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The influence of magnetostatic interactions in exchange coupled composite particles

Exchange coupled composite (ECC) particles are the basic constituents of ECC magnetic recording media. We examine and compare two types of ECC particles: i) core-shell structures, consisting of a hard-magnetic core and a co-axial soft-magnetic shell, and ii) conventional ECC particles, with a hardmagnetic core topped by a soft cylindrical element. The model we present describes the magnetic response of the two ECC particle types, taking into account all significant magnetic contributions to the energy landscape. Special emphasis is given to the magnetostatic (dipolar) interaction energy. We find that both the switching fields and the zero-field energy barrier depend strongly on the particle geometry. A comparison between the two types reveals that core-shell ECC particles are more effective in switching field reduction, while conventional ECC particles maintain a larger overall figure of merit.

Exchange coupled composite (ECC) magnetic recording media [1][2] have the potential to achieve ultrahigh recording densities. For instance, the recording density of dual-layer patterned media may reach up to 10 Tbit/in 2 [3]. ECC media are formed by isolated grains or particles each consisting of magnetically hard and soft parts, mutually exchange-coupled across the boundary separating them [4][5][6]. In the design of ECC media, particle shapes play an important role when switching field reduction and thermal stability are of concern [7].

In this study, we analyze ECC nano-dots with a basic cylindrical shape and various geometries. Each dot consists of a hard-magnetic core and either a co-axial soft-magnetic shell (core-shell ECC), or a soft-magnetic cylinder on the top of the cylindrical core (conventional ECC). By comparing the magnetic response of the two designs, we will illustrate their potential advantages and disadvantages.

The magnetic response of an ECC nano-dot structure can be described in relatively simple terms under the assumption that the hard and the soft parts are uniformly magnetized due to the intrinsic ferromagnetic exchange and the small dimensions. In this case, all the significant energy terms, namely Zeeman, magnetocrystalline, interfacial exchange, and magnetostatic interactions, can be taken into account explicitly and assembled to produce the energy landscape of the system. Once the total energy is known as a function of the shape and material parameters, the magnetic behavior follows from its minimization.

Richter et al. [8] introduced a model for ECC particles that neglects magnetostatic interactions. For modeling purposes, micromagnetic simulations are generally the method of choice [7,[9][10]. However, despite the increasingly faster computational resources currently available, simulations of this sort are still time-consuming, and they only allow for the exploration of the effects of varying parameters one at a time. Moreover, the cubic or tetrahedral mesh elements often used by micromagnetic software packages are ill suited for circular geometries and for defining exchange interactions on a curved surface. On the contrary, analytical micromagnetism, while seemingly oversimplified at first sight, provides an opportunity for i) capturing the essential physics of ECC particle structures and ii) developing a broader perspective on the respective importance of the various parameters involved. In this manuscript, our main objective will be to illustrate the influence of ECC particle geometry on the magnetic response by means of analytical modeling.

To highlight the main differences between core-shell (Fig. 1a) and conventional (Fig. 1b) ECC particles, we compare their magnetic response first using a simple "two-spin" model, characterized by the simplicity of the analytical form of the energy landscape and the low dimensionality of its parameter space. Both particles have identical hard elements (C1 in Fig. 1), i.e. they are made of the same material and have equal dimensions. To investigate more deeply the magnetic response of ECC particles, we then generalize the treatment to multi-spin models, where we discretize the soft part of an ECC particle (Fig. 1) while maintaining only one additional exchange coupling parameter. Since the two-spin model is a special case of the multi-spin model, we will describe the latter more in detail. We assume a uniform magnetization state in each "spin" region and uniaxial anisotropy of the magnetically hard material with an easy axis parallel to the rotation axis, which also coincides with the direction of the applied field. The key elements of the model, i.e. the magnetostatic coupling between sub-units (cylinders and shells), are described in references [11] (for core-shell interactions) and [12] (for cylinder-cylinder interactions). Following the standard Stoner-Wohlfarth approach [13], the magnetic energy of the system is minimized with respect to the magnetization vector orientation while the applied field varies. For each ECC particle type, we compute the switching fields for various strengths of exchange coupling at the interface between the soft and the hard regions. The energy minimum is determined numerically using the downhill simplex method [14], which means that we must assign specific geometric and material parameters. One of the important outputs of the model is the switching field dependence on the exchange coupling strength. From this dependence, we can determine the optimum exchange coupling strength corresponding to a maximum switching field reduction. Knowing the optimum switching field and the energy barrier at zero applied field, one can then compute a figure of merit, as defined in [4,8].

For the material and geometry parameters, we choose parameters representative of current CoCrPt based magnetic recording media: a hard cylinder radius of 1 R =3 nm and a height of 1 t =3,6,9,12,15 nm; the saturation magnetization of the soft material is twice that of hard material; and the coercivity of the hard cylinder is twice its saturation magnetization (
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CoCrPt single grain see e.g. [15] while using ). As for the subdivision of the nano-dot into "spin regions" or domains (regions with uniform magnetization), either the soft shell/cylinder or the hard cylinder is divided into generally N coaxial shells (S2, S3, S4, S5, S6 in Fig. 1a) or cylinders (C2, C3, C4, C5, C6 in Fig. 1b). The two-spin model then corresponds to To model the energy landscape, we express the individual magnetic contributions for each spin region, and add them together: K is the magnetocrystalline constant assigned to the hard cylinder.

= + + = = + = + + + = N i N i j ij d N j j x N i i Z i A E E E E E 1 1 1 1 1 1 ) ( , (1) 
With such notation, and discretizing the soft part, the significant energy terms are given by:
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where ij A and i J are the dipolar and exchange coupling strengths, respectively, and ij δ is the Kronecker delta. The dipolar coupling factors ij A depend solely on the geometry of the interacting elements. In our model, we deal with three possible types of magnetostatic interactions: cylindercylinder, cylinder-shell and shell-shell. Figure 2 illustrates the three kinds of shape interactions that are relevant for ECC particles. The dipolar coupling factors corresponding to the interactions between i) two coaxial cylinders of identical radius ( cc A ), ii) a concentric cylinder and a shell of identical height ( cs A ), and iii) two concentric shells of identical height ( ss A ) are as follows:

[ ] All parameters of Equations (6)(7)(8) are defined in Fig. 2. The functions z N and s z N represent the axial demagnetization factors for the cylinder and the shell, respectively [11]. Equations (6)(7)(8) were derived based on the integral form of the dipolar coupling factor, as discussed in [11] and [12]. The demagnetization factors of cylinders and shells can be expressed as combinations of elliptic integrals [11,16]. The equivalent integral forms of Equations (6-8) are as follows: 
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In our model, we do not employ explicitly the magnetocrystalline constant 1 K ; instead, we introduce the normalized coercivity of C1,

1 1 1 / M H h =
. Since we do not discretize the hard core, we can express 1 A E from Eq. (1) as follows:

1 2 1 1 2 1 2 1 0 1 sin 2 1 θ π µ h t R M E A - = , (13) 
Of the N coupling strengths associated with the N interfaces between the 1 + N regions, 1 J reflects the exchange interaction between the hard and soft parts, while 2 J represents the exchange coupling between all soft layers (
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In the case of conventional ECC particles with uniformly discretized soft parts, the total energy, normalized to the factor 
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and where the shape factors can be expressed according to Eq. ( 6) as:
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For a core-shell ECC particle with uniformly discretized soft part, the total normalized energy is:
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and, according to Eqs. ( 7) and ( 8), the shape factors are given by: . Such defined switching field may coincide with normalized coercive field or normalized nucleation field but generally the switching field is different from them. In separate simulation runs, we vary 2 t (for the cylinder-cylinder structure) and 2 R (for the core-shell structure, see Fig. 1) while Keeping an eye on technological requirements, we are interested in obtaining the switching field reduction without a significant loss of thermal stability. Since thermal stability is related to the energy barrier at zero applied field, both the switching field and the energy barrier have to be evaluated. For this purpose, the concept of "figure of merit" was defined in references [4,8] to be the ratio
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, where the subscripts 'comp' and 'spm' stand for composite and single phase material, respectively. Assuming that the volume and saturation magnetization of the single phase material particle are ) and for specific geometry parameters of core-shell and conventional particles are presented in Figs. 3a and3b.
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Both figures display the normalized switching field versus the exchange coupling strength, r J 1 , for the core-shell ECC (Fig. 3a) and conventional ECC particle (Fig. 3b). For . The coupling strength parameter 2 J was estimated in [8] using the following formula: ...
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(Equations ( 29) and (30) are also used for the derivation of Eq. ( 26).)

Hence, the switching field curve for the multi-spin model with ∞ → r J 2 coincides with that for the two-spin model with identical geometric and material parameters. Therefore, taking into account Eq.

(27), it is unnecessarily complicated to use multi-spin model if A is large and t (thickness of the soft part) is small, since coherent rotation of magnetization in the soft part of the particle can be assumed. As r J 2 decreases, the corresponding switching field curve diverges away from the curve corresponding to the two-spin model while the optimum switching field increases (in absolute value). Thus, using multi-spin model is meaningful when dealing with materials with low exchange stiffness or ECC particles with large aspect ratios resulting in incoherent rotation or domain wall assisted switching. ). The curves of Fig. 4(a,b) are quite different from those reported in [18][19].

Both curves from [18][19] are monotonically decreasing with increasing soft layer thickness. The substantial differences in curve characteristics represent the fingerprint of the dipolar interaction effects. In fact, if we neglect the magnetostatic interactions ( 0 = cc A and 0 2 = h

), then our model also predicts monotonically decreasing curves, just as those reported in [18][19]. 

Conclusions

We have presented a multi-spin model for core-shell and conventional ECC particles, that takes into account the magnetostatic interactions among all the components. The key feature of our model is the opportunity to simulate quasi-analytically domain wall assisted switching. Our study is meaningful in particular when dealing with materials with low exchange stiffness or ECC particles with large aspect ratios. We have illustrated how the normalized switching field is influenced by the exchange coupling intrinsic to a given material. The geometry and the type of the ECC particle affect both the switching field and the zero-field energy barrier. While the switching field of a core-shell ECC particle approaches zero as the outer radius of the shell increases, a magnetization reversal of the conventional type occurs at a negative finite field. As for the ECC particle geometry associated with a figure of merit close to 2, the thickness of the soft layer is smaller in the case of the conventional ECC particle when comparing core-shell and conventional particle with an identical hard part. In the case of coreshell ECC particles, a figure of merit close to 2 corresponds to a switching field close to zero, which means that core-shell ECC particles can be of practical use when the hard part is highly anisotropic.
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