
HAL Id: hal-00569684
https://hal.science/hal-00569684

Submitted on 25 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The double sheath on cathodes of discharges burning in
cathode vapour

M S Benilov, L G Benilova

To cite this version:
M S Benilov, L G Benilova. The double sheath on cathodes of discharges burning in cathode vapour.
Journal of Physics D: Applied Physics, 2010, 43 (34), pp.345204. �10.1088/0022-3727/43/34/345204�.
�hal-00569684�

https://hal.science/hal-00569684
https://hal.archives-ouvertes.fr


The double sheath on cathodes of discharges burning
in cathode vapor

M. S. Benilov and L. G. Benilova
Departamento de Física, Universidade da Madeira,

Largo do Município, 9000 Funchal, Portugal

Abstract

The model of a collisionless near-cathode space-charge sheath with ionization of
atoms emitted by the cathode surface is considered. Numerical calculations showed
that the mathematical problem is solvable and its solution is unique. In the frame-
work of this model, the sheath represents a double layer with a potential maximum,
with the ions which are produced before the maximum returning to the cathode sur-
face and those produced after the maximum escaping into the plasma. Numerical
results are given in a form to be readily applicable in analysis of discharges burning
in cathode vapor, such as vacuum arcs. In particular, the results indicate that the
ion backflow coefficient in such discharges is at least 53%, in agreement with values
extracted from the experiment.

1 Introduction

It was realized long ago that distributions of potential in discharges burning in cathode
vapor, such as vacuum arcs and low- to high-pressure arc discharges on cathodes made
of volatile materials, may possess a maximum (potential hump). For the first time it was
apparently hypothesized by Plyutto and co-workers [1] in order to explain the acceleration
of ions towards the anode. Although by now most researchers seem to believe that the
plasma acceleration in cathode jets is of a gas dynamic nature and associated with a
plasma pressure gradient caused by very high pressures occurring in cathode spots (e.g., [2]
and references therein), the question of potential hump in discharges burning in cathode
vapor retains its significance.

A potential hump of a height approximately corresponding to the plasma temperature
was revealed by modelling of the region of expansion of the cathode jet [3], [4, p. 255].
This hump was attributed to the fact that the local electron pressure gradient is quite high
and must be partially compensated by a retarding electric field, otherwise the electron
current would be too high. In essence, this is the same mechanism that causes a negative
anode voltage drop in arc discharges.

There are reasons to believe that another potential hump should exist in a close prox-
imity of the cathode surface, in a region where (cold) atoms emitted by the surface are
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ionized. The ions in this region are still cold and can hardly move against the electric
field, in contrast to what happens in the hot plasma ball. Hence, the potential distribu-
tion in the region where ionization occurs should have a maximum, with the ions which
are produced before the maximum returning to the cathode surface and those produced
after the maximum escaping into the plasma.

It is of interest in this connection to try to develop a self-consistent model of near-
cathode layer in discharges burning in cathode vapor which would describe this potential
maximum. In was hypothesized in [5] that such maximum may appear in the model of a
space-charge sheath if ionization of emitted atoms inside the sheath is taken into account.
This model is illustrated by figure 1. There must be an inflexion point in the potential
distribution positioned between the maximum point and the plasma, which means that
the sheath is actually a double layer.

This model is treated in the present work. Since the motion of ions in the near-cathode
space-charge sheaths in discharges burning in cathode vapor is rather collision-free than
collision-dominated, the treatment is restricted to the case where the ions move without
collisions in the sheath.

One could think of the following mechanism of formation of potential hump in this
model. Let us consider two sheaths formed by collisionless cold ions and Boltzmann-
distributed electrons. The flux of ions coming to the cathode, Jiw, is the same in both
sheaths, however in the first sheath the ions enter it from the quasi-neutral plasma with
the Bohm velocity uB =

√
kTe/mi, while in the second sheath the ions are generated

at rest inside the sheath. The first sheath represents the well-known Bohm model [6]
and is associated with a monotonic potential distribution. The zero of potential in the
first sheath is attributed to the sheath edge. One does not know at this stage whether
the potential distribution in the second sheath is monotonic, or non-monotonic with a
maximum. If it is monotonic, the zero of potential is attributed to the sheath edge; if it is
not, the zero of potential is attributed to the point of maximum. The cathode potential
is the same in both sheaths.

The local density of ions at a point with a given potential ϕ in the first sheath is
ni1 = Jiw/vi1, where vi1 =

√
u2B − 2eϕ/mi is the local velocity of ions. Similarly, ni2 =

Ji2/v̄i2 in the second sheath, where Ji2 is the local ion flux and v̄i2 is the local mean ion
velocity. Obviously, Ji2 < Jiw, since a part of the ions that reach the cathode are generated
between the cathode surface and the point considered and do not pass through this point.
On the other hand, v̄i2 <

√
−2eϕ/mi, since potential differences between the point being

considered and the points from where the ions start at rest are below −ϕ. Hence, v̄i2 < vi1
and it may happen that ni2 > ni1. If the latter is the case, the electrostatic shielding in
stronger in the second sheath than in the first one, the electric filed in the second sheath
decays faster and may vanish at a finite distance from the cathode, meaning a maximum
of potential with subsequent reversal of the field. Of course, an accurate treatment based
on a self-consistent solution of the Poisson equation is required to judge if such potential
maximum can really occur.

One should mention a number of preceding works which are relevant to the problem
considered. Most models of near-cathode layers in discharges burning in cathode vapor
are based on the assumption that ionization of neutral atoms emitted by the cathode
surface occurs in a quasi-neutral plasma region beyond the space-charge sheath and treat

2



the sheath and the ionization region essentially in the same way as in discharges burning
in the ambient gas; e.g., [2], [4, p. 214], [7]. This assumption was put in question in [8, p.
106] on intuitive grounds and in [5] of the basis of estimates of characteristic length
scales; see also [9, figure 7.6]. Note that the conclusion [5] that this assumption may be
not fulfilled is not unexpected, given very high pressures which are typical of cathode
spots in discharges burning in cathode vapor and an important role that can be played
by ionization in near-cathode space-charge sheaths at very high pressures [10].

Bolotov and co-workers [11, 12] developed a quantitative model of potential hump in
the cathode layer which has a number of similarities with the model of this work, and
concluded that it offers explanation to a number of features exhibited by vacuum arcs.
However, a self-consistent solution of the Poisson equation was not attempted and a linear
distribution of electric field in the cathode layer or, equivalently, a parabolic distribution
of potential was assumed instead.

A double sheath occurring on cathodes with electronic emission was studied in [13,14];
see also references therein.

The presence of a potential maximum with ions generated at rest on both sides from
the maximum and moving away from it without collisions results in certain similarities
between the present model and the model of Tonks and Langmuir of a collisionless positive
column of a plane glow discharge enclosed by two parallel absorbing walls ( [15]; see also
textbooks [14,16]). However, the potential hump in the Tonks and Langmuir model is of
another nature (a consequence of symmetry) and its position is known (the axis of the
discharge), in contrast to what happens in the present model. There are also similarities
between the present model and models of recycling region in tokamak scrape-off layers
(e.g., [17—19] and references therein), the difference being that the space charge density
in the recycling region, including in the vicinity of the potential maximum, is small.

An important feature of the present model is that the ions produced beyond the
potential maximum move in the direction from the sheath into the plasma, rather than
the other way round as in conventional sheath models. This feature was studied in
the work [5] by means of a simple mathematical model obtained by assuming that the
ionization occurs in a narrow vicinity of the point of maximum, after which the ion flux
remains constant. It was found that a solution exists provided that the sheath voltage
exceeds approximately 1.256kTe/e; a limitation similar to the one expressed by the Child-
Langmuir law.

In this work, the problem of a collisionless space-charge sheath with ionization of neu-
tral atoms emitted by the cathode is treated numerically. The outline of the paper is
as follows. A mathematical model is formulated in section 2. A method of numerical
solution is developed in section 3. Calculation results are given and discussed in section
4. Concluding remarks are given in section 5. The paper comprises two appendices con-
cerned with, respectively, elucidating asymptotic behavior of solution in the vicinity of the
maximum of potential and estimating on the basis of available experimental information
the ion backflow coefficient for the case of copper cathodes.
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2 The model

2.1 Equations and boundary conditions

Let us introduce an axis x directed from the cathode surface into the plasma with the
origin at point of the maximum of electrostatic potential as shown in figure 1. Values
at the cathode surface of the density of atoms emitted by the surface, naw, and of their
average velocity along the x-axis, va, are considered as known parameters. In particular,
if vaporization is the dominating mechanism of emission of atoms, then these parameters
can be evaluated as

naw =
pv

2kTw
, va =

1

2

√
8kTw
πmi

(1)

where Tw is the temperature of the cathode surface, pv is the pressure of the saturated
vapor of the cathode material evaluated at the temperature Tw, and mi is the particle
mass of the cathode material.

The density of flux of emitted atoms may be found as Jv = nawva. Note that the
evaluation with the use of expressions (1) gives Jv = pv/

√
2πmikTw, which is the well-

known Langmuir formula.
The atoms are ionized by electron impact very rapidly, before they can collide with

other atoms or the ions. Therefore, the velocity of each atom remains constant during
its lifetime from emission to ionization. Since velocities of atoms, being of the order of√

kTw/mi, are typically much smaller than chaotic velocities of electrons, the ionization
probability does not depend on the velocity of atoms. Therefore, the velocity distribution
of atoms at any point inside the sheath is the same as the velocity distribution of emitted
atoms at the cathode surface. It follows that the average velocity of the atoms remains
equal to va. The number density of the atoms inside the sheath is governed by the equation

d

dx
(nava) = −w (2)

where w is the ionization rate. Equation (2) must be solved with the initial condition
na (−d) = naw, where d is the distance from the cathode surface to the maximum of
potential (a positive parameter to be found).

Ionization by electron impact is a dominating mechanism of ionization of neutral
atoms. The estimates [9] show that electrons emitted by the cathode transfer their energy
to the plasma electrons, and those produce ionization. Then the ionization term may be
written as w = kinena, where ki is the ionization rate coefficient (a known function of the
plasma electron temperature) and ne is the density of plasma electrons.

Neglecting a small space charge contributed by the emitted electrons, one writes the
Poisson equation as

ε0
d2ϕ

dx2
= −e (ni − ne) (3)

where ϕ is the electrostatic potential and ni is the ion density.
The electrostatic potential ϕ (x) tends to a finite value far away from the cathode, so

one can set ϕ (∞) = 0. Since the origin is positioned at the point of the maximum of
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electrostatic potential, dϕ/dx (0) = 0. The boundary condition at the cathode surface
may be written as ϕ (−d) = −U , where U is a given positive parameter having the
meaning of sheath voltage.

The distribution of plasma electrons is Maxwellian and their density is related to the
electrostatic potential through the Boltzmann distribution

ne = ne∞ exp
eϕ

kTe
(4)

where ne∞ = ne (∞) is the electron density in the quasi-neutral plasma outside the sheath
(at the "sheath edge"); a parameter to be found. The electron temperature Te is con-
sidered as a given parameter and is much higher than the cathode temperature Tw and
much lower than eU/k.

The expression for the ion density ni in the considered model is similar to the one in the
Tonks-Langmuir model, however, a brief derivation is given here for completeness. Since
the average momentum of an electron is much smaller than the average momentum of an
atom, each ion is generated with the same velocity that the atom possessed. Therefore,
if an atom possesses a kinetic energy Ekin and is ionized at a point x = z, then the ion
will be generated with the total energy Ekin+ eϕ (z). Variations of electrostatic potential
are of the order of kTe/e in the outer section of the sheath where the densities of the ions
and the electrons are comparable, and of the order of U in the inner section of the sheath
where the electron density is negligible. Therefore, one can neglect the term Ekin (which
is of the order of kTw) and assume that each ion is produced with a negligible velocity
and the total energy eϕ (z). We assume that the scale of the sheath thickness is much
smaller than the mean free path for ion-atom collisions. Then the total energy of an ion
is conserved and velocity of ions generated at a point z will be

vi = ±
√

2e

mi

[ϕ (z)− ϕ (x)] (5)

when they have reached a point x.
The ions generated in the region x < 0 (i.e., between the cathode and the point of

maximum of potential) move back to the cathode. The ions generated in the region x > 0
move into the plasma. Therefore, equation (5) should be applied either with x < z < 0
and the sign minus or with 0 < z < x and the sign plus.

The number of ions generated in the layer z ≤ x ≤ z+ dz per unit time and unit area
(i.e., the density of ion flux generated in this layer) is w (z) dz. When the ions generated
in this layer have reached a point x, their density is w (z) dz/ |vi (x, z)|. A point x < 0 is
crossed (in the direction to the cathode) by the ions generated in the layer [x, 0], a point
x > 0 is crossed (in the direction into the plasma) by the ions generated in the layer [0, x].
The density of ions at a point x is

ni (x) =

∫ x

0

w (z)

vi (x, z)
dz (6)

Note that equation (6) cannot be applied directly at the point of maximum of potential,
x = 0, since the ion velocity vanishes at z = x = 0. Therefore, one needs to apply the limit
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x→ 0 to equation (6) and remove the arising uncertainty in order to find ni (0). This is
done in appendix A; note that the treatment is similar to the one in the Tonks-Langmuir
model (see, e.g., appendix C of [20]).

At any x �= 0, the integrand on the rhs of equation (6) has a singularity at the point
z = x. However, the ion velocity decreases at z → x proportionally to

√
|z − x|, so the

integral on the rhs of equation (6) converges.

2.2 Transforming the problem

Let us introduce the dimensionless variables:

ξ =
x

li
, Ni =

ni

n
(0)
e

, Na =
na

n
(0)
a

, Φ =
e
(
ϕ− ϕ(0)

)

kTe
(7)

where li = va/kin
(0)
e has the meaning of the length scale of variation of the atomic density;

n(0)a is a characteristic value of the atomic density; ϕ(0) is a reference potential; and

n
(0)
e = ne∞ exp eϕ(0)

kTe
is a parameter to be found related to ne∞. Equations (2), (3), and

(6) assume the form
dNa

dξ
= −eΦNa (8)

α

τ

d2Φ

dξ2
= eΦ −Ni (9)

Ni (ξ) = sgn ξ
τ√
2

∫ ξ

0

eΦ(ζ)Na (ζ)√
Φ (ζ)− Φ (ξ)

dζ (10)

where

τ =
n
(0)
a va

n(0)e uB
, α =

va
uB

ε0kTe

n(0)a e2

(
kin

(0)
a

va

)2
, uB =

√
kTe
mi

, ζ =
z

li
(11)

Note that α/τ = (λD/li)
2, where λD =

√
ε0kTe/n

(0)
e e2 is a characteristic Debye length.

The boundary conditions read in dimensionless variables

Na (ξw) = Naw, Φ (ξw) = −χ− χ1,
dΦ

dξ
(0) = 0, Φ (∞) = −χ1 (12)

where ξw = −d/li is the value of the coordinate ξ corresponding to the cathode surface,

Naw = naw/n
(0)
a , χ = eU/kTe, χ1 = eϕ(0)/kTe.

Equations (8)-(10), (12) represent the statement of the problem in dimensionless vari-
ables. Note that parameters τ and ξw are unknown and must be found as a part of
solution.

The normalization parameters n
(0)
a and ϕ(0) will be set equal to values at the point of

maximum. In other words, it is assumed n
(0)
a = na (0), ϕ

(0) = ϕ (0), so that

Na (0) = 1, Φ (0) = 0 (13)
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The order of the system of equations can be reduced by one. To this end, let us
substitute equation (10) into equation (9), multiply the obtained equation by dΦ/dξ, and
integrate over ξ from 0 to ξ. After the order of integration over ξ and ζ in the double
integral on the rhs has been changed, the integral over ξ may be evaluated analytically.
Taking into account the third boundary condition (12) and the second boundary condition
(13), one obtains

dΦ

dξ
= − sgn ξ

√
2τ

α

[
eΦ − 1 + sgn ξ

√
2τI (ξ)

]1/2
(14)

where

I (ξ) =

∫ ξ

0

eΦ(ζ)Na (ζ)
√
Φ (ζ)− Φ (ξ) dζ (15)

3 Method of numerical solution

While solving the problem numerically, it is convenient to treat the atomic density at the
point of maximum, na (0), as a given parameter, and the atomic density at the cathode
surface, naw, as a calculation result. Then the solution may be found in two steps. First,
equations (8) and (14) are solved for functions Na (ξ) and Φ (ξ) and constant τ in the
region beyond the maximum point, ξ ≥ 0, the boundary conditions being (13) and

dΦ

dξ
(∞) = 0 (16)

After the solution has been found, one will be able to determine the constant χ1: χ1 =
−Φ (∞).

At the second step, equations (8) and (14) are solved for functions Na (ξ) and Φ (ξ)
and constant ξw in the layer between the cathode and the maximum point, ξw ≤ ξ < 0,
with the boundary conditions (13) and the condition Φ (ξw) = −χ + Φ∞, where Φ∞ =
Φ(∞) = −χ1.

The first problem represents a two-point boundary-value problem for two equations,
one of these equations being (ordinary) differential and the other integrodifferential. It
is natural to try to solve it by shooting with τ playing the role of a shooting parameter:
equations (8) and (14) supplemented with boundary conditions (13) are integrated from
the point ξ = 0 in the direction of positive ξ; the integration is performed several times
with different values of parameter τ and this parameter is adjusted until the boundary
condition (16) or an equivalent condition is satisfied. The second problem also represents
a two-point boundary-value problem, however it can be trivially reduced to an initial-
value problem: equations (8) and (14) supplemented with boundary conditions (13) are
integrated from ξ = 0 in the direction of negative ξ; the integration terminates when the
function Φ attains the value −χ+Φ∞.

The above-described procedure requires a numerical solution of the initial-value prob-
lem (8), (14), (13) with a known τ . After an appropriate evaluation technique of the
integral (15) has been chosen, equations (8) and (14) with boundary conditions (13) may
be treated as an initial-value problem for a system of two first-order ordinary differential
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equations. In this work, the equations were solved by means of Euler’s method on a nu-
merical grid with a constant step h. Potential at the first knots, ξ = ±h, was determined
by means of equation (22) of appendix A supplemented with the rest of equations of the
appendix.

The boundary condition (16) does not admit a straightforward numerical implemen-
tation, so an equivalent numerical condition is needed to find τ . As an example, let us
consider results of numerical solution of the initial-value problem (8), (14), (13) in the
region ξ ≥ 0 with different values of τ for α = 0.1 and h = 10−3. If τ � 0.17, the
numerical solution breaks down at the third knot of the numerical grid, ξ = 3h, where the
quantity in the square brackets in equation (14) turns negative. Calculated distributions
of the dimensionless electric field E = −dΦ/dξ for several values of τ ≥ 0.18 are shown
in figure 2. At τ = 0.18, the electric field E (ξ) first increases, then passes through a
maximum at ξ = ξmax = 0.735, then passes through a minimum at ξ = ξmin = 9.592
after which it starts rapidly oscillating. The amplitude of the oscillations, being very low
at ξ close to ξmin, increases with increasing ξ. At ξ around 10.8 the oscillations become
visible on the graph and at ξ = ξbd = 10.828 the solution breaks down (for the same
reason as above: the quantity in the square brackets in equation (14) turns negative). At
τ = 0.42 the distribution E (ξ) is qualitatively similar, except that the first maximum,
the first minimum, and the point of breakdown have shifted to higher ξ: ξmax = 0.930,
ξmin = 13.466, ξbd = 23.369. At τ = 0.48657 the first maximum has shifted a little bit
more: ξmax = 1.087, the first minimum has shifted considerably: ξmin = 28.256, and the
solution exists in the whole calculation domain. There are still over hundred cycles of
oscillation of E (ξ) in the region ξmin ≤ ξ ≤ 30, however the amplitude of the oscilla-
tions is quite low and they are not visible on the graph. As τ increases further, ξmin
starts decreasing, however the solution continues to exist in the whole calculation domain
while the number of cycles of oscillations in the region ξmin ≤ ξ ≤ 30 decreases. At
τ = 0.48664, ξmax = 1.088 and ξmin = 17.563 and there are no oscillations of E (ξ) in
the region ξmin ≤ ξ ≤ 30, i.e., the electric field is monotonically increasing in this region.
At τ = 0.487 the distribution E (ξ) is qualitatively similar, except that (the first and
the only) minimum has shifted still more in the direction of lower ξ: ξmax = 1.089 and
ξmin = 11.897. At τ = 0.53 the distribution E (ξ) is still qualitatively similar, however
the (first and the only) maximum and the minimum are relatively close: ξmax = 1.375,
ξmin = 2.293, and that the electric field in the region [ξmax,ξmin] does not change much:
E (ξmax) ≈ 0.223, E (ξmin) ≈ 0.218. At τ still higher the maximum and the minimum
disappear, so E (ξ) monotonically increases in the whole calculation domain, an example
being the case τ = 0.6.

It is legitimate to assume that the proper value of τ in this example is 0.48657, i.e., the
one which ensures the biggest ξmin or, in other words, the longest interval of monotonic
decrease of electric field after the first maximum. This assumption is illustrated by figure
3, where the quantity ξmin for α = 0.1 is shown as a function of τ for two values of h, and
by table 1, where values of τ are shown which ensure the biggest ξmin for each pair (α, h),
α = 0.1, 1, 10 and h = 10−2, 10−3. The maximum in the dependence ξmin (τ ) is quite
narrow and the variation of its position with h is quite weak, which leaves little doubt
concerning the problem under consideration being solvable and its solution being unique.

In the case h = 10−2, the dependence ξmin (τ) is oscillating in the vicinity of maximum,
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which causes a small ambiguity in the choice of τ . There is no such ambiguity in the case
h = 10−3, however ξmin in the vicinity of maximum in this case is substantially lower
than in the case h = 10−2; probably an indication of accumulation of error. These factors
affect the accuracy of the numerical procedure being used. It will be seen below that this
accuracy may be estimated as about 10%.

4 Results and discussion

Examples of calculated distributions of parameters in the sheath are shown in figure 4; here
Ne = eΦ is the normalized electron density. The ion density was found from the Poisson
equation (9) with the use of numerical differentiation of E. There are small oscillations of
the ion density in the vicinity of the point of maximum of potential, which are not very
well visible on the graph in the case α = 0.1, virtually invisible in the case α = 1, and not
visible at all in the case α = 10. These oscillations represent a numerical artefact. There
is a difference of up to 10% between solutions obtained on different numerical grids, which
gives an idea of the overall accuracy of numerical results.

One can see that the numerical results confirm the physical picture hypothesized in
the Introduction. There is a maximum in the distribution of potential and, consequently,
of the electron density. There is a maximum also in the distribution of the electric field,
ξ = ξmax, at which the the ion and electron density become equal. Ni exceeds Ne at
ξ < ξmax and is below Ne at ξ > ξmax; a double layer. The ion density is non-monotonic
as well, with a maximum positioned at a negative ξ.

The modelling reported in this work refers to the case χ = 10; in other words, the
integration in the direction of negative ξ terminated when the potential has decreased
to −10kTe/e. Values of ξ at which this happened, i.e., position of the cathode, ξ = ξw,
are shown in table 2. The density (and flux) of atoms emitted by the cathode surface
remain unaltered in the vicinity of the cathode, where the plasma is strongly negative and
from where the electrons are repelled by the sheath electric field, so no ionization occurs.
Further away from the cathode, the electron density becomes appreciable and atoms start
getting ionized: Na starts decreasing. In order to give an idea of a region where this
happens, values ξ = ξ1 at which Ne reaches the value of 10−2 are shown in table 2.

As ξ increases, the atomic density decreases rather fast and soon becomes negligible,
i.e., the plasma becomes fully ionized. In order to give an idea of a region where this
happens, values ξ = ξ2 at which Na decreases down to 1% of the value at the cathode
surface (i.e., 99% of the atoms have been ionized) are shown in table 2. Also shown
in table 2 are values ξ = ξi at which Ni attains a maximum. As it should have been
expected, ξ1 < ξi < ξ2: the maximum of ion density occurs inside the ionization zone.

At α = 0.1, the ion density in the region of the potential hump is relatively close
to the electron density, so the plasma is not very far from quasi-neutrality here. With
increasing α the ion density in the region of the potential hump increases and at large α
considerably exceeds the electron density.

Another important quantity is the average potential energy with which ions crossing
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a point x have been produced:

ψi (x) =
1

[na (0)− na (x)] va

∫ x

0

weϕ dx (17)

The average kinetic energy of an ion at a point x can be expressed in terms of this quantity
as ψi (x)− eϕ (x). A dimensionless average potential energy may be conveniently defined
as Ψi = ψi/kTe +Φ∞ and equals

Ψi (ξ) =
1

1−Na

∫ ξ

0

eΦNaΦ dξ (18)

Distributions of the function Ψi (ξ) are shown in figure 5a. As one should have expected,
the function attains a maximum value Ψi = 0 at ξ = 0 and manifests plateaus in the
region ξ � ξ1, where no ionization occurs, and in the region ξ � ξ2, where the plasma is
already fully ionized.

Equation (14) in the region ξ � ξ1, where the electron density is negligible and no
ionization occurs, may be written as

α

2τ

(
dΦ

dξ

)2
=
√
2τ

∫ 0

ξ

eΦ(ζ)Na (ζ)
√
Φ (ζ)− Φ (ξ) dζ − 1 (19)

Note that the lower limit of integration may be set equal, instead of ξ, to any value below
ξ1.

Modulus of potential in the region in the vicinity of the hump, where ionization occurs,
is of the order of kTe/e. Modulus of potential in the region ξ � ξ1 is of the order U ,
i.e., substantially higher. Therefore, the integrand on the rhs of equation (19) may be
expanded in powers of Φ (ζ) /Φ (ξ). Retaining two terms of the expansion, one finds

α

2τ

(
dΦ

dξ

)2
= τ (Na − 1)

√
−2Φ

(
1− Ψi

2Φ

)
− 1 (20)

While equation (19) is of exponential accuracy with respect to the large parameter
−Φ, equation (20) is of only algebraic accuracy O (Φ−2). Nevertheless, equation (20) is
accurate enough, which is illustrated by graphs of the ratio of the lhs of this equation to
the rhs shown in figure 5a. One can see that in the region ξ � ξ1 this ratio indeed is
close to unity. The fact that the asymptotic limit of validity of equation (20) is related to
the large parameter −Φ is illustrated by figure 5b, where the data referring to the range
ξ ≤ 0 in figure 5a are plotted vs. Φ.

Integral parameters of the sheath for different values of α are shown in figure 6.
Here Ψiw = Ψi (ξw) and Ψi∞ = Ψi (∞) are dimensionless average potential energies with
which ions have been produced before and after the potential maximum, respectively;
Vi = τ exp (−Φ∞) is the value at the sheath edge of the mean velocity of ions moving
from the sheath into the plasma, normalized by the Bohm velocity uB. Data calculated
on different numerical grids are rather close to each other except for Φ∞ and Vi where the
difference is more substantial and the dependence on α is not smooth, especially when
calculated with h = 10−2; clearly a consequence of the numerical difficulties discussed at
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the end of section 3. However, the difference is below 10% even in this case, which is an
acceptable accuracy at the present stage.

It is of interest to try to find an asymptotic solution to the considered problem in the
limiting cases of small and large α. Leaving the full treatment beyond the scope of this
paper, we note the following. Values of the quantities τ and Φ∞ in the case of large α
can be found with the use of results [5]: Φ∞ = −C1, where C1 ≈ 1.26 is the positive
root of the transcendental equation expC1 = 1+ 2C1; τ =

√
2C1/ (1 + 2C1) ≈ 0.451; and

Vi =
√
2C1 ≈ 1.59.

In the limiting case of small α, the space charge and ionization are separated in space:
the ionization occurs in a quasi-neutral region beyond the space-charge sheath, which may
be called the ionization layer. The sheath is formed by ions returning to the cathode and is
not very different from sheaths in discharges burning in ambient gas. While the potential
distribution in the sheath is monotonic in this limiting case, the maximum of potential
occurs in the ionization layer. Therefore, the ionization layer in discharges burning in
cathode vapor is substantially different from that in discharges burning in ambient gas.
To the first approximation in the parameter α, the ionization layer is described by a
problem comprising equation (8), equation (14) with the lhs being dropped, the first
boundary condition (13), and boundary condition (16). A numerical solution of this
problem gave τ = 0.487, Φ∞ = −0.85, and Naw = 2.11.

The above limiting values are shown in figure 6 by dotted (τ , Naw, and Vi) and dash-
dotted (Φ∞) horizontal lines. One can see that the numerical results for finite α conform
to the limiting values.

The range of variation of parameter τ is rather narrow: as α increases from very low
to very high values, τ decreases from 0.487 to 0.451, i.e., by about 8%. Φ∞ decreases
more significantly, although not dramatically: from −0.85 to −1.26. Ψiw also decreases
significantly but not dramatically, from −0.56 for α = 0.1 to −0.89 for α = 10. Ψi∞

increases from −0.14 for small α to very small values for large α. Naw varies quite
strongly, from 2.11 for very small α to 21.3 for α = 10. Vi increases from 1.1 for α = 0.1
to 1.59 for very high α.

The latter means that the ion mean velocity at the sheath edge exceeds the Bohm
velocity by up to 59%. In other words, the Bohm criterion in the case of ions moving
from the sheath into the plasma is satisfied by a substantial margin, rather than with the
equality sign which is usual in the case of a conventional sheath with ions moving from
the plasma into the sheath.

5 Concluding remarks

Numerical results confirm the concept of a near-cathode space-charge sheath with ion-
ization of atoms emitted by the cathode surface being a double layer with a potential
hump: the mathematical problem is solvable and its solution is unique. The accuracy
of the numerical results may be estimated as about 10%. Although further work in this
direction is desired in the future, such accuracy seems to be acceptable at the present
stage.

Distributions across the sheath have been calculated of ion, electron, and atomic den-

11



sities, electrostatic potential and electric field. Also calculated have been integral para-
meters of the sheath, in particular, τ the ratio of characteristic fluxes of the atoms and
the ions; Φ∞ the dimensionless height of the potential hump; Naw the ratio of the atomic
density at the cathode surface to the atomic density at the potential maximum; Ψiw, Ψi∞

the dimensionless average potential energies with which ions are produced before and after
potential maximum, respectively. τ , Φ∞, and Ψi∞ represent functions of a single control
parameter α and may be taken from figures 6a and 6b. Naw and Ψiw represent functions
of α and the dimensionless sheath voltage χ = eU/kTe. However, their dependences on χ
are weak under conditions of practical interest, which is attested by plateaus manifested
at large negative ξ by curves Na in figure 4 and Ψi in figure 5a. Neglecting these depen-
dences, one can consider Naw and Ψiw as functions of a single control parameter α and
take them from figure 6b.

The control parameter α, characterizing the squared ratio of the Debye length to the
scale of variation of the atomic density, is evaluated in terms of quantities at the point
of maximum of potential. In order to make the obtained results practicable, one needs
to relate α to a parameter evaluated in terms of quantities at the cathode surface. An
appropriate parameter is

αw =
va
uB

ε0kTe
nawe2

(
kinaw
va

)2
(21)

The relation between αw and α reads αw (α) = αNaw (α) and may be readily evaluated
with the use of data on the dependence Naw (α) shown in figure 6b.

Apart from being of theoretical interest, the model of a near-cathode space-charge
sheath with ionization of atoms emitted by the cathode surface is of interest due to its
possible applications to discharges burning in cathode vapor, including vacuum arcs. In
particular, the above-described calculation data on parameters τ , Φ∞, Naw, Ψiw, Ψi∞ can
be used for evaluation of a number of quantities which are essential for understanding
and modelling of plasma-cathode interaction in such discharges. One of these quantities
is the height of the potential hump, which may be evaluated as ϕ (0) = −kTe

e
Φ∞. It

follows from the above results that the height of the potential hump is within the range
(0.85 . . . 1.26) kTe/e. This value is insufficient to explain the observed velocities of ions in
cathode jets of vacuum arcs, in agreement with the belief of many researchers that the
main contribution to acceleration of ions is given by the plasma pressure gradient.

The charged particle density at the sheath edge may be evaluated as ne∞ = Jv expΦ∞/NawτuB.
The so-called ion backflow coefficient, which plays an important role in theoretical models
of cathode spots in vacuum arcs (e.g., [21]), is defined as fraction of atoms emitted by the
cathode surface that do not escape into the plasma but rather return to the cathode in
the form of ions. This coefficient may be evaluated as µ = 1−N−1

aw . Since Naw equals to
or exceeds 2.11, the ion backflow coefficient cannot be below 53%.

The average kinetic energy of ions bombarding the cathode surface, which is a para-
meter playing an important role in understanding thermal balance of cathode spot, may
be evaluated as kTe (Ψiw − Φ∞) + eU . The average kinetic energy of ions leaving the
sheath may be evaluated as kTe (Ψi∞ − Φ∞). The electric field at the cathode surface,
which affects the electron emission current, may be evaluated by means of equation (20).

These results may be readily incorporated into models of near-cathode layers of dis-
charges burning in cathode vapor. Besides, these results may be employed for qualitative
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analysis. As an example, one can consider the ion backflow coefficient for copper cath-
odes. Estimates made in appendix B with the use of experimental data indicate that
0.65 � µ � 0.81. Note that that these values exceed 0.53, in accordance with the present
results. Graph of αw as a function of Tw for copper cathodes is shown in figure 7 for
several values of Te. (Here naw and va have been calculated by means of equation (1)
with pv (Tw) evaluated with the use of [22]. ki was evaluated with the use of formulas [23],
which take into account both direct and stepwise ionization.) Horizontal dashed lines
in this figure represent values αw = 0.11 and αw = 3.4, which correspond to the above-
mentioned lower and and upper estimates for the ion backflow coefficient µ = 0.65 and
µ = 0.81, respectively. One should conclude that if the cathode surface temperature is,
say, 3500K, then the electron temperature is likely to be between approximately 1.45 eV
and 2.6 eV; if Tw = 4150K, then 1.2 eV � Te � 2 eV etc.

Acknowledgments The work was supported by the project PTDC/FIS/68609/2006
of FCT, POCI 2010 and FEDER and by Siemens AG.
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A Asymptotic behavior of solution in the vicinity of

the maximum of potential

The aim of this appendix is to find asymptotic behavior of the solution at small ξ, i.e.,
in the vicinity of the maximum of potential. The Taylor expansion of potential Φ (ξ) at
small ξ should read

Φ (ξ) = −C2
2

ξ2 + . . . (22)

where C2 is a positive constant.
The integrand in equation (10) to a first approximation may be written at small ξ as√

2
[
C2
(
ξ2 − ζ2

)]−1/2
. Evaluating the integral, one finds that Ni (ξ) tends at ξ → 0 to a

finite value
Ni (0) =

πτ

2
√
C2

(23)

Let us substitute expansion (22) into the Poisson equation (9) evaluated at ξ = 0.
Eliminating C2 with the use of equation (23), one obtains

N3
i (0)−N2

i (0) =
π2ατ

4
(24)

This is a cubic equation for Ni (0), which admits an analytical solution. The lhs of this
equation monotonically increases with increase in Ni (0) from zero at Ni (0) = 1 to infinity
at Ni (0)→∞. One can conclude that this equation is solvable and the solution is unique.
Furthermore, Ni (0) is a monotonically increasing function of a (single) parameter ατ and

Ni (0) ≈ 1 +
π2ατ

4
, Ni (0) ≈

(
π2ατ

4

)1/3
(25)

as ατ → 0 and ατ →∞, respectively.

B The ion backflow coefficient

The aim of this appendix is to estimate, on the basis of available experimental information,
the ion backflow coefficient for the case of copper cathodes. The ion backflow coefficient is
defined as the ratio of Jiw the number density of flux of ions from the near-cathode region
to the cathode surface to Jv the number density of flux of atoms leaving the cathode
surface, µ = Jiw/Jv. If one assumes that the flux of atoms returning to the cathode from
the plasma is much smaller than the ion flux and that the plasma in the cathode jet is
fully ionized, then Jv = Jiw + Γi, where Γi is the number density of ion flux from the
near-cathode layer into the plasma, and the ion backflow coefficient may be expressed as

µ =
βi

αi + βi
, αi =

eΓi
j

, βi =
eJiw
j

(26)

where j is the density of electric current in the near-cathode region.
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The experimental value of the ion current in the cathode jets on copper cathodes
normalized by the arc current is 0.11 [8, p. 157]. Although αi is defined in terms of
current densities rather than integral currents, it seems reasonable to assume αi = 0.11.

Let us proceed to estimation of βi the fraction of current to the cathode surface which
is delivered by ions. An important, if not dominating, contribution to current transfer to
cathodes of vacuum arc discharges is delivered by electron emission. Mechanisms consid-
ered by different authors include thermo-field emission and explosive electron emission;
see, e.g., reviews [2, 8]. The estimates given below refer to the thermo-field emission
mechanism.

Electron emission produces a cooling effect over the cathode, since the temperature
of the cathode surface inside an operating cathode spot of a vacuum arc exceeds the
inversion temperature (although this is not necessarily true during the ignition of a spot).
The transition of the cathode material into the gas phase (vaporization) also produces
a cooling effect. There should be a mechanism responsible for overcoming the cooling
mechanisms and heating the cathode surface up to temperatures necessary for electron
emission. A role of such mechanism can be played by heating of the cathode by ions
coming from the plasma and accelerated in the space-charge sheath. Therefore, the ion
current at the cathode surface must be not too low.

Let us recast this reasoning into a quantitative form. The power balance of the cathode
surface may be approximately written as

ji
e
(eU −∆A) +

ji
e
(Ai −Aeff ) =

j − ji
e

Aeff +AvG+ q (27)

where Ai is the ionization energy, Af is the work function, Aeff is the effective work
function, ∆A = Af − Aeff , ji = eJiw is the density of ion current from the near-cathode
plasma to the cathode surface, j − ji represents the density of electric current to the
cathode surface transported by the electrons (i.e., the difference between the electron
emission current density and the density of current of fast plasma electrons capable of
overcoming the repelling electric field in the sheath and reaching the cathode surface), Av
is the vaporization energy per atom, G is the number density of net flux of nuclei leaving
the cathode surface, and q is the density of flux of heat conduction from the cathode
surface into the cathode bulk.

The first term on the lhs of equation (27) accounts for the kinetic energy brought to the
cathode by the ions, which come to the cathode surface after having been accelerated by
the sheath electric field. The second term accounts for the energy released at the cathode
surface as a result of neutralization of the ions. The first term on the rhs accounts for the
energy taken away from the cathode by the electrons leaving the cathode for the plasma.
The term AvG accounts for the energy taken away from the cathode by the nuclei leaving
the cathode for the plasma. The last term of the rhs accounts for the energy removed
from the cathode surface into the cathode bulk by heat conduction. In summary, equation
(27) describes balance between the power delivered to the cathode surface by the incident
ions, the power removed by the electrons and nuclei leaving the cathode surface, and the
power removed by heat conduction into the bulk of the cathode. Obviously, this equation
is written in a very simplified form. In particular, it bears no account of terms of the
order of thermal energies of electrons and heavy particles and of cooling of the cathode
surface by radiation. However, this equation is sufficiently accurate for estimates.
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Equation (27) may be solved for fraction of the ion current:

βi =
Aeff + g̃Av + eUh

eU +Ai −Af +Aeff
, (28)

where g̃ = eG/j is the number of atoms lost by the cathode per elementary charge
transported and Uh = q/j is the so-called heating voltage. Note that g̃ may be expressed
as g̃ = eg/mi, where g is the erosion rate defined as the loss of mass of the cathode per
unit charge transported.

The usual value of 4.5 eV is assumed for the work function Af of copper. Evaluation
of the effective work function by means of fit formulas which have been derived in [24] on
the basis of the Murphy-Good formalism [25] shows that the Aeff = 3 eV is a reasonable
approximation in the range of Tw of interest. The latent heat of vaporization of copper at
the boiling point equals 305 kJmol−1 [22], which corresponds to vaporization energy per
atom of 3.16 eV.

Let us assume for estimates U = 15V. Values of erosion rate for copper given by
different authors are in the range 50− 200µg/C (e.g., [26, p. 210]), which corresponds to
g̃ = 0.08 − 0.3 atoms per electron. The heating voltage may be estimated as Uh = Q/I,
where Q is the total heat removed by heat conduction into the cathode bulk from a single
spot and I is the current per spot. Values of this quantity that can be derived from the
literature vary significantly: Uh is close to 1V in a wide range of spot currents according
to calculations [27] and is approximately 6.3V according to data cited in [4, p. 228]. Given
this scatter, the estimates will be done for g̃ = 0.08, Uh = 1V, which will give a lower
estimate of βi, and for g̃ = 0.3, Uh = 6.3V, which will give a higher estimate.

Substituting the above values into equation (28), one obtains βi = 0.20 and βi =
0.48 as the lower and higher estimates. Values of the ion backflow coefficient, given by
equations (26), are µ = 0.65 and µ = 0.81, respectively.
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h\α 0.1 1 10
10−2 0.48668 0.47897 0.46164
10−3 0.48657 0.47795 0.46014

Table 1. Values of τ which ensure the longest interval of monotonic decrease
of electric field.

α 0.1 1 10
ξw −3.6 −6.3 −10.3
ξ1 −2.4 −4.0 −6.5
ξ2 4.6 3.3 1.6
ξi −0.5 −1.4 −3.1

Table 2. Position of the cathode, boundaries of a zone where ionization occurs,
position of the maximum of ion density.
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Figure 1. Schematic of a double sheath with ionization of emitted atoms.
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Figure 3. First minimum of the distribution of electric field in the region beyond
potential hump. α = 0.1. Dotted: h = 10−2. Dashed: h = 10−3.
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Figure 4. Distribution of parameters across the sheath. Solid: h = 10−2.
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21



-12 -8 -4 0 4 8 12

1

1.2

1.4

1.6

1.8

2

-1

-0.8

-0.6

-0.4

-0.2

0

ξ

R

R

Ψi

10 0.1
α = 10

0.1

1

1

Ψi

10

0.1

1

-12 -8 -4 0

1

1.2

1.4

1.6

1.8

2

-1

-0.8

-0.6

-0.4

-0.2

0

Φ

R

R

Ψi

0.1

10

10

α = 0.1

1

1

Ψi

(a) (b)
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