2
iz ( )e e zT W e Eν µ≈ . (54)

This clearly shows that the bulk-electron temperature is directly controlled by the local axial

field, exactly as in a DC positive column, and contrary to the electron temperature in section 4

without the pendulum effect. What is more, a lower electron temperature can be expected to

reduce the axial field and the absorbed energy. According to section 5, both Ez and Hz are

proportional to Te so that a decrease of Te causes a proportional decrease of Hz, which reduces

Te even further, and so on. Substituting equation (36) in equation (53), we get

2

iz 1
2 2

0

( )
8 (1 )e i

e

T kC
T k WR

ν µγ
 

+  
 

� . (55)

The Te from this equation can indeed be much lower than that from equation (19). However,

this result depends strongly on our assumption that all bulk electrons are created with zero
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initial energy. A more quantitative estimation of the bulk-electron temperature would involve

treating the energy transfer from the fast electrons to the bulk electrons.

9. Conclusions

The analytical model presented in this paper gives the following insights in the operation of

longitudinal HCDs:

• Since the ions created in the plasma are all collected by the cathode and cause

secondary electron emission, electron multiplication in the CF is not necessary to

sustain the discharge, but rather to satisfy the energy balance per electron-ion pair: the

absorbed energy increases as a function of the electron multiplication in the CF. The

CF thickness adjusts such that the right amount of energy is absorbed to create the ions

necessary to sustain the discharge by secondary emission.

• There is a maximum CF voltage beyond which the absorbed energy always exceeds

the lost energy so that the energy balance cannot be satisfied. When increasing the

voltage up to this maximum voltage, the CF thickness decreases down to zero, in order

to minimize the absorbed energy. According to Poisson’s equation, the ion density and

current density in the CF then increase to infinity (or at least to such high values that

the present model is no longer reasonable). The typical operation of the longitudinal

HCD is close to this maximum voltage, with a thin CF where almost no electron

multiplication takes place.

• The longitudinal HCD develops axial non-uniformity and an axial electric field in

order to evacuate the created electrons to the anode, such that the characteristic time

for transport losses is the same for electrons as for ions. The axial electric field

necessary to achieve this is stronger as the cathode is longer, or more precisely, as the

ratio cathode length / cathode radius is larger. For very short cathodes the axial electric

field is reversed to slow down electron diffusion losses to the anode.



20

• Additional energy absorption from the axial electric field in the plasma bulk, similar to

electron heating in DC positive columns, modifies the energy balance per electron-ion

pair and hence modifies the CF thickness. This leads to a shift in the maximum

voltage depending on cathode length, resulting in a voltage-shift of the voltage-current

characteristic. This is also observed in experiments and in our previous numerical

simulations.

• In principle, the above mechanisms are not directly affected by or dependent on the

pendulum effect. The pendulum effect just allows the ionization to take place for

arbitrarily long electron mean free paths, imposing an effective lower limit 2eV/5WR

on the Townsend coefficient α. However, the pendulum effect can also be expected to

reduce the temperature of the electrons in the plasma bulk, thereby reducing both the

axial and the radial electric field in the plasma, slowing down the radial ion transport,

and consequently increasing the plasma density for a given current. Our previous

numerical fluid simulations could be unrealistic on these points. We remark

nevertheless that our simulation results were found in good overall agreement with

experimental data. More work is need to clarify this issue, e.g. using electron Monte-

Carlo simulation, as in [11,12].
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Tables

Table 1. Parameters of the HCD configuration considered in this paper. The exact definition

of the parameters is given further on in the text. The values in the lower part of the table are

estimates based on our previous numerical simulations.

Parameter Symbol Value

-------------------------------------------------------------------------

Cathode radius R 2 mm

Cathode length 2L 2-8 cm

Applied voltage V 350-500 V

Discharge current I 0.2-2 A

Gas composition 95% He – 5% Ar

Gas density 1.666×1023 m-3 

Gas temperature 1000 K

Electron temperature (plasma) Te 3.67 eV

Electron mobility µe 11.4 m2s-1 

Ion mobility (plasma) µi 0.29 m2V-1s-1 

Ion mobility coefficient (CF) β 15 m3/2V-1/2s-1 

Townsend coefficient α 1.3×103 m-1 

Secondary emission coefficient γ 0.1

Energy per electron-ion pair W 50 eV

------------------------------------------------------------------------
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Figure captions

Figure 1. Geometry of the longitudinal HCD: (a) schematic overview of the discharge tube

containing a cathode cylinder (C) and two anode rings (A); (b) definition of the coordinate

axes used in this paper.

Figure 2. Spatial profiles of the main plasma parameters as obtained in our previous numerical

simulations. The simulation domain corresponds to figure 1b. The cylinder axis is in the

bottom of each plot, the cathode center is on the right, and the anode and cathode surfaces are

in the top as indicated in the first plot. The half cathode length L = 2.5 cm, the other discharge

parameters are given in table 1.

Figure 3. Relation between the CF voltage V and the CF thickness d as given by the energy

balance (9). Solid line: exact solution. Dotted line: first approximation in equation (10).

Dashed line: second approximation in equation (10).

Figure 4. Current density at the cathode as a function of CF voltage, obtained by substitution

of equation (10) in equation (14) (drift) and equation (15) (free fall), using the parameters in

table 1 and the Ar+ ion mass. Only the lowest curve is physically valid, equation (14) in most

of the current density range.

Figure 5. Solution of equation (29). Solid line: exact solution. Dashed line: approximate

solution (30).

Figure 6. Axial profiles of the CF current density and the on-axis potential from the analytical

model equations (25, 30-31) and from the numerical simulations, for different half cathode

lengths L, indicated in mm with the curves.

Figure 7. Voltage – current characteristics for different half cathode lengths L from the

analytical model, combining equations (14, 30, 37-38), compared with numerical simulations

[18]. Except for the cathode length, the input parameters for the analytical curves are constant

as given in table 1.
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