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Abstract

A broadband resonant transducer capable of low-loss coupling between magneto-

inductive waveguides and a real impedance is introduced. The transducer is an L-C circuit

resonating at the resonant frequency of the elements forming the guide. However, the

values of the components in the transducer are different, and chosen to obtain two

separate nulls in reflection so that low reflection is obtained over a wide spectral range.

The transducer can be incorporated into the MI waveguide itself, allowing a connection

between a magneto-inductive cable and a conventional system to be made as a simple

splice. The design is confirmed using two metre lengths of low-loss thin-film magneto-

inductive cables formed using copper-clad polyimide and operating near 100 MHz

frequency.
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1. Introduction

Magneto-inductive (MI) waveguides are periodic low-frequency electrical structures,

formed by magnetically coupling a set of lumped-element L-C circuits [1]. The properties

of linear arrangements and 2D and 3D MI arrays have been extensively studied [2-6].

Propagation losses have been reduced [7], and the effects of non-nearest neighbour

interactions [8], bi-periodicity [9], coupling to electromagnetic waves [10] and retardation

[11] have all been considered. Although the first demonstrations used simple resonant

loops, MI waveguides have also been formed as planar structures [12] and thin-film

cables [13]. The latter have potential applications as patient-safe cable in magnetic

resonance imaging [14, 15]. Many MI devices have been proposed or demonstrated,

including magnetic flux concentrators [16], delay lines [12], filters [17], directional

couplers [4, 18], splitters [19], lenses for near-field imaging [20-22] and detectors for

magnetic resonance imaging [23]. Parametric amplification has been considered as a

method of reducing propagation losses [24, 25].

Despite this effort, losses per metre have historically been high (150 dB/m in [1] and 50

dB/m in [7]), propagation distances have been limited, and end-reflections have mainly

been ignored. However, the demonstration of losses of ≈ 2.5 dB/m in thin-film cables

[13] has re-affirmed the need for an effective transducer for coupling to a conventional

transmission line or for termination. Without such a transducer, it will be difficult to

construct any high-performance MI system. Although multi-element absorbers have been

proposed [26], these do not solve the coupling problem. In this paper, we consider
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possibilities for inductive coupling to a MI waveguide, and demonstrate a simple

broadband transducer that can be constructed from passive components. The theory of

matching is described in Section 2, transducer optimisation is explored in more detail in

Section 3, experimental verification is presented in Section 4, and conclusions are drawn

in Section 5.
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2. Matching to magneto-inductive waveguides

We first consider the principle of matching a magneto-inductive waveguide to a real load.

Figure 1a shows the equivalent circuit of an ideal, loss-less guide, formed from a set of L-

C resonators coupled to their nearest neighbours by a mutual inductance M. Away from

any termination (n < 0) the equation governing the current In in the nth element at angular

frequency ω can be found from Kirchhoff’s voltage law as [1]:

{jωL + 1/jωC}In + jωM{In-1 + In+1} = 0

(1)

A solution can be found by assuming that In is the travelling wave In = I0 exp(±jnka),

where I0 is the wave amplitude, ka is the phase shift per element, k is the propagation

constant and a is the period. Substitution into Equation 1 yields the well-known

dispersion equation:

(1 - ω0
2/ω2) + κ cos(ka) = 0

(2)

Here ω0
2 = 1/LC is the angular resonant frequency and κ = 2M/L the coupling coefficient.

For positive κ, propagation can only take place for ω/ω0 between 1/√(1 + κ) and 1/√(1 -

κ). The effect of loss may be modelled by repeating the analysis, assuming the presence

of a resistor R in each resonant loop [1]. If this is done, the dispersion equation is

modified to (1 - ω0
2/ω2 - j/Q) + κ cos(ka) = 0, where Q = ωL/R is the Q-factor. Assuming

a complex-valued propagation constant ka = k’a - jk’’a, and further assuming that k’’a is
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small, it can be shown that k’’a = 1/{κQ sin(k’a)}. Losses are lowest at mid-band, and

strong coupling and a high Q-factor are required for low loss.

In [2], it was shown that a non-reflective termination is formed by inserting an impedance

Z0 into the last (0th) element of the waveguide, where Z0 is given by:

Z0 = jωM exp(-jka)

(3)

At mid-band, when ω = ω0 and ka = π/2, Z0 reduces to the real value Z0M = ω0M. Thus, in

principle it should be possible to couple a magneto-inductive waveguide to a

conventional transmission line (which has real impedance) if M is appropriately chosen.

Unfortunately, Z0 is complex away from the band centre, and moreover as expressed here

is a function of both ka and ω. Consequently, Equation 3 has so far represented a

mathematical contrivance, rather than an element that can be realised. Further

development of MI systems clearly requires simple circuits that can approximate this

impedance.

In a search for suitable circuits we consider the termination in Figure 1b. Here the final

element of a MI waveguide is coupled via a mutual inductance M’ to a loop containing an

inductance L’, a capacitance C’ and a real load RL, which will typically represent a 50 Ω

system. The loop is resonant at an angular frequency ω0’ = 1/L’C’, but may be considered

non-resonant when ω0’ is zero. For the final elements, the circuit equations are:
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{jωL + 1/jωC}I0 + jωMI-1 + jωM’IL = 0

{RL + j(ωL’ - 1/ωC’)}IL + jωM’I0 = 0

(4)

Combining Equations 4, we obtain for the 0th element:

{jωL + 1/jωC + ZL}I0 + jωMI-1 = 0

(5)

Here ZL is a load that has effectively been inserted into the 0th element, given by:

ZL = ω2M’2/{RL + jωL’(1 - ω0’
2/ω2)}

(6)

We may evaluate the performance of ZL as a termination by considering the reflection of

current waves as shown in Figure 1c. Assuming solutions of Equations 1 and 5 as the sum

of incident and reflected waves, i.e. as In = II exp(-jnka) + IR exp(+jka), substituting into

Equation 5 and using Equation 2 we can obtain the reflection coefficient Γ = IR/II as:

Γ = -{ZL – Z0} / {ZL + Z0*}

(7)

Equation 7 is similar to the reflection coefficient for current waves obtained when a

conventional transmission line is terminated with a load. However, due to the presence of

a complex conjugate term, it is clearly not identical.
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Since the current in element zero, which passes through the effective load, is I0 = II + IR,

we can also define a transmission coefficient as T = I0/II = (1 + Γ), or:

T = 2Re(Z0)/{ZL + Z0*}

(8)

Equation 8 is again similar, but not identical to the conventional transmission coefficient,

due to the presence of a real operator. It is simple to show that Γ and T satisfy the power

conservation relation:

ΓΓ* + TT* Re(ZL) / Re(Z0) = 1

(9)

Once again, Equation 9 is similar to the corresponding result for real-valued systems.

Different terminations can be compared by plotting the scattering parameter S11 in dB, as:

S11 ≈ 10 log10{Γ2}

(10)

Equation 7 implies that ZL should be chosen to approximate Z0 as far as possible. We

now compare a number of possibilities, assuming for simplicity that Z0M = RL and that M’

= M.

Figure 2 shows the frequency variation of S11 obtained in a non-resonant transducer for

different values of L’/L, calculated assuming the typical coupling coefficient κ = 0.6.
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Propagation can take place over the band 0.79 ≤ ω/ω0 ≤ 1.58, and S11 rises to 0 dB at the

band edges. Within the band, S11 reduces somewhat. However, when L’/L = 1, the

reflection coefficient is generally high and the transducer is correspondingly ineffective.

As L’/L reduces, a deeper and deeper minimum in S11 develops, and gradually shifts

towards ω/ω0 = 1. These results imply that the performance of the transducer improves as

L’/L reduces, and that the best result is obtained when only a small reactance is inserted

into the final loop. However, the best that can be achieved still only represents a narrow-

band impedance match. Furthermore, the minimum in S11 is relatively high (-35 dB), and

even this result is only obtained for very small values of L’/L, when it may be difficult to

maintain M’/M = 1.

The inserted reactance can clearly be cancelled more effectively if the transducer is made

resonant. Figure 3 shows the corresponding variation of S11 obtained for a resonant

transducer, calculated assuming that κ = 0.6 and that L’ and C’ are chosen so that ω0’ =

ω0. Results are again shown for different values of L’/L. The most obvious choice of L’/L

= 1 provides a complete null in reflectivity when ω/ω0 = 1. However, this result again

only represents a narrow-band match. In contrast, the less obvious choice of L’/L = 0.5

provides two nulls in reflectivity, the first again being at ω/ω0 =1. Because the nulls are

widely separated, low reflectivity is obtained over a wide band. For example, S11 is less

than -20 dB for 65% of the pass-band, and less than -30 dB for 45%. This form of

transducer is extremely effective. Importantly, it can be realised very conveniently as

shown in Figure 1d. Here each resonant element in a MI waveguide is now formed from

two separate inductors of value L/2, and two capacitors of value 2C. If half the final
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element is simply removed, the remainder may then be connected directly to a resistive

load. This modification allows MI waveguides of arbitrary length to be terminated

without the need for additional components. To realise such an arrangement, all that is

required is to stagger the inductors and capacitors in each unit cell, so that the cell may be

exactly bisected using a transverse cut.
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3. Transducer optimisation

We now consider the broadband resonant transducer in more detail. To understand how it

achieves its effect, we introduce the normalised characteristic impedance Z0N = Z0/ω0M,

obtained from Equation 3 as:

Z0N = w/{sin(ka) - j cos(ka)}

(11)

Here w = ω/ω0 is a normalised frequency. Using the dispersion equation (2), Z0N may be

written alternatively as:

Z0N = w/{√[1 - (1 - 1/w2)2/κ2] + j(1 - 1/w 2)/κ}

(12)

In this form, Z0N is clearly a function only of w. Consequently it may be compared

directly with the corresponding normalised load impedance ZLN/ω0M, which may be

written as:

ZLN = w/{ρ/wµ2 + j(2λ/κµ2)(1 - η2/w2)}

(13)

Here we have introduced four normalised variables. The first, ρ = RL/ω0M, is the ratio of

the RL to the mid-band impedance of the MI waveguide. The second, λ = L’/L, is the ratio

of the self-inductances in the transducer and the guide, the third, µ = M’/M, is the ratio of

mutual inductances, and the fourth, η = ω0’/ω0, is the ratio of resonant frequencies.
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Clearly, reflectivity will be low if the real and imaginary parts of Z0N and ZLN are similar,

or alternatively if the real and imaginary parts of the normalised admittances Y0N = 1/Z0N

and YLN = 1/ZLN correspond. Considering first the imaginary parts, Im(Y0N) can be made

equal to Im(YLN) for all ω if η = 1 and λ = µ2/2. If µ = 1, as previously assumed, a

complete match in admittance can therefore be obtained if the transducer is resonant at ω0

and the inductance L’ of the transducer is half that of the resonant elements forming the

guide.

Considering now the real parts, and assuming that the transducer is correctly resonant,

Re(Y0N) can be made equal to Re(YLN) if:

ρ/wµ2 = √[1 - (1 - 1/w2)2/κ2]

(14)

Equation 14 is actually a quadratic equation, which can be expanded as:

w4{κ2 - 1} + w 2{2 - α2κ2} - 1 = 0

(15)

Here, α = ρ/µ2. When α = 1, a condition that can be achieved by taking M’ = M and ω0M

= RL, Equation 15 has the simple solutions of w = 1 and w = 1/√(1 - κ2). Both lie in the

propagating band. These results imply that if ω0M = RL, and if the transducer is made

resonant at ω0 using an inductance L’ = L/2 (which requires a capacitance C’ = 2C), the

imaginary parts of YL and Y0 can be made equal across the band and the real parts at two
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discrete frequencies. Consequently, Z0 and ZL can be equalised at the same two

frequencies, and at these points there can be no reflection. These results are confirmed in

Figure 4, which shows the frequency variations of the real and imaginary parts of Z0N and

ZLN, calculated assuming κ = 0.6. Matching is achieved when w = ω/ω0 = 1 and ω/ω0 =

1/√(1 - 0.62) = 1.25, the points at which nulls in reflectivity are seen in Figure 3.

Broadband operation then follows from the existence of these two separate nulls.

A broadband transducer can still be constructed if α ≠ 1 (for example, if M’ = M but ω0M

≠ RL). Figure 5 shows the frequency variation of the scattering parameter S11 for

resonant transducers, calculated assuming κ = 0.6, and L’/L = 0.5 and assuming

different values of α. For α < 1, there are again two nulls in reflectivity, which

move further apart as α reduces. For α > 1, there is only a single minimum, not a

null. However, in each of the cases shown, the return is generally low over a

wide spectral range. These results suggest that the broadband resonant

transducer will give reasonable performance even when the mid-band

impedance of the MI waveguide is slightly mismatched from RL.

Finally, it is simple to show that the two nulls in reflectivity just merge together when the

roots of Equation 15 are repeated. This occurs when
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(2 - α2κ2)2 = 4(1 - κ2)

(16)

Or when:

α4κ2 – 4α2 + 4 = 0

(17)

Equation 17 has the solutions α = (√2/κ){1 ± √ (1 - κ2)]}1/2. For κ = 0.6, for example, the

solutions are α = 3.162 and α = 1.054. The latter value is midway between α = 1 and α =

1.1, and generates a variation in reflectivity with a single null.
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4. Experimental verification

Experimental confirmation of the theory of the previous section was provided using thin-

film magneto-inductive cables formed by double-sided patterning of copper-clad

polyimide, as described in [13]. Figure 6a shows the physical arrangement and key

dimensions, and Figure 6b a short section of cable. Each resonant element is formed from

two inductors and two capacitors. The inductors are single-turn loops of inductance L/2,

located on either side of a thin substrate, while the capacitors are parallel-plate

components of capacitance 2C, which use the substrate as a dielectric interlayer. This

arrangement approximates that of Figure 1d, although it does not allow a resonant

termination to be formed by cutting the cable. Instead, it provides non-resonant

terminations of inductance L’ = L/2, which may be made resonant with additional

capacitors. Since the mutual inductances M and M’ are the same, this arrangement has

normalised parameter values λ = 0.5 and µ = 1.

Cables were fabricated in two metre lengths by the UK company Clarydon (Willenhall,

West Midlands). The base material consisted of 25 µm thick Kapton® carrying a 35 µm

thick layer of copper on either side. The copper was patterned by step-and-repeat

lithographic exposure to a pair of one metre long photomasks, followed by wet etching.

The photomasks contained a set of MI waveguides with different parameters. The overall

width and length were taken as w = 4.7 mm and a = 100 mm throughout, so that a two-

metre length contained 19 resonant elements. The track width t, and the small gaps gC and

gL between capacitor plates and between plates and tracks were all taken as 0.5 mm. The
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main variables were the capacitor and inductor lengths dC and dL, which were varied to

obtain different properties. Of particular importance were the inductance L, the

capacitance C, the mutual inductance M and the Q-factor of the resonant elements. These

parameters determine the resonant frequency f0 = ω0/2π, the coupling coefficient κ =

2M/L, the mid-band impedance Z0M = ω0M and an imaginary part of the propagation

constant.

Electrical performance was evaluated using an Agilent E5061A Electronic Network

Analyser (ENA). The inductance was determined by making the transducers resonant at

low frequency with a known capacitor and measuring the resonant frequency with a weak

inductive probe. The remaining parameters were estimated by attaching SMA-type end-

launch connectors as shown in Figure 6c, measuring transmission and reflection data, and

fitting the data to a theoretical model. Recently, it has been shown that flexible magneto-

inductive cable is very tolerant to bends, due to the extreme stability of the mutual

inductance between adjacent elements [27]. Despite this, small reflections tend to mask

the appearance of predicted nulls in S11. The smallest overall reflections were therefore

obtained with the MI waveguide held straight, using an additional co-axial cable to return

the transmitted signal to the ENA.

The theoretical model includes propagation loss but ignores multiple reflections. In this

case, the scattering parameters S11 and S21 for an N-element MI waveguide connected to a

source with real output impedance RL and a similar load are given approximately by:
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S11 ≈ 10 log10{Γ2}

(18)

S21 ≈ 10 log10{(1 -Γ2) exp(-2Nk’’a) (1 -Γ2)}

(19)

Figure 7 shows a comparison between experimental measurement of the frequency

variations of S11 and S21 and the theory above, for a cable with dC = 10 mm and dL ≈ 90

mm. The experimental data show band-limited propagation between 70 MHz and 160

MHz. Overall transmission is high, and S21 peaks at -8 dB near 110 MHz. Oscillations in

transmission and reflection are due to multiple reflections, and suggest low propagation

loss. However, the return is high, and the minimum value of S11 is only ≈ -7 dB. These

results confirm the poor performance of non-resonant transducers. The agreement

between theory and experiment is clearly good, apart from the inability of the simple

theory used here to model multiple reflections and a small discrepancy in S21 at high

frequency.

The combination of direct measurement and matching to theory allowed deduction of the

following parameter values. The inductance was estimated as L = 241 nH, the resonant

frequency as f0 = 95 MHz, the capacitance as C = 11.6 pF, the coupling coefficient as κ =

0.675, the mid-band impedance as Z0M = 48.6 Ω and the Q-factor as Q = 48 (which in

turn implies a mid-band propagation loss of 0.27 dB/m). The mid-band impedance is

clearly close to 50 Ω, and gives a value of ρ = RL/Z0M = 1.028.
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The terminations were made resonant using surface mount capacitors, using the optimum

capacitance value of 2 x 11.6 ≈ 23 pF. Electrical performance was then re-measured to

give the results shown in Figure 8. Here, peak transmission has now increased to -5.2 dB,

and the oscillations due to multiple reflections have largely disappeared. The return has

significantly reduced, and S11 is below -25 dB for much of the band. The data are again

compared with theory, this time assuming a resonant termination, and good agreement is

again obtained. However, the predicted nulls in reflection cannot be seen in the

experiment, presumably due to other small reflections from connections. These results

confirm the improvement in performance offered by the optimum resonant termination.
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5. Conclusions

A simple inductive transducer for coupling a magneto-inductive waveguide to a real load

has been introduced. A theory of reflection from lumped-element coupling transducers

has been developed. It has been shown that zero reflection can be obtained at a single

frequency if the (real-valued) mid-band impedance of the MI waveguide matches the

load, and if the transducer is resonant at the same frequency as the resonant elements

forming the guide. If in addition the inductance of the transducer is half that used in the

resonant elements and the capacitance is correspondingly double, matching to the load

can also be achieved at a second frequency. Since zero reflection is now obtained at two

separate frequencies, low reflectivity can be obtained over a broad spectral range. The

theory has been compared with experimental results obtained from thin-film magneto-

inductive cable. Excellent agreement has been obtained, and the improvement in

performance offered by the optimised resonant transducer has been confirmed by

comparison with a non-resonant equivalent.

Other more complicated transducer designs can doubtless be developed to achieve

improved broadband performance. However, the simple design presented here has the

important advantage that a transducer with exactly the required properties can be obtained

from the waveguide itself, if the resonant elements are formed using pairs of inductors

and capacitors in series, rather than single components. As a result, a connection between

a MI waveguide and a system with real impedance may be obtained simply by splicing,

exactly as is done for other cable types such as co-axial cable. The demonstration of a
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simple arrangement for coupling should greatly increase potential applications for MI

waveguides.
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7. Figures

1. Magneto-inductive waveguide, with a) ideal termination, b) real termination c)

equivalent termination and d) self-termination.

2. Frequency variation of the scattering parameter S11 for non-resonant

transducers calculated assuming M’ = M, κ = 0.6 and different values of L’/L.

3. Frequency variation of the scattering parameter S11 for resonant transducers,

calculated assuming M’ = M, κ = 0.6, ω0’ = ω0 and different values of L’/L.

4. Frequency variation of the real and imaginary parts of the normalised impedance Z0N

= Z0/ω0M (thin lines) and ZLN = ZL/ω0M (thick lines), calculated assuming M’ = M, κ

= 0.6, ω0’ = ω0 and L’ = L/2.

5. Frequency variation of the scattering parameter S11 for resonant transducers,

calculated assuming M’ = M, κ = 0.6, L’/L = 0.5 and different values of α.

6. a) Arrangement and b) experimental realisation of thin-film magneto-inductive cable;

c) arrangement for resonant connection to conventional coaxial cable.

7. Frequency variation of S11 and S21 for thin-film magneto-inductive cable, with non-

resonant transducers. Thick lines are experimental data and thin lines are theory.

8. Frequency variation of S11 and S21 for thin-film magneto-inductive cable, with

resonant transducers. Thick lines are experimental data and thin lines are theory.
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