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Abstract

Exchange coupled composite (ECC) particles are the basic constituents of ECC magnetic recording

media. We examine and compare two types of ECC particles: i) core-shell structures, consisting of a

hard-magnetic core and a co-axial soft-magnetic shell, and ii) conventional ECC particles, with a hard-

magnetic core topped by a soft cylindrical element. The model we present describes the magnetic

response of the two ECC particle types, taking into account all significant magnetic contributions to

the energy landscape. Special emphasis is given to the magnetostatic (dipolar) interaction energy. We

find that both the switching fields and the zero-field energy barrier depend strongly on the particle

geometry. A comparison between the two types reveals that core-shell ECC particles are more

effective in switching field reduction, while conventional ECC particles maintain a larger overall

figure of merit.

Confidential: not for distribution. Submitted to IOP Publishing for peer review  20 May 2010



Exchange coupled composite (ECC) magnetic recording media [1-2] have the potential to achieve

ultrahigh recording densities. For instance, the recording density of dual-layer patterned media may

reach up to 10 Tbit/in2 [3]. ECC media are formed by isolated grains or particles each consisting of

magnetically hard and soft parts, mutually exchange-coupled across the boundary separating them [4-

6]. In the design of ECC media, particle shapes play an important role when switching field reduction

and thermal stability are of concern [7].

In this study, we analyze ECC nano-dots with a basic cylindrical shape and various geometries. Each

dot consists of a hard-magnetic core and either a co-axial soft-magnetic shell (core-shell ECC), or a

soft-magnetic cylinder on the top of the cylindrical core (conventional ECC). By comparing the

magnetic response of the two designs, we will illustrate their potential advantages and disadvantages.

The magnetic response of an ECC nano-dot structure can be described in relatively simple terms under

the assumption that the hard and the soft parts are uniformly magnetized due to the intrinsic

ferromagnetic exchange and the small dimensions. In this case, all the significant energy terms,

namely Zeeman, magnetocrystalline, interfacial exchange, and magnetostatic interactions, can be

taken into account explicitly and assembled to produce the energy landscape of the system. Once the

total energy is known as a function of the shape and material parameters, the magnetic behavior

follows from its minimization.

Richter et al. [8] introduced a model for ECC particles that neglects magnetostatic interactions. For

modeling purposes, micromagnetic simulations are generally the method of choice [7,9-10]. However,

despite the increasingly faster computational resources currently available, simulations of this sort are

still time-consuming, and they only allow for the exploration of the effects of varying parameters one

at a time. Moreover, the cubic or tetrahedral mesh elements often used by micromagnetic software

packages are ill suited for circular geometries and for defining exchange interactions on a curved

surface. On the contrary, analytical micromagnetism, while seemingly oversimplified at first sight,

provides an opportunity for i) capturing the essential physics of ECC particle structures and ii)



developing a broader perspective on the respective importance of the various parameters involved. In

this manuscript, our main objective will be to illustrate the influence of ECC particle geometry on the

magnetic response by means of analytical modeling.

To highlight the main differences between core-shell (Fig. 1a) and conventional (Fig. 1b) ECC

particles, we compare their magnetic response first using a simple “two-spin” model, characterized by

the simplicity of the analytical form of the energy landscape and the low dimensionality of its

parameter space. Both particles have identical hard elements (C1 in Fig. 1), i.e. they are made of the

same material and have equal dimensions. To investigate more deeply the magnetic response of ECC

particles, we then generalize the treatment to multi-spin models, where we discretize the soft part of an

ECC particle (Fig. 1) while maintaining only one additional exchange coupling parameter.

Fig. 1 Schematic of (a) a cylinder-shell nano-dot and (b) a cylinder-cylinder nano-dot and their

division into spin regions (regions with uniform magnetization). Part C1 is magnetically hard; the

other regions are magnetically soft.

Since the two-spin model is a special case of the multi-spin model, we will describe the latter more in

detail. We assume a uniform magnetization state in each "spin" region and uniaxial anisotropy of the

magnetically hard material with an easy axis parallel to the rotation axis, which also coincides with the

direction of the applied field. The key elements of the model, i.e. the magnetostatic coupling between



sub-units (cylinders and shells), are described in references [11] (for core-shell interactions) and [12]

(for cylinder-cylinder interactions). Following the standard Stoner-Wohlfarth approach [13], the

magnetic energy of the system is minimized with respect to the magnetization vector orientation while

the applied field varies. For each ECC particle type, we compute the switching fields for various

strengths of exchange coupling at the interface between the soft and the hard regions. The energy

minimum is determined numerically using the downhill simplex method [14], which means that we

must assign specific geometric and material parameters. One of the important outputs of the model is

the switching field dependence on the exchange coupling strength. From this dependence, we can

determine the optimum exchange coupling strength corresponding to a maximum switching field

reduction. Knowing the optimum switching field and the energy barrier at zero applied field, one can

then compute a figure of merit, as defined in [4,8].

For the material and geometry parameters, we choose parameters representative of current CoCrPt

based magnetic recording media: a hard cylinder radius of 1R =3 nm and a height of 1t =3,6,9,12,15

nm; the saturation magnetization of the soft material is twice that of hard material; and the coercivity

of the hard cylinder is twice its saturation magnetization ( 11 2MH = , for an estimate of 1H of a

CoCrPt single grain see e.g. [15] while using
1

1
1

2
M

K
H = ). As for the subdivision of the nano-dot into

“spin regions” or domains (regions with uniform magnetization), either the soft shell/cylinder or the

hard cylinder is divided into generally N coaxial shells (S2, S3, S4, S5, S6 in Fig. 1a) or cylinders

(C2, C3, C4, C5, C6 in Fig. 1b). The two-spin model then corresponds to 1=N , and for the six-spin

model we have 5=N .

To model the energy landscape, we express the individual magnetic contributions for each spin region,

and add them together:
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where i
AE and i

ZE are the anisotropy and Zeeman energies of the i-th domain, j
xE is the exchange

energy between the j-th and (j+1)-th elements, and ij
dE is the dipolar interaction energy between the i-

th and j-th domains. For each region i, we denote by iV , iS , i
zN , iM , iθ , its volume, interfacial area,

axial demagnetizing factor, saturation magnetization, and the angle between z-axis and magnetization

direction, respectively. Finally, 1K is the magnetocrystalline constant assigned to the hard cylinder.

With such notation, and discretizing the soft part, the significant energy terms are given by:
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where ijA and iJ are the dipolar and exchange coupling strengths, respectively, and ijδ is the

Kronecker delta. The dipolar coupling factors ijA depend solely on the geometry of the interacting

elements. In our model, we deal with three possible types of magnetostatic interactions: cylinder-

cylinder, cylinder-shell and shell-shell. Figure 2 illustrates the three kinds of shape interactions that are

relevant for ECC particles. The dipolar coupling factors corresponding to the interactions between i)

two coaxial cylinders of identical radius ( ccA ), ii) a concentric cylinder and a shell of identical height

( csA ), and iii) two concentric shells of identical height ( ssA ) are as follows:
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Fig. 2 Schematic of magnetostatically interacting particles of the following shapes (a) cylinder-shell

(b) shell-shell and (c) cylinder-cylinder and definitions of geometric parameters.



All parameters of Equations (6-8) are defined in Fig. 2. The functions zN and s
zN represent the axial

demagnetization factors for the cylinder and the shell, respectively [11]. Equations (6-8) were derived

based on the integral form of the dipolar coupling factor, as discussed in [11] and [12]. The

demagnetization factors of cylinders and shells can be expressed as combinations of elliptic integrals

[11,16]. The equivalent integral forms of Equations (6-8) are as follows:
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In our model, we do not employ explicitly the magnetocrystalline constant 1K ; instead, we introduce

the normalized coercivity of C1, 111 / MHh = . Since we do not discretize the hard core, we can

express 1
AE from Eq. (1) as follows:
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Of the N coupling strengths associated with the N interfaces between the 1+N regions, 1J reflects

the exchange interaction between the hard and soft parts, while 2J represents the exchange coupling

between all soft layers ( 243 ... JJJJ N ==== ).



In the case of conventional ECC particles with uniformly discretized soft parts, the total energy,

normalized to the factor 21
3
10 MMRπµ , can be written according to Eq. (1) as
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where 1/ MHh = is the normalized field, 21 / MM=α , )2/( 1Rtii =τ , 2,1=i , 21 −=h ,








 −





= 13

2
1 2

2 N
Nh z

τ
α

, (15)

Ni
MMR

J
J ir

i ...2,1,
2 2110

==
µ

(16)

and where the shape factors can be expressed according to Eq. (6) as:
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For a core-shell ECC particle with uniformly discretized soft part, the total normalized energy is:
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where iR̂ are defined as

( ) 1...3,2,1ˆ 12
1 +=−−+= Nii

N

RR
RRi (20)

and r
iJ is given by Eq. (16),

1...3,2,1
ˆ2

,
ˆ

ˆ
3

2
1 11 +=








−







= − Ni

R

t

R

R
Nh

ii

is
zi α

(21)

and, according to Eqs. (7) and (8), the shape factors are given by:
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The normalized switching field is defined as the smallest (in absolute value) normalized field resulting

in a local energy minimum with πθθθ ==== +121 ... N while we gradually decrease the applied field

from a large positive value and follow the local minimum originally located at

0... 121 ==== +Nθθθ . Such defined switching field may coincide with normalized coercive field or

normalized nucleation field but generally the switching field is different from them. In separate

simulation runs, we vary 2t (for the cylinder-cylinder structure) and 2R (for the core-shell structure,

see Fig. 1) while 1t and 1R are fixed. After substituting all parameters, including the dipolar coupling

factors given by Eqs. (17), (18), (22), and (23), into Eqs. (14) or (19), and setting h and 2J to

selected values, we obtain the total energy as a function of 1θ , 2θ ,..., 1+Nθ and we search for energy

minima. It should be noted that ccA , csA , ssA are constants during this search.



Keeping an eye on technological requirements, we are interested in obtaining the switching field

reduction without a significant loss of thermal stability. Since thermal stability is related to the energy

barrier at zero applied field, both the switching field and the energy barrier have to be evaluated. For

this purpose, the concept of “figure of merit” was defined in references [4,8] to be the ratio

[ ] [ ]spmswcompsw HEHEm /)0(//)0( ∆∆= , where the subscripts ‘comp’ and ‘spm’ stand for composite

and single phase material, respectively. Assuming that the volume and saturation magnetization of the

single phase material particle are 21 VVV += and ( ) ( )212211 / VVVMVMM s ++= , respectively, we

obtain [ ] ( )2105.0/)0( VVMHE sspmsw +=∆ µ and, for both the two-spin and the multi-spin models, we

obtain figures of merit for core-shell ( csm ) and conventional ( ccm ) ECC particles as:

optsw

cs
cs h

e
m

,
22

3

)]1([
)0(

σαστ
σ

−+
∆= (24)

optsw

cc
cc h

e
m

,21 )(

)0(

ραρ +
∆= (25)

where σ is the ratio of the inner and outer radii of the shell, τ is the ratio of the shell height to the

shell outer diameter, )0(cse∆ [ )0(cce∆ ] is the normalized energy barrier of the core-shell

[conventional] ECC particle for 0=h , ( )12/ Rtii =ρ , 2,1=i and optswh , is the absolute value of the

normalized optimum switching field. In Fig 3 (a-b), optswh , for each curve corresponds to the curve's

minimum. From Eqs. (24) and (25), it is clear that among all swh , the optimal switching fields

maximize the figures of merit. Using the multi-spin model, if the energy landscape cce∆ for 0=h

has a maximum barrier height at point 2/...21 πθθθ ==== N (which may not be always true), then
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If we neglect the magnetostatic interactions, then 11)0( hecc αρ=∆ and ccm will be identical to the

figure of merit m in [8]. Before we can use Eqs. (24) and (25) to evaluate the figure of merit for

various ECC particles, we must evaluate the optimum switching fields.

The results of the energy minimization for various rJ2 values using the six-spin model ( 5=N ) and for

specific geometry parameters of core-shell and conventional particles are presented in Figs. 3a and 3b.

Both figures display the normalized switching field versus the exchange coupling strength, rJ1 , for the

core-shell ECC (Fig. 3a) and conventional ECC particle (Fig. 3b). For 102 =rJ , the corresponding

switching field curves nearly coincide with the switching field curves obtained from the respective

two-spin models. To obtain a realistic exchange coupling strength that might correspond to 102 =rJ ,

one can estimate that, if 1R =3 nm and 10Mµ =0.7 T (saturation magnetization of some Co-based

materials), 2J =46.8 mJ/m2 when 5.0=α . The coupling strength parameter 2J was estimated in [8]

using the following formula:

,
2

2 t

A
J = (27)

where A and t are the exchange constant and the spin region thickness, respectively. If we assume

A =3·10-11 J/m (a value for Co used in OOMMF[17]) and t =3 nm, then, according to Eq. (27), 2J =20

mJ/m2 and if 10Mµ =0.7 T, then the corresponding 3.42 =rJ .

If rJ2 goes to infinity, we can let 132 ... +=== Nθθθ in the minimum search and the multi-spin model

can be transformed to the two-spin model with only one dipolar coupling parameter and one exchange

coupling parameter. In fact, if 132 ... +=== Nθθθ , then Eq. (14) transforms into:
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It is not difficult to prove that
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where 2h is defined in Eq. (15) and
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(Equations (29) and (30) are also used for the derivation of Eq. (26).)

Hence, the switching field curve for the multi-spin model with ∞→rJ2 coincides with that for the

two-spin model with identical geometric and material parameters. Therefore, taking into account Eq.

(27), it is unnecessarily complicated to use multi-spin model if A is large and t (thickness of the soft

part) is small, since coherent rotation of magnetization in the soft part of the particle can be assumed.

As rJ2 decreases, the corresponding switching field curve diverges away from the curve

corresponding to the two-spin model while the optimum switching field increases (in absolute value).

Thus, using multi-spin model is meaningful when dealing with materials with low exchange stiffness

or ECC particles with large aspect ratios resulting in incoherent rotation or domain wall assisted

switching.
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Figures 4(a,b) show the calculated normalized optimum switching fields optswh , for ECC particles of

various geometries and of either type using the two-spin model. The optswh , profile for core-shell

particles for a fixed 1t decreases monotonically with increasing outer shell radius 2R . As 2R

increases, optswh , reaches a value close to zero (Fig. 4a). However, the dependence of optswh , for the

conventional ECC particle on the soft cylinder height 2t is different. As 2t increases, optswh , first

drops (at fixed 1t ), reaching a minimum well above zero and then again increases, slowly approaching

a limiting value. The lowest optswh , value belonging to the conventional ECC particle was reached for

1t =3 nm ( 33.0, =optswh ). The curves of Fig. 4(a,b) are quite different from those reported in [18-19].

Both curves from [18-19] are monotonically decreasing with increasing soft layer thickness. The

substantial differences in curve characteristics represent the fingerprint of the dipolar interaction

effects. In fact, if we neglect the magnetostatic interactions ( 0=ccA and 02 =h ), then our model also

predicts monotonically decreasing curves, just as those reported in [18-19]. 
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Fig. 4a Diagram of the normalized optimum switching field versus the outer radius of a core-shell

ECC particle for various particle heights.
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Fig. 4b Diagram of the normalized optimum switching field versus the soft cylinder height of a

conventional ECC particle for various heights of the hard part.

Figures 5(a,b) show the figures of merit csm (a) and ccm (b) for various particle geometries using the

optimum switching field values taken from Fig. 4. The character of csm depends on 1t ; however, in

each csm profile at fixed 1t , the figure of merit reaches a maximum close to 2, which corresponds to

optswh , close to zero. The larger 1t , the longer and lower the plateau is in the csm vs. 2R curve. In the

case of the conventional ECC particle, for a given 1t , values of ccm reach a maximum for 2t

corresponding to the minimal optswh , . In Ref. [8], the figure of merit does not exceed 2 whereas some

ccm values in our study do exceed 2. This difference in the figure of merit maxima again highlights

the effects of magnetostatic interactions in the magnetic response of ECC particles.
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various core-shell particle heights. The energy barrier and optswh , were calculated using the two-spin

model.
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Conclusions

We have presented a multi-spin model for core-shell and conventional ECC particles, that takes into

account the magnetostatic interactions among all the components. The key feature of our model is the

opportunity to simulate quasi-analytically domain wall assisted switching. Our study is meaningful in

particular when dealing with materials with low exchange stiffness or ECC particles with large aspect

ratios. We have illustrated how the normalized switching field is influenced by the exchange coupling

intrinsic to a given material. The geometry and the type of the ECC particle affect both the switching

field and the zero-field energy barrier. While the switching field of a core-shell ECC particle

approaches zero as the outer radius of the shell increases, a magnetization reversal of the conventional

type occurs at a negative finite field. As for the ECC particle geometry associated with a figure of

merit close to 2, the thickness of the soft layer is smaller in the case of the conventional ECC particle

when comparing core-shell and conventional particle with an identical hard part. In the case of core-

shell ECC particles, a figure of merit close to 2 corresponds to a switching field close to zero, which

means that core-shell ECC particles can be of practical use when the hard part is highly anisotropic.
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