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The double sheath on cathodes of discharges burning in cathode vapor

The model of a collisionless near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface is considered. Numerical calculations showed that the mathematical problem is solvable and its solution is unique. In the framework of this model, the sheath represents a double layer with a potential maximum, with the ions which are produced before the maximum returning to the cathode surface and those produced after the maximum escaping into the plasma. Numerical results are given in a form to be readily applicable in analysis of discharges burning in cathode vapor, such as vacuum arcs. In particular, the results indicate that the ion backflow coefficient in such discharges is at least 53%, in agreement with values extracted from the experiment.

Introduction

It was realized long ago that distributions of potential in discharges burning in cathode vapor, such as vacuum arcs and low-to high-pressure arc discharges on cathodes made of volatile materials, may possess a maximum (potential hump). For the first time it was apparently hypothesized by Plyutto and co-workers [1] in order to explain the acceleration of ions towards the anode. Although by now most researchers seem to believe that the plasma acceleration in cathode jets is of a gas dynamic nature and associated with a plasma pressure gradient caused by very high pressures occurring in cathode spots (e.g., [2] and references therein), the question of potential hump in discharges burning in cathode vapor retains its significance.

A potential hump of a height approximately corresponding to the plasma temperature was revealed by modelling of the region of expansion of the cathode jet [START_REF] Afanas'ev | The hydrodynamic model of a plasma jet of a cathode spot in vacuum arc[END_REF], [4, p. 255]. This hump was attributed to the fact that the local electron pressure gradient is quite high and must be partially compensated by a retarding electric field, otherwise the electron current would be too high. In essence, this is the same mechanism that causes a negative anode voltage drop in arc discharges.

There are reasons to believe that another potential hump should exist in a close proximity of the cathode surface, in a region where (cold) atoms emitted by the surface are ionized. The ions in this region are still cold and can hardly move against the electric field, in contrast to what happens in the hot plasma ball. Hence, the potential distribution in the region where ionization occurs should have a maximum, with the ions which are produced before the maximum returning to the cathode surface and those produced after the maximum escaping into the plasma.

It is of interest in this connection to try to develop a self-consistent model of nearcathode layer in discharges burning in cathode vapor which would describe this potential maximum. In was hypothesized in [START_REF] Benilov | [END_REF] that such maximum may appear in the model of a space-charge sheath if ionization of emitted atoms inside the sheath is taken into account. This model is illustrated by figure 1. There must be an inflexion point in the potential distribution positioned between the maximum point and the plasma, which means that the sheath is actually a double layer.

This model is treated in the present work. Since the motion of ions in the near-cathode space-charge sheaths in discharges burning in cathode vapor is rather collision-free than collision-dominated, the treatment is restricted to the case where the ions move without collisions in the sheath.

One could think of the following mechanism of formation of potential hump in this model. Let us consider two sheaths formed by collisionless cold ions and Boltzmanndistributed electrons. The flux of ions coming to the cathode, J iw , is the same in both sheaths, however in the first sheath the ions enter it from the quasi-neutral plasma with the Bohm velocity u B = kT e /m i , while in the second sheath the ions are generated at rest inside the sheath. The first sheath represents the well-known Bohm model [START_REF] Bohm | The Characteristics of Electrical Discharges in Magnetic Fields[END_REF] and is associated with a monotonic potential distribution. The zero of potential in the first sheath is attributed to the sheath edge. One does not know at this stage whether the potential distribution in the second sheath is monotonic, or non-monotonic with a maximum. If it is monotonic, the zero of potential is attributed to the sheath edge; if it is not, the zero of potential is attributed to the point of maximum. The cathode potential is the same in both sheaths.

The local density of ions at a point with a given potential ϕ in the first sheath is n i1 = J iw /v i1 , where v i1 = u 2 B -2eϕ/m i is the local velocity of ions. Similarly, n i2 = J i2 /v i2 in the second sheath, where J i2 is the local ion flux and vi2 is the local mean ion velocity. Obviously, J i2 < J iw , since a part of the ions that reach the cathode are generated between the cathode surface and the point considered and do not pass through this point. On the other hand, vi2 < -2eϕ/m i , since potential differences between the point being considered and the points from where the ions start at rest are below -ϕ. Hence, vi2 < v i1 and it may happen that n i2 > n i1 . If the latter is the case, the electrostatic shielding in stronger in the second sheath than in the first one, the electric filed in the second sheath decays faster and may vanish at a finite distance from the cathode, meaning a maximum of potential with subsequent reversal of the field. Of course, an accurate treatment based on a self-consistent solution of the Poisson equation is required to judge if such potential maximum can really occur.

One should mention a number of preceding works which are relevant to the problem considered. Most models of near-cathode layers in discharges burning in cathode vapor are based on the assumption that ionization of neutral atoms emitted by the cathode surface occurs in a quasi-neutral plasma region beyond the space-charge sheath and treat the sheath and the ionization region essentially in the same way as in discharges burning in the ambient gas; e.g., [2], [4, p. 214], [START_REF] Riemann | [END_REF]. This assumption was put in question in [8, p. 106] on intuitive grounds and in [START_REF] Benilov | [END_REF] of the basis of estimates of characteristic length scales; see also [9, figure 7.6]. Note that the conclusion [START_REF] Benilov | [END_REF] that this assumption may be not fulfilled is not unexpected, given very high pressures which are typical of cathode spots in discharges burning in cathode vapor and an important role that can be played by ionization in near-cathode space-charge sheaths at very high pressures [START_REF] Almeida | [END_REF].

Bolotov and co-workers [11,12] developed a quantitative model of potential hump in the cathode layer which has a number of similarities with the model of this work, and concluded that it offers explanation to a number of features exhibited by vacuum arcs. However, a self-consistent solution of the Poisson equation was not attempted and a linear distribution of electric field in the cathode layer or, equivalently, a parabolic distribution of potential was assumed instead.

A double sheath occurring on cathodes with electronic emission was studied in [START_REF] Prewett | Proc. R. Soc. Lond. A[END_REF][START_REF] Franklin | Plasma Phenomena in Gas Discharges[END_REF]; see also references therein.

The presence of a potential maximum with ions generated at rest on both sides from the maximum and moving away from it without collisions results in certain similarities between the present model and the model of Tonks and Langmuir of a collisionless positive column of a plane glow discharge enclosed by two parallel absorbing walls ( [START_REF] Tonks | [END_REF]; see also textbooks [START_REF] Franklin | Plasma Phenomena in Gas Discharges[END_REF][START_REF] Lieberman | Principles of Plasma Discharges and Material Processing[END_REF]). However, the potential hump in the Tonks and Langmuir model is of another nature (a consequence of symmetry) and its position is known (the axis of the discharge), in contrast to what happens in the present model. There are also similarities between the present model and models of recycling region in tokamak scrape-off layers (e.g., [START_REF] Mccullen | [END_REF][18][19] and references therein), the difference being that the space charge density in the recycling region, including in the vicinity of the potential maximum, is small.

An important feature of the present model is that the ions produced beyond the potential maximum move in the direction from the sheath into the plasma, rather than the other way round as in conventional sheath models. This feature was studied in the work [START_REF] Benilov | [END_REF] by means of a simple mathematical model obtained by assuming that the ionization occurs in a narrow vicinity of the point of maximum, after which the ion flux remains constant. It was found that a solution exists provided that the sheath voltage exceeds approximately 1.256kT e /e; a limitation similar to the one expressed by the Child-Langmuir law.

In this work, the problem of a collisionless space-charge sheath with ionization of neutral atoms emitted by the cathode is treated numerically. The outline of the paper is as follows. A mathematical model is formulated in section 2. A method of numerical solution is developed in section 3. Calculation results are given and discussed in section 4. Concluding remarks are given in section 5. The paper comprises two appendices concerned with, respectively, elucidating asymptotic behavior of solution in the vicinity of the maximum of potential and estimating on the basis of available experimental information the ion backflow coefficient for the case of copper cathodes.

The model 2.1 Equations and boundary conditions

Let us introduce an axis x directed from the cathode surface into the plasma with the origin at point of the maximum of electrostatic potential as shown in figure 1. Values at the cathode surface of the density of atoms emitted by the surface, n aw , and of their average velocity along the x-axis, v a , are considered as known parameters. In particular, if vaporization is the dominating mechanism of emission of atoms, then these parameters can be evaluated as

n aw = p v 2kT w , v a = 1 2 8kT w πm i (1) 
where T w is the temperature of the cathode surface, p v is the pressure of the saturated vapor of the cathode material evaluated at the temperature T w , and m i is the particle mass of the cathode material.

The density of flux of emitted atoms may be found as J v = n aw v a . Note that the evaluation with the use of expressions (1) gives J v = p v / √ 2πm i kT w , which is the wellknown Langmuir formula.

The atoms are ionized by electron impact very rapidly, before they can collide with other atoms or the ions. Therefore, the velocity of each atom remains constant during its lifetime from emission to ionization. Since velocities of atoms, being of the order of kT w /m i , are typically much smaller than chaotic velocities of electrons, the ionization probability does not depend on the velocity of atoms. Therefore, the velocity distribution of atoms at any point inside the sheath is the same as the velocity distribution of emitted atoms at the cathode surface. It follows that the average velocity of the atoms remains equal to v a . The number density of the atoms inside the sheath is governed by the equation

d dx (n a v a ) = -w (2) 
where w is the ionization rate. Equation (2) must be solved with the initial condition n a (-d) = n aw , where d is the distance from the cathode surface to the maximum of potential (a positive parameter to be found).

Ionization by electron impact is a dominating mechanism of ionization of neutral atoms. The estimates [START_REF] Ecker | Vacuum Arcs: Theory and Application[END_REF] show that electrons emitted by the cathode transfer their energy to the plasma electrons, and those produce ionization. Then the ionization term may be written as w = k i n e n a , where k i is the ionization rate coefficient (a known function of the plasma electron temperature) and n e is the density of plasma electrons.

Neglecting a small space charge contributed by the emitted electrons, one writes the Poisson equation as

ε 0 d 2 ϕ dx 2 = -e (n i -n e ) (3) 
where ϕ is the electrostatic potential and n i is the ion density. The electrostatic potential ϕ (x) tends to a finite value far away from the cathode, so one can set ϕ (∞) = 0. Since the origin is positioned at the point of the maximum of electrostatic potential, dϕ/dx (0) = 0. The boundary condition at the cathode surface may be written as ϕ (-d) = -U , where U is a given positive parameter having the meaning of sheath voltage.

The distribution of plasma electrons is Maxwellian and their density is related to the electrostatic potential through the Boltzmann distribution

n e = n e∞ exp eϕ kT e (4) 
where

n e∞ = n e (∞)
is the electron density in the quasi-neutral plasma outside the sheath (at the "sheath edge"); a parameter to be found. The electron temperature T e is considered as a given parameter and is much higher than the cathode temperature T w and much lower than eU/k. The expression for the ion density n i in the considered model is similar to the one in the Tonks-Langmuir model, however, a brief derivation is given here for completeness. Since the average momentum of an electron is much smaller than the average momentum of an atom, each ion is generated with the same velocity that the atom possessed. Therefore, if an atom possesses a kinetic energy E kin and is ionized at a point x = z, then the ion will be generated with the total energy E kin + eϕ (z). Variations of electrostatic potential are of the order of kT e /e in the outer section of the sheath where the densities of the ions and the electrons are comparable, and of the order of U in the inner section of the sheath where the electron density is negligible. Therefore, one can neglect the term E kin (which is of the order of kT w ) and assume that each ion is produced with a negligible velocity and the total energy eϕ (z). We assume that the scale of the sheath thickness is much smaller than the mean free path for ion-atom collisions. Then the total energy of an ion is conserved and velocity of ions generated at a point z will be

v i = ± 2e m i [ϕ (z) -ϕ (x)] (5) 
when they have reached a point x.

The ions generated in the region x < 0 (i.e., between the cathode and the point of maximum of potential) move back to the cathode. The ions generated in the region x > 0 move into the plasma. Therefore, equation ( 5) should be applied either with x < z < 0 and the sign minus or with 0 < z < x and the sign plus.

The number of ions generated in the layer z ≤ x ≤ z + dz per unit time and unit area (i.e., the density of ion flux generated in this layer) is w (z) dz. When the ions generated in this layer have reached a point x, their density is w (z) dz/ |v i (x, z)|. A point x < 0 is crossed (in the direction to the cathode) by the ions generated in the layer [x, 0], a point x > 0 is crossed (in the direction into the plasma) by the ions generated in the layer [0, x]. The density of ions at a point x is

n i (x) = x 0 w (z) v i (x, z) dz (6) 
Note that equation ( 6) cannot be applied directly at the point of maximum of potential, x = 0, since the ion velocity vanishes at z = x = 0. Therefore, one needs to apply the limit x → 0 to equation ( 6) and remove the arising uncertainty in order to find n i (0). This is done in appendix A; note that the treatment is similar to the one in the Tonks-Langmuir model (see, e.g., appendix C of [20]).

At any x = 0, the integrand on the rhs of equation ( 6) has a singularity at the point z = x. However, the ion velocity decreases at z → x proportionally to |z -x|, so the integral on the rhs of equation ( 6) converges.

Transforming the problem

Let us introduce the dimensionless variables:

ξ = x l i , N i = n i n (0) e , N a = n a n (0) a , Φ = e ϕ -ϕ (0) kT e (7) 
where

l i = v a /k i n (0)
e has the meaning of the length scale of variation of the atomic density; n (0) a is a characteristic value of the atomic density; ϕ (0) is a reference potential; and n

(0) e = n e∞ exp eϕ (0)
kTe is a parameter to be found related to n e∞ . Equations ( 2), ( 3), and (6) assume the form

dN a dξ = -e Φ N a (8) 
α τ d 2 Φ dξ 2 = e Φ -N i (9) 
N i (ξ) = sgn ξ τ √ 2 ξ 0 e Φ(ζ) N a (ζ) Φ (ζ) -Φ (ξ) dζ (10) 
where

τ = n (0) a v a n (0) e u B , α = v a u B ε 0 kT e n (0) a e 2 k i n (0) a v a 2 , u B = kT e m i , ζ = z l i (11) 
Note that α/τ = (λ D /l i ) 2 , where λ D = ε 0 kT e /n (0) e e 2 is a characteristic Debye length. The boundary conditions read in dimensionless variables

N a (ξ w ) = N aw , Φ (ξ w ) = -χ -χ 1 , dΦ dξ (0) = 0, Φ (∞) = -χ 1 ( 12 
)
where ξ w = -d/l i is the value of the coordinate ξ corresponding to the cathode surface,

N aw = n aw /n (0)
a , χ = eU/kT e , χ 1 = eϕ (0) /kT e . Equations ( 8)-( 10), (12) represent the statement of the problem in dimensionless variables. Note that parameters τ and ξ w are unknown and must be found as a part of solution.

The normalization parameters n (0) a and ϕ (0) will be set equal to values at the point of maximum. In other words, it is assumed n

(0) a = n a (0), ϕ (0) = ϕ (0), so that N a (0) = 1, Φ (0) = 0 (13) 
The order of the system of equations can be reduced by one. To this end, let us substitute equation [START_REF] Almeida | [END_REF] into equation ( 9), multiply the obtained equation by dΦ/dξ, and integrate over ξ from 0 to ξ. After the order of integration over ξ and ζ in the double integral on the rhs has been changed, the integral over ξ may be evaluated analytically. Taking into account the third boundary condition (12) and the second boundary condition [START_REF] Prewett | Proc. R. Soc. Lond. A[END_REF], one obtains

dΦ dξ = -sgn ξ 2τ α e Φ -1 + sgn ξ √ 2τ I (ξ) 1/2 (14) 
where

I (ξ) = ξ 0 e Φ(ζ) N a (ζ) Φ (ζ) -Φ (ξ) dζ ( 15 
)
3 Method of numerical solution

While solving the problem numerically, it is convenient to treat the atomic density at the point of maximum, n a (0), as a given parameter, and the atomic density at the cathode surface, n aw , as a calculation result. Then the solution may be found in two steps. First, equations ( 8) and ( 14) are solved for functions N a (ξ) and Φ (ξ) and constant τ in the region beyond the maximum point, ξ ≥ 0, the boundary conditions being [START_REF] Prewett | Proc. R. Soc. Lond. A[END_REF] and

dΦ dξ (∞) = 0 (16) 
After the solution has been found, one will be able to determine the constant χ 1 :

χ 1 = -Φ (∞).
At the second step, equations ( 8) and ( 14) are solved for functions N a (ξ) and Φ (ξ) and constant ξ w in the layer between the cathode and the maximum point, ξ w ≤ ξ < 0, with the boundary conditions [START_REF] Prewett | Proc. R. Soc. Lond. A[END_REF] and the condition

Φ (ξ w ) = -χ + Φ ∞ , where Φ ∞ = Φ (∞) = -χ 1 .
The first problem represents a two-point boundary-value problem for two equations, one of these equations being (ordinary) differential and the other integrodifferential. It is natural to try to solve it by shooting with τ playing the role of a shooting parameter: equations ( 8) and ( 14) supplemented with boundary conditions [START_REF] Prewett | Proc. R. Soc. Lond. A[END_REF] are integrated from the point ξ = 0 in the direction of positive ξ; the integration is performed several times with different values of parameter τ and this parameter is adjusted until the boundary condition [START_REF] Lieberman | Principles of Plasma Discharges and Material Processing[END_REF] or an equivalent condition is satisfied. The second problem also represents a two-point boundary-value problem, however it can be trivially reduced to an initialvalue problem: equations ( 8) and ( 14) supplemented with boundary conditions [START_REF] Prewett | Proc. R. Soc. Lond. A[END_REF] are integrated from ξ = 0 in the direction of negative ξ; the integration terminates when the function Φ attains the value -χ + Φ ∞ .

The above-described procedure requires a numerical solution of the initial-value problem ( 8), ( 14), [START_REF] Prewett | Proc. R. Soc. Lond. A[END_REF] with a known τ . After an appropriate evaluation technique of the integral [START_REF] Tonks | [END_REF] has been chosen, equations ( 8) and ( 14) with boundary conditions (13) may be treated as an initial-value problem for a system of two first-order ordinary differential equations. In this work, the equations were solved by means of Euler's method on a numerical grid with a constant step h. Potential at the first knots, ξ = ±h, was determined by means of equation ( 22) of appendix A supplemented with the rest of equations of the appendix.

The boundary condition [START_REF] Lieberman | Principles of Plasma Discharges and Material Processing[END_REF] does not admit a straightforward numerical implementation, so an equivalent numerical condition is needed to find τ . As an example, let us consider results of numerical solution of the initial-value problem ( 8), ( 14), [START_REF] Prewett | Proc. R. Soc. Lond. A[END_REF] in the region ξ ≥ 0 with different values of τ for α = 0.1 and h = 10 -3 . If τ 0.17, the numerical solution breaks down at the third knot of the numerical grid, ξ = 3h, where the quantity in the square brackets in equation ( 14) turns negative. Calculated distributions of the dimensionless electric field E = -dΦ/dξ for several values of τ ≥ 0.18 are shown in figure 2. At τ = 0.18, the electric field E (ξ) first increases, then passes through a maximum at ξ = ξ max = 0.735, then passes through a minimum at ξ = ξ min = 9.592 after which it starts rapidly oscillating. The amplitude of the oscillations, being very low at ξ close to ξ min , increases with increasing ξ. At ξ around 10.8 the oscillations become visible on the graph and at ξ = ξ bd = 10.828 the solution breaks down (for the same reason as above: the quantity in the square brackets in equation ( 14) turns negative). At τ = 0.42 the distribution E (ξ) is qualitatively similar, except that the first maximum, the first minimum, and the point of breakdown have shifted to higher ξ: ξ max = 0.930, ξ min = 13.466, ξ bd = 23.369. At τ = 0.48657 the first maximum has shifted a little bit more: ξ max = 1.087, the first minimum has shifted considerably: ξ min = 28.256, and the solution exists in the whole calculation domain. There are still over hundred cycles of oscillation of E (ξ) in the region ξ min ≤ ξ ≤ 30, however the amplitude of the oscillations is quite low and they are not visible on the graph. As τ increases further, ξ min starts decreasing, however the solution continues to exist in the whole calculation domain while the number of cycles of oscillations in the region ξ min ≤ ξ ≤ 30 decreases. At τ = 0.48664, ξ max = 1.088 and ξ min = 17.563 and there are no oscillations of E (ξ) in the region ξ min ≤ ξ ≤ 30, i.e., the electric field is monotonically increasing in this region. At τ = 0.487 the distribution E (ξ) is qualitatively similar, except that (the first and the only) minimum has shifted still more in the direction of lower ξ: ξ max = 1.089 and ξ min = 11.897. At τ = 0.53 the distribution E (ξ) is still qualitatively similar, however the (first and the only) maximum and the minimum are relatively close: ξ max = 1.375, ξ min = 2.293, and that the electric field in the region [ξ max ,ξ min ] does not change much: E (ξ max ) ≈ 0.223, E (ξ min ) ≈ 0.218. At τ still higher the maximum and the minimum disappear, so E (ξ) monotonically increases in the whole calculation domain, an example being the case τ = 0.6.

It is legitimate to assume that the proper value of τ in this example is 0.48657, i.e., the one which ensures the biggest ξ min or, in other words, the longest interval of monotonic decrease of electric field after the first maximum. This assumption is illustrated by figure 3, where the quantity ξ min for α = 0.1 is shown as a function of τ for two values of h, and by table 1, where values of τ are shown which ensure the biggest ξ min for each pair (α, h), α = 0.1, 1, 10 and h = 10 -2 , 10 -3 . The maximum in the dependence ξ min (τ ) is quite narrow and the variation of its position with h is quite weak, which leaves little doubt concerning the problem under consideration being solvable and its solution being unique.

In the case h = 10 -2 , the dependence ξ min (τ ) is oscillating in the vicinity of maximum, which causes a small ambiguity in the choice of τ . There is no such ambiguity in the case h = 10 -3 , however ξ min in the vicinity of maximum in this case is substantially lower than in the case h = 10 -2 ; probably an indication of accumulation of error. These factors affect the accuracy of the numerical procedure being used. It will be seen below that this accuracy may be estimated as about 10%.

Results and discussion

Examples of calculated distributions of parameters in the sheath are shown in figure 4; here N e = e Φ is the normalized electron density. The ion density was found from the Poisson equation ( 9) with the use of numerical differentiation of E. There are small oscillations of the ion density in the vicinity of the point of maximum of potential, which are not very well visible on the graph in the case α = 0.1, virtually invisible in the case α = 1, and not visible at all in the case α = 10. These oscillations represent a numerical artefact. There is a difference of up to 10% between solutions obtained on different numerical grids, which gives an idea of the overall accuracy of numerical results. One can see that the numerical results confirm the physical picture hypothesized in the Introduction. There is a maximum in the distribution of potential and, consequently, of the electron density. There is a maximum also in the distribution of the electric field, ξ = ξ max , at which the the ion and electron density become equal. N i exceeds N e at ξ < ξ max and is below N e at ξ > ξ max ; a double layer. The ion density is non-monotonic as well, with a maximum positioned at a negative ξ.

The modelling reported in this work refers to the case χ = 10; in other words, the integration in the direction of negative ξ terminated when the potential has decreased to -10kT e /e. Values of ξ at which this happened, i.e., position of the cathode, ξ = ξ w , are shown in table 2. The density (and flux) of atoms emitted by the cathode surface remain unaltered in the vicinity of the cathode, where the plasma is strongly negative and from where the electrons are repelled by the sheath electric field, so no ionization occurs. Further away from the cathode, the electron density becomes appreciable and atoms start getting ionized: N a starts decreasing. In order to give an idea of a region where this happens, values ξ = ξ 1 at which N e reaches the value of 10 -2 are shown in table 2.

As ξ increases, the atomic density decreases rather fast and soon becomes negligible, i.e., the plasma becomes fully ionized. In order to give an idea of a region where this happens, values ξ = ξ 2 at which N a decreases down to 1% of the value at the cathode surface (i.e., 99% of the atoms have been ionized) are shown in table 2. Also shown in table 2 are values ξ = ξ i at which N i attains a maximum. As it should have been expected, ξ 1 < ξ i < ξ 2 : the maximum of ion density occurs inside the ionization zone.

At α = 0.1, the ion density in the region of the potential hump is relatively close to the electron density, so the plasma is not very far from quasi-neutrality here. With increasing α the ion density in the region of the potential hump increases and at large α considerably exceeds the electron density.

Another important quantity is the average potential energy with which ions crossing a point x have been produced:

ψ i (x) = 1 [n a (0) -n a (x)] v a x 0 weϕ dx (17) 
The average kinetic energy of an ion at a point x can be expressed in terms of this quantity as ψ i (x) -eϕ (x). A dimensionless average potential energy may be conveniently defined as Ψ i = ψ i /kT e + Φ ∞ and equals

Ψ i (ξ) = 1 1 -N a ξ 0 e Φ N a Φ dξ (18) 
Distributions of the function Ψ i (ξ) are shown in figure 5a. As one should have expected, the function attains a maximum value Ψ i = 0 at ξ = 0 and manifests plateaus in the region ξ ξ 1 , where no ionization occurs, and in the region ξ ξ 2 , where the plasma is already fully ionized. Equation ( 14) in the region ξ ξ 1 , where the electron density is negligible and no ionization occurs, may be written as

α 2τ dΦ dξ 2 = √ 2τ 0 ξ e Φ(ζ) N a (ζ) Φ (ζ) -Φ (ξ) dζ -1 (19) 
Note that the lower limit of integration may be set equal, instead of ξ, to any value below ξ 1 . Modulus of potential in the region in the vicinity of the hump, where ionization occurs, is of the order of kT e /e. Modulus of potential in the region ξ ξ 1 is of the order U , i.e., substantially higher. Therefore, the integrand on the rhs of equation ( 19) may be expanded in powers of Φ (ζ) /Φ (ξ). Retaining two terms of the expansion, one finds

α 2τ dΦ dξ 2 = τ (N a -1) √ -2Φ 1 - Ψ i 2Φ -1 (20) 
While equation ( 19) is of exponential accuracy with respect to the large parameter -Φ, equation ( 20) is of only algebraic accuracy O (Φ -2 ). Nevertheless, equation ( 20) is accurate enough, which is illustrated by graphs of the ratio of the lhs of this equation to the rhs shown in figure 5a. One can see that in the region ξ ξ 1 this ratio indeed is close to unity. The fact that the asymptotic limit of validity of equation ( 20) is related to the large parameter -Φ is illustrated by figure 5b, where the data referring to the range ξ ≤ 0 in figure 5a are plotted vs. Φ.

Integral parameters of the sheath for different values of α are shown in figure 6. Here Ψ iw = Ψ i (ξ w ) and Ψ i∞ = Ψ i (∞) are dimensionless average potential energies with which ions have been produced before and after the potential maximum, respectively;

V i = τ exp (-Φ ∞ )
is the value at the sheath edge of the mean velocity of ions moving from the sheath into the plasma, normalized by the Bohm velocity u B . Data calculated on different numerical grids are rather close to each other except for Φ ∞ and V i where the difference is more substantial and the dependence on α is not smooth, especially when calculated with h = 10 -2 ; clearly a consequence of the numerical difficulties discussed at the end of section 3. However, the difference is below 10% even in this case, which is an acceptable accuracy at the present stage.

It is of interest to try to find an asymptotic solution to the considered problem in the limiting cases of small and large α. Leaving the full treatment beyond the scope of this paper, we note the following. Values of the quantities τ and Φ ∞ in the case of large α can be found with the use of results [START_REF] Benilov | [END_REF]:

Φ ∞ = -C 1 , where C 1 ≈ 1.26 is the positive root of the transcendental equation exp C 1 = 1 + 2C 1 ; τ = √ 2C 1 / (1 + 2C 1 ) ≈ 0.451; and V i = √ 2C 1 ≈ 1.
59. In the limiting case of small α, the space charge and ionization are separated in space: the ionization occurs in a quasi-neutral region beyond the space-charge sheath, which may be called the ionization layer. The sheath is formed by ions returning to the cathode and is not very different from sheaths in discharges burning in ambient gas. While the potential distribution in the sheath is monotonic in this limiting case, the maximum of potential occurs in the ionization layer. Therefore, the ionization layer in discharges burning in cathode vapor is substantially different from that in discharges burning in ambient gas. To the first approximation in the parameter α, the ionization layer is described by a problem comprising equation ( 8), equation ( 14) with the lhs being dropped, the first boundary condition [START_REF] Prewett | Proc. R. Soc. Lond. A[END_REF], and boundary condition [START_REF] Lieberman | Principles of Plasma Discharges and Material Processing[END_REF]. A numerical solution of this problem gave τ = 0.487, Φ ∞ = -0.85, and N aw = 2.11.

The above limiting values are shown in figure 6 by dotted (τ , N aw , and V i ) and dashdotted (Φ ∞ ) horizontal lines. One can see that the numerical results for finite α conform to the limiting values.

The range of variation of parameter τ is rather narrow: as α increases from very low to very high values, τ decreases from 0.487 to 0.451, i.e., by about 8%. Φ ∞ decreases more significantly, although not dramatically: from -0.85 to -1.26. Ψ iw also decreases significantly but not dramatically, from -0.56 for α = 0.1 to -0.89 for α = 10. Ψ i∞ increases from -0.14 for small α to very small values for large α. N aw varies quite strongly, from 2.11 for very small α to 21.3 for α = 10. V i increases from 1.1 for α = 0.1 to 1.59 for very high α.

The latter means that the ion mean velocity at the sheath edge exceeds the Bohm velocity by up to 59%. In other words, the Bohm criterion in the case of ions moving from the sheath into the plasma is satisfied by a substantial margin, rather than with the equality sign which is usual in the case of a conventional sheath with ions moving from the plasma into the sheath.

Concluding remarks

Numerical results confirm the concept of a near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface being a double layer with a potential hump: the mathematical problem is solvable and its solution is unique. The accuracy of the numerical results may be estimated as about 10%. Although further work in this direction is desired in the future, such accuracy seems to be acceptable at the present stage.

Distributions across the sheath have been calculated of ion, electron, and atomic den-sities, electrostatic potential and electric field. Also calculated have been integral parameters of the sheath, in particular, τ the ratio of characteristic fluxes of the atoms and the ions; Φ ∞ the dimensionless height of the potential hump; N aw the ratio of the atomic density at the cathode surface to the atomic density at the potential maximum; Ψ iw , Ψ i∞ the dimensionless average potential energies with which ions are produced before and after potential maximum, respectively. τ , Φ ∞ , and Ψ i∞ represent functions of a single control parameter α and may be taken from figures 6a and 6b. N aw and Ψ iw represent functions of α and the dimensionless sheath voltage χ = eU/kT e . However, their dependences on χ are weak under conditions of practical interest, which is attested by plateaus manifested at large negative ξ by curves N a in figure 4 and Ψ i in figure 5a. Neglecting these dependences, one can consider N aw and Ψ iw as functions of a single control parameter α and take them from figure 6b. The control parameter α, characterizing the squared ratio of the Debye length to the scale of variation of the atomic density, is evaluated in terms of quantities at the point of maximum of potential. In order to make the obtained results practicable, one needs to relate α to a parameter evaluated in terms of quantities at the cathode surface. An appropriate parameter is

α w = v a u B ε 0 kT e n aw e 2 k i n aw v a 2 (21) 
The relation between α w and α reads α w (α) = α N aw (α) and may be readily evaluated with the use of data on the dependence N aw (α) shown in figure 6b.

Apart from being of theoretical interest, the model of a near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface is of interest due to its possible applications to discharges burning in cathode vapor, including vacuum arcs. In particular, the above-described calculation data on parameters τ , Φ ∞ , N aw , Ψ iw , Ψ i∞ can be used for evaluation of a number of quantities which are essential for understanding and modelling of plasma-cathode interaction in such discharges. One of these quantities is the height of the potential hump, which may be evaluated as ϕ (0) = -kTe e Φ ∞ . It follows from the above results that the height of the potential hump is within the range (0.85 . . . 1.26) kT e /e. This value is insufficient to explain the observed velocities of ions in cathode jets of vacuum arcs, in agreement with the belief of many researchers that the main contribution to acceleration of ions is given by the plasma pressure gradient.

The charged particle density at the sheath edge may be evaluated as n e∞ = J v exp Φ ∞ /N aw τ u B . The so-called ion backflow coefficient, which plays an important role in theoretical models of cathode spots in vacuum arcs (e.g., [21]), is defined as fraction of atoms emitted by the cathode surface that do not escape into the plasma but rather return to the cathode in the form of ions. This coefficient may be evaluated as µ = 1 -N -1 aw . Since N aw equals to or exceeds 2.11, the ion backflow coefficient cannot be below 53%.

The average kinetic energy of ions bombarding the cathode surface, which is a parameter playing an important role in understanding thermal balance of cathode spot, may be evaluated as kT e (Ψ iw -Φ ∞ ) + eU . The average kinetic energy of ions leaving the sheath may be evaluated as kT e (Ψ i∞ -Φ ∞ ). The electric field at the cathode surface, which affects the electron emission current, may be evaluated by means of equation (20).

These results may be readily incorporated into models of near-cathode layers of discharges burning in cathode vapor. Besides, these results may be employed for qualitative analysis. As an example, one can consider the ion backflow coefficient for copper cathodes. Estimates made in appendix B with the use of experimental data indicate that 0.65 µ 0.81. Note that that these values exceed 0.53, in accordance with the present results. Graph of α w as a function of T w for copper cathodes is shown in figure 7 for several values of T e . (Here n aw and v a have been calculated by means of equation ( 1) with p v (T w ) evaluated with the use of [START_REF]Smithells Metals Reference Book[END_REF]. k i was evaluated with the use of formulas [START_REF] Benilov | [END_REF], which take into account both direct and stepwise ionization.) Horizontal dashed lines in this figure represent values α w = 0.11 and α w = 3.4, which correspond to the abovementioned lower and and upper estimates for the ion backflow coefficient µ = 0.65 and µ = 0.81, respectively. One should conclude that if the cathode surface temperature is, say, 3500 K, then the electron temperature is likely to be between approximately 1.45 eV and 2.6 eV; if T w = 4150 K, then 1.2 eV T e 2 eV etc.

A Asymptotic behavior of solution in the vicinity of the maximum of potential

The aim of this appendix is to find asymptotic behavior of the solution at small ξ, i.e., in the vicinity of the maximum of potential. The Taylor expansion of potential Φ (ξ) at small ξ should read

Φ (ξ) = - C 2 2 ξ 2 + . . . ( 22 
)
where C 2 is a positive constant.

The integrand in equation ( 10) to a first approximation may be written at small ξ as

√ 2 C 2 ξ 2 -ζ 2 -1/2 .
Evaluating the integral, one finds that N i (ξ) tends at ξ → 0 to a finite value

N i (0) = πτ 2 √ C 2 (23) 
Let us substitute expansion [START_REF]Smithells Metals Reference Book[END_REF] into the Poisson equation ( 9) evaluated at ξ = 0. Eliminating C 2 with the use of equation ( 23), one obtains

N 3 i (0) -N 2 i (0) = π 2 ατ 4 (24) 
This is a cubic equation for N i (0), which admits an analytical solution. The lhs of this equation monotonically increases with increase in N i (0) from zero at N i (0) = 1 to infinity at N i (0) → ∞. One can conclude that this equation is solvable and the solution is unique. Furthermore, N i (0) is a monotonically increasing function of a (single) parameter ατ and

N i (0) ≈ 1 + π 2 ατ 4 , N i (0) ≈ π 2 ατ 4 1/3 (25) 
as ατ → 0 and ατ → ∞, respectively.

B The ion backflow coefficient

The aim of this appendix is to estimate, on the basis of available experimental information, the ion backflow coefficient for the case of copper cathodes. The ion backflow coefficient is defined as the ratio of J iw the number density of flux of ions from the near-cathode region to the cathode surface to J v the number density of flux of atoms leaving the cathode surface, µ = J iw /J v . If one assumes that the flux of atoms returning to the cathode from the plasma is much smaller than the ion flux and that the plasma in the cathode jet is fully ionized, then J v = J iw + Γ i , where Γ i is the number density of ion flux from the near-cathode layer into the plasma, and the ion backflow coefficient may be expressed as

µ = β i α i + β i , α i = eΓ i j , β i = eJ iw j ( 26 
)
where j is the density of electric current in the near-cathode region.

The experimental value of the ion current in the cathode jets on copper cathodes normalized by the arc current is 0.11 [8, p. 157]. Although α i is defined in terms of current densities rather than integral currents, it seems reasonable to assume α i = 0.11.

Let us proceed to estimation of β i the fraction of current to the cathode surface which is delivered by ions. An important, if not dominating, contribution to current transfer to cathodes of vacuum arc discharges is delivered by electron emission. Mechanisms considered by different authors include thermo-field emission and explosive electron emission; see, e.g., reviews [2,[START_REF] Anders | Cathodic Arcs: From Fractal Spots to Energetic Condensation[END_REF]. The estimates given below refer to the thermo-field emission mechanism.

Electron emission produces a cooling effect over the cathode, since the temperature of the cathode surface inside an operating cathode spot of a vacuum arc exceeds the inversion temperature (although this is not necessarily true during the ignition of a spot). The transition of the cathode material into the gas phase (vaporization) also produces a cooling effect. There should be a mechanism responsible for overcoming the cooling mechanisms and heating the cathode surface up to temperatures necessary for electron emission. A role of such mechanism can be played by heating of the cathode by ions coming from the plasma and accelerated in the space-charge sheath. Therefore, the ion current at the cathode surface must be not too low.

Let us recast this reasoning into a quantitative form. The power balance of the cathode surface may be approximately written as

j i e (eU -∆A) + j i e (A i -A ef f ) = j -j i e A ef f + A v G + q (27) 
where A i is the ionization energy, A f is the work function, A ef f is the effective work function, ∆A = A f -A ef f , j i = eJ iw is the density of ion current from the near-cathode plasma to the cathode surface, j -j i represents the density of electric current to the cathode surface transported by the electrons (i.e., the difference between the electron emission current density and the density of current of fast plasma electrons capable of overcoming the repelling electric field in the sheath and reaching the cathode surface), A v is the vaporization energy per atom, G is the number density of net flux of nuclei leaving the cathode surface, and q is the density of flux of heat conduction from the cathode surface into the cathode bulk.

The first term on the lhs of equation ( 27) accounts for the kinetic energy brought to the cathode by the ions, which come to the cathode surface after having been accelerated by the sheath electric field. The second term accounts for the energy released at the cathode surface as a result of neutralization of the ions. The first term on the rhs accounts for the energy taken away from the cathode by the electrons leaving the cathode for the plasma. The term A v G accounts for the energy taken away from the cathode by the nuclei leaving the cathode for the plasma. The last term of the rhs accounts for the energy removed from the cathode surface into the cathode bulk by heat conduction. In summary, equation [START_REF] Benilov | [END_REF] describes balance between the power delivered to the cathode surface by the incident ions, the power removed by the electrons and nuclei leaving the cathode surface, and the power removed by heat conduction into the bulk of the cathode. Obviously, this equation is written in a very simplified form. In particular, it bears no account of terms of the order of thermal energies of electrons and heavy particles and of cooling of the cathode surface by radiation. However, this equation is sufficiently accurate for estimates. h\α 0.1 1 10 10 -2 0.48668 0.47897 0.46164 10 -3 0.48657 0.47795 0.46014 Table 1. Values of τ which ensure the longest interval of monotonic decrease of electric field. 
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Equation ( 27) may be solved for fraction of the ion current:

where g = eG/j is the number of atoms lost by the cathode per elementary charge transported and U h = q/j is the so-called heating voltage. Note that g may be expressed as g = eg/m i , where g is the erosion rate defined as the loss of mass of the cathode per unit charge transported. The usual value of 4.5 eV is assumed for the work function A f of copper. Evaluation of the effective work function by means of fit formulas which have been derived in [24] on the basis of the Murphy-Good formalism [25] shows that the A ef f = 3 eV is a reasonable approximation in the range of T w of interest. The latent heat of vaporization of copper at the boiling point equals 305 kJ mol -1 [START_REF]Smithells Metals Reference Book[END_REF], which corresponds to vaporization energy per atom of 3.16 eV.

Let us assume for estimates U = 15 V. Values of erosion rate for copper given by different authors are in the range 50 -200 µg/ C (e.g., [26, p. 210]), which corresponds to g = 0.08 -0.3 atoms per electron. The heating voltage may be estimated as U h = Q/I, where Q is the total heat removed by heat conduction into the cathode bulk from a single spot and I is the current per spot. Values of this quantity that can be derived from the literature vary significantly: U h is close to 1 V in a wide range of spot currents according to calculations [START_REF] Benilov | [END_REF] and is approximately 6.3 V according to data cited in [4, p. 228]. Given this scatter, the estimates will be done for g = 0.08, U h = 1 V, which will give a lower estimate of β i , and for g = 0.3, U h = 6.3 V, which will give a higher estimate.

Substituting the above values into equation (28), one obtains β i = 0.20 and β i = 0.48 as the lower and higher estimates. Values of the ion backflow coefficient, given by equations [START_REF] Farrall | Vacuum Arcs: Theory and Application[END_REF], are µ = 0.65 and µ = 0.81, respectively.