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The absorption of modulated or pulsed light leads to non-radiative processes that

generate a photo-acoustic (PA) wave. The standard model assumes that the ampli-

tude of the PA wave is proportional to the optical absorption. In previous reports we

have demonstrated experimentally and theoretically that from this proportionality:

1) one can obtain quantitative measurements of optical properties of dielectric thin

films, and 2) that there may exist a relationship between the amplitude of the PA

wave and the thermal conductivity of a given sample. Here we present analytic re-

sults that clearly show that the optical absorption and the thermal conductivity are

coupled to the amplitude of the photoacoustic wave in the modulated regime and that

this correlation holds for any type of macroscopic optical and thermal transparency.

In particular, the present analysis shows that the product of the optical absorption

and the thermal conductivity is related to the PA-amplitude via a partition function.

1. Introduction

Photoacoustic absorption spectroscopy is extensively used in several scientific and technical

fields. These range from applications in gases, condensed matter, laser control, colloidal

materials and the so-called soft-matter [1–6]. Most of the applications related to spectro-

scopic analysis are focused on either the study of optical properties or the determination

of thermodynamic properties. Notably, over the last few years, PA-imaging applications

have become of interest. The core of the photoacoustic phenomenon is the generation of
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wideband acoustic-like waves as a consequence of a process of absorption of radiation; the

acoustic oscillation is induced in the sample by the interaction with a pulsed or modulated

external light source. The range of frequencies of these waves can be from sound to ultra-

sound with this depending on the time frame of the excitation and on the thermoelastic

properties of the medium. As long as the absorption of light is below the saturation limit,

the amplitude of the induced sound-like wave is proportional to the amount of absorbed ra-

diant energy. This is an empirical result that has been experimentally verified and accepted

by all present PA models [1–3, 5, 7–9]. However, as Haisch [10] pointed out, the extraction

of quantitative information from the PA signals is a non trivial task, with this being true

for almost any PA application, and is particular so for PA-spectroscopy. In the PA field,

the problem of extracting information has been solved on a case by case basis and this is

a considerable limitation for the potential impact of the PA-techniques. One of the main

obstacles for achieving quantitative PA measurements is related to the lack of knowledge of

the specific amount of energy that is transferred from the optical absorption process into

measurable amounts of heat or work. In other words, we do not know the explicit analytic

relationship between the optical absorption (optical resistance) and thermal conductivity

(thermal resistance). The best we have is the experimental evidence that there exists a

rule of proportionality between these resistances; see [11] and references above. Therefore

this implies the existence of a specific expression that relates the optical absorption (α) and

the thermal conductivity (κ) with terms associated with a local change of temperature or

pressure. Thus this is an open problem which has yet to be solved.

In the present contribution we focus our attention on setting up conditions for finding a

relationship of the type noted above. We start from a consideration of the analysis of solid

dielectrics illuminated by low frequency modulated continuous light. Finally, we arrive at

results from where one can infer the viability of the quantitative analysis. To do this, we

analyse the product of the optical absorption and the thermal conductivity against all phys-

ically possible combinations between the macroscopic optical transparency and the thermal

transparency. This product appears explicitly in almost the same functional form, in al-

most all the PA-models. The actual meaning of this product embraces implications beyond

the field of photoacoustics alone. We then discuss some aspects of such findings, with the

starting point being the general expression used to represent a PA signal for CW-modulated

illumination within the visible range.
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FIG. 1: Schematics of the type of layered system we discuss in the main text. In b) we picture

the type of experimental detection we assume for our analysis, and a) is the equivalent optical

detection, and is displayed for the purpose of explanatory comparison alone.

For the present case, the modulation frequency is assumed to be in the range of 5 Hz

to <100 Hz. Then we proceed to analyse, in a case by case manner, the corresponding

particular boundary conditions and the material properties. From this we consider the

optical absorption and its relationship with the thermal conductivity. The final step is

to show the relationship between the rise of temperature within the interaction volume as

function of, among other parameters, the optical absorption and the thermal conductivity.

2. PA theory for modulated illumination

For simplicity and to aid with the analysis and the presentation of the results, we start

from the analysis of a layered solid dielectric. See the figure 1 for schematic guidance. The

sample is a solid that is: isotropic, homogeneous and in thermal equilibrium, as required by

the standard experimental and theoretical PA model. This model refers to the measurement

and analysis of sound-like signals induced in the sample as result of the optical absorption of

pulsed or modulated light, whose power is below the saturation limit. Since a fraction of this

absorbed optical energy is transferred into the sample via non-radiative processes, there is a

local increase of temperature together with a temporary pressure gradient. It should be noted

that these non-radiative processes are modulated by the spatial and temporal distribution of

the illumination source. The time evolution of this gradient or burst of energy is expressed

in terms of sound-like waves: the PA signals. These signals are recorded using a microphone

or transducer directly attached to the sample (see figure 1). Experimentally the amplitude

of these PA signals are observed to be proportional to the optical absorption, and thus to

the intensity of the radiant source.

In the standard PA-model [3, 11, 12] the PA-amplitude output, which we call H0, is



4

expressed in a general way through a master equation; which can be modified depending on

the boundary conditions. This master expression includes the material properties and the

instrumental and experimental set-up contributions (such as, the frequency of modulation of

the illumination, temperature, humidity, and instrumental response). Once the experiment

is set these contributions remain constant during the experimental process, thus there is no

restriction to represent these contributions through a constant G0. We also recall that the

general model assumes that, within a specific spectral distribution, the amplitude of the

PA-output is proportional to the intensity of illumination I0. Thus the net PA amplitude

output is proportional to the product of these parameters, e.g. H0 ∝ G0I0. Similarly,

once the experimental conditions have been decided, the intensity of illumination at a given

wavelength can be assumed constant. Therefore one can obtain a normalized PA-output,

say H, by simply taking H ∝ H0/(G0I0). In the reminder of our analysis, any reference to

the PA-output we mean the normalized H amplitude, expressed as

H =
r

r2 − 1

2r − e−αz0 [(r + 1)eσz0 + (r − 1)e−σz0 ]

σκ(eσz0 − e−σz0)
(1)

The details for the derivation of (1) can be found in the literature [2, 3, 11, 12]. This

equation is presented in terms of the thickness of the sample z0 (which is also constant for a

given experiment), the thermal conductivity κ and a parameter r, which is the ratio of the

optical absorption and the thermal diffusion coefficient, σ =
√
πf/a; where f is frequency

of modulation of the illumination and a is the thermal diffusivity: a = κ
ρc

. Here, ρ is the

sample density and c is the the specific heat at constant pressure [2, 6]. Then H has units of

temperature divided by the flux of power per unit area: oK/(Watts/m2). Thus physically

H represents the rate of change of the local temperature as result of the flux of energy

from the non-radiative processes; these triggered within a volume of area A and length z0.

Interestingly, these units are due to the product σκ in the denominator of (1). Whilst the

remaining terms in (1) produce a dimensionless number that we label as ξ0. Therefore, (1) is

re-written as H = ξ0/(σκ). On the next step we multiply both sides of this expression by α.

The result is that on the right hand side we have the product rξ0, divided by the product of

the optical absorption and the thermal conductivity. Therefore, by defining ξ = rξ0, which

is also a dimensionless number, and after re-arranging terms we get
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κα =
ξ

H
; (2)

where ξ = r2

r2−1
2r−e−αz0 [(r+1)eσz0+(r−1)e−σz0 ]

(eσz0−e−σz0 )
. For given boundary conditions of a given sample,

this ξ factor is a constant. Conversely, any change in the material or boundary conditions

would imply a change in the value of ξ.

Thus, once the amplitude of the waves is normalized as indicated before, the PA amplitude

will be expressed according with the many ways as 1 can be reduced; see section 2 for

details. An important condition of H is that the optical properties of the sample such

as, the reflectance, the optical scattering, the absorbance and the transmittance, are linear

functions of the illumination wavelength. We recall that we assume we have a homogeneous

and isotropic sample. For means of sensing the information, we assume that the sensor

is a membrane microphone, as that of the Open Photoacoustic Cell (OPC) type [4, 13].

Since the absorbed radiant energy induces diffusive phenomena within the sample, then the

modulation frequency of the incident illumination must be sufficiently low; this frequency

would depend on the material properties. The specific details of these considerations can be

found in [3, 13–15].

Notice that in [11], we reported a relationship of the type represented by (2), along with

experimental support for this description. These results were obtained for only one specific

set of boundary conditions. For the present work we further investigate the relationship for

the general case.

3. Different physical conditions

The various cases covered by the standard PA-models are related to the different material

properties and the boundary conditions associated with α and σ. This follows from the fact

that they define the characteristic optical thickness (otherwise known as optical attenuation

or optical length, µα = 1/α) and the characteristic thermal thickness (the thermal attenu-

ation or thermal diffusion length, µσ = 1/σ), respectively. Therefore, the next stage is to

describe the many possibilities in terms of the corresponding boundary conditions along with

the respective expressions that are obtained from applying these conditions to the equation

(1). The analytic details can be found in [3, 5, 9, 12].
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3.1. Optically Thick (opaque) Materials

A given material can be optically opaque (optically thick, µα < 1), implying that its

transmittance is T = exp (−αz0) = 0; and yet it can also be:

3.1a Thermally thin

This implies that µσ � z0 and µσ � µα, or that | r |� 1 and thus exp(±σz0) ' 1± σz0; in

this case (1) reduces to

H =
1

σκ

1

sinh(σz0)
(3)

After multiplying both sides of (3) by α, and remembering the definition of r, the terms can

be reorganize to give

ακ =
1

H

r

sinh(σz0)
(4)

Since r and the sinh are dimensionless, then as expected (4) has units of [Watts/(m2 oK)].

3.1b Thermally thick

In this case µσ < z0 (or 1 < σz0), having |r| > 1. Here we note that the hyperbolic

ratio 1/ (ex − e−x), is csch(x); which can be represented in terms of an asymptotic series

expansion. Using such representation and the respective boundary conditions, then (1)

becomes

H =
r

(r2 − 1)σκ
e−αz0 (5)

After repeating the same procedure used for deriving (4) from (3), we get

ακ =
r2

r2 − 1

e−α/z0

H
(6)

3.1c Thermally very-thick

This is where µσ � z0 (or more appropriately 1� σz0) and then |r| � 1. In this case, the

argument of the hyperbolic function can be assumed to tend to infinite. With the help of
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the asymptotic representation introduced above, then (1) is reduced to

H =
1

r

e−σz0

σκ
(7)

Again after multiplying both sides of equation (7) by α and reorganizing terms we get

ακ =
e−αz0

H
(8)

It should be noted that: 1) the general model only takes into account the thickness of the

sample. 2) For the cases considered above, the optical absorption occurs within a volume

of area A times a thickness zl, which may or may not be the same as the actual sample

thickness, z0.

3.2 Optically thin (transparent) materials

Another set of possibilities arise for samples that are optically thin, (µα � 1). This means

that its transmittance is T = exp(−αz0) 6= 0, and therefore, H depends on both: the

sample’s optical properties and on the thermal properties. Again, an optically thin material

can also be

3.2a Thermally very-thin

This is for µσ � z0 (with |r| > 1), then the equation (1) reduces to

H =
r

r2 − 1

αz0

σκsinh(σz0)
; (9)

After using the same procedure as in the previous subsection and noting that at this scale

sinh(σz0) ≈ σz0 + ..., we get

ακ =
r4

(r2 − 1)H
. (10)

3.2b Thermally thin

In this case µσ > z0, and |r| < 1. Therefore, (1) is reduced to
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H ∼= r
e−αz0

σκ
; (11)

and correspondingly

ακ ∼= r2 e
−αz0

H
. (12)

3.2c Thermally thick

This case refers to µσ < z0 and |r| � 1, thus from (1) we get

H = r
e−αz0

σκ
; (13)

from where we obtain

ακ = r2 e
−αz0

H
. (14)

In this way we verify that regardless of how the optical and thermal transparency combine,

for each case one can derive an expression which equates with the product ακ, and in general

this is in terms of a dimensionless-type number, ξ, divided by the normalised PA-amplitude

H. This procedure describes in a fundamental way a new approach to the interpretation

of the PA experimental data. Moreover, it provides a way to extend the theory, and thus

making more viable the quantitative analysis. As indicated above, in [11] we presented

results related to this ακ product. At that time we considered that there was a possibility

that this relationship could lead one to a Widenmann-Franz type law for dielectrics. The

present results further support such an idea.

4. The product ακ

In physical terms, the optical absorption coefficient can be seen as a measure of the coupling

of each wavelength of the external field with the sample [16]. While within a solid, the

transference (coupling) of this optical absorption to thermal energy depends on the sample’s

ability to conduce heat; and this can be quantified in terms of a flux of free energy [17]. This

is explained in more detail in the reminder of the current section. The process of optical to

thermal energy transfer involves the generation of collective quanta of mechanic vibrations
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that are defined by the modes of lattice oscillation or lattice waves and can be observed

as a spectrum of phononic oscillations; which at the low limit are sound waves [18, 19].

In this context, for dielectrics, it has been established that the efficiency of transference

of the energy from optical to thermal is indicative of the strength of the interaction of the

natural transverse lattice oscillation modes with each wavelength of the external illumination

field (this is different to the case for metals where longitudinal waves are involved) [17, 18,

20]. This type of interaction signifies that for each illumination wavelength there exists a

specific phonon spectral distribution response (or lattice wave distribution response). In

other words, the non-radiative processes, in the sense we discuss here, will occur when at a

given wavelength the coupling of the external field with the solid results in inducing specific

lattice-vibration modes. These vibrations are responsible for the transport of the energy

flux represented by H, and thus is what determines the form of the non-radiative absorption

spectra; as reported in [5, 11].

On the other hand, we recall that the thermal conductivity is directly related to the phonon

mean free path (heat-carriers-free-path) which is determined by phonon-phonon scattering.

At room temperature, an isotropic regular solid (crystalline) will have the highest thermal

conductivity value when it is pure. Conversely, the thermal conductivity decreases with an

increase of the impurities and/or the lattice defect density.

Thus the product ακ, can be seen as the measure of coherency between the external field

and the induced thermal field as result of the matching of the optical frequencies with the

phonon mean-free-path distribution; or rather, the coupling between what can be described

as the optical impedance to the thermal impedance. We recall that this product has units

of [Watts/(m2K]. Therefore, this represents a flux of energy per time unit and unit of

area, rated by the change of local temperature which only occurs during the presence of

the external field (period of illumination). Therefore this flux, as described by this dimen-

sional analysis, bring us to define ακ = zlρw/T . Where ρw is the volumetric power density:

W/(Azl); T is the temperature within the interaction volume. That defined by the illu-

mination area A and the interaction depth, zl, that is perpendicular to the surface where

the external field is incident. Notice that for an optical transmittance Topt = 0, zl 6= z0;

while for Topt 6= 0, zl = z0. With consequences as described in the Section 3. Therefore, this

volumetric power density can also be written in terms of the time variation of the volumetric

energy density as
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ρw =
dρe
dt
. (15)

After considering the ακ product, as expressed in the paragraph above, from (15) is imediate

that

dρe
dt

=
ακT

zl.
(16)

The study of the type of interactions we describe here, related to the optical-thermal as-

sociation and its significance, is not new; as can be seen in Frölich’s theory of dielectrics

[17]. The action of the external field on a dielectric, assuming one modulation period, is

understood to be the amount of external work done on a constant volume, V = Azl, of

the solid. Since this work, on average, is periodic then it is applied in a cyclic reversible

and isothermal way. It is of interest that the Fröhlich interpretation matches with the PA

experimental and theoretical descriptions. In PA we assume that the sample is in thermal

equilibrium with the environment and interacts with the external field in a reversible way.

Therefore, it can be seen that ρe is the Helmhotlz free energy density, F/V ; with F being

the Helmholtz free energy and V the volume within which the amount of work is done [17].

To the best of our knowledge, this is the first time this interpretation has been proposed.

Furthermore we observe that this energy density is related to the partition function (Z ) as

ρe = −kBT log(Z). (17)

Where kB is the Boltzmann’s constant. Here T is referred as the change of temperature

within the interacting volume. The relevance of this formalism is that: 1) we have a way

to directly connect the description of PA phenomena with the statistical physics theory;

2) and therefore, we can connect the various microscopic phenomena with macroscopic

observations; 3) additionally, once we know the partition function for a given sample then

one can obtain almost all of the thermodynamic parameters and therefore a quantitative

analysis is potentially available [1–3, 5, 7–9].

Once we have (17), the sample’s internal temperature is the first parameter we can calculate,

T =
zl
κα

dρe
dt
. (18)
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In our description, Z is related to the spectral distribution of the lattice-vibration modes

produced by the absorption of radiation at a specific wavelength. Thus, because the optical

absorption is a function of the wavelength then one expects to get different Z for each wave-

length and therefore there will be a change in the thermal conductivity. The corresponding

analytic description is complex and for the development of the present study we use only

the phenomenon seen in the experimental evidence [11]. In any case, it can be expected

that the optical absorption, expressed as induced external work, would cause a change in

the local temperature within the interaction volume and that this change is specific for each

wavelength. This means that in the interaction of an external field with a solid, the amount

of energy that is transferred from optical to thermal is characterized for each wavelength of

illumination by an specific phonon distribution (the response to the illumination); and that

that response is an attribute of the material at that wavelength.

Now, by combining (15) and (17), we get that

dρe
dt

= −kB
[
log(Z)

dT

dt
+ T

dlog(Z)

dt

]
=
καT

zl
. (19)

On solving (19) two possible physical conditions become apparent: 1) when Z is time inde-

pendent and 2) when Z is time-dependent. We will now consider the significance of these

cases. We recall that we assume a homogeneous and isotropic material, and that the fre-

queny of modulation of the illumination is low. Thus for the time dependant Z, we observe

that, if at the beginning of a period of illumination we consider an ’instant picture’ of the

phonon distribution (e.g. lattice-vibration modes) triggered by external field, we would ob-

serve a Zo distribution of states. Then if at an arbitrary instant of time later we take a

second picture then we would observe that the distribution of states was essentially be the

same. This is because the interaction time scale is very short compared to the time scale

for the transport and displacement phonon processes. This, combined with the condition

that the number of oscillatory components involved is very large, implies that any effective

change in the distribution of states will be within the noise range of the average energy

distribution due to the ambient temperature and thus undetectable [11, 17, 19]. Since in

the right-hand side term within square brackets in (19), dLog(Z) can be written as dZ/Z ,

then after substituting this, the resulting term will be zero. Thus, after arranging terms, we

get
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dT

T
= − κα

zlkBlog(Z)
dt. (20)

We solve this for a time, t, set within the time frame of illumination in a modulation period,

t0. During this period, within the volume of interaction, the temperature changes from the

initial value T0 to a maximum T + T0. Thus we solve 20 to get

log

(
δT + T0

T0

)
= − κα

kBzllog(Z)
t0. (21)

From here we obtain that the change of local temperature can be expressed as

δT = T0

{
−1 + exp

[
− κα

kBzllog(Z)
t0

]}
. (22)

This is the burst of temperature that is ultimately the engine for the wave that travels within

the sample as a sound-like wave; i.e. the PA-signal. Empirically, from the PA experimental

evidence, we know that the local change of temperature is very small compared to the initial

temperature: T0 � δT . However the caused effects are clearly measurable; as it is done for

the PA burst. Note that except the partition function, all the other aspects contained in

the PA models are discussed elsewhere in the PA-literature (22) [5, 9, 11]. Thus we explore

some consequences of the introduction of this function. In this sense, if instead one chooses

to solve 20 for Z, we start from 21 and take a series expansion of the exponential function

and then we approximate this to first order since this is the most important contributing

term at the T0 � δT regime. As result we obtain that

δT

T0

= − κα

kBzllog(Z)
t0; (23)

and after reorganizing terms and solving for Z, we get

Z = exp

(
− T0κα

δTkBzl
t0

)
. (24)

Let us define β = 1/(δTkB), and from 16 we find that, at each illumination wavelength,

the term T0καt0/zl represents the volumetric density of free energy within a single period

of illumination. Thus one can re-write (24)as

Z = e−βρe ; (25)
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recovering 17; which is the definition of Z at the δT → 0 limit. This result implies that the

temperature distribution is described by the canonical ensemble.

Now using equation 2 and substituting ακ in the equation 24 by the ratio ξ/H we get an

expression that is of the same analytic form as 25, albeit this corresponding to the PA phe-

nomena. This function can be associated to a particular sample via the boundary conditions

as described in Section 2. Hence, once we know the partition function associated to a sam-

ple, then in principle one knows everything about the sample; and one can derive all the

observable physical quantities including, as we describe, the optical absorption. It should be

noted that the inverse is also true for an optically thin sample: given the absorption spec-

trum, one can reconstruct the part of the partition function on which the optical absorption

depends. However, if the sample is optically thick, then this inverse relationship is no longer

unique: it is quite possible that two systems with different partition functions could possess

the same optical absorption spectrum. As far as the current analysis goes, this is one of the

possible limitations for the present results. However that is subject of future analysis.

Let us assume we know all the terms in ρe, including the initial temperature and the amount

of induced change of this temperature. Thus in principle, as referred above, experimentally

one can achieve a quantitative reconstruction of the portion of the partition function on

which the optical absorption depends; i.e. the amount for which we can normalize the

distribution of states at time to calculate e.g. the mean energy, the specific heat, or other

thermodynamic parameters.

The other variant that one can obtain from 19, is that for the partition function being time

dependent. This situation arises when conditions are such that the interaction time and the

decay times are similar, and the discreteness of the phase space is taken into account [21].

Such possibility emerge e.g. for nano-samples (such as nano-particles, nano-films, and so on).

The general feature is that the number of states contributing to the statistical distribution

may become in somehow limited and varying with the time. Thus we reorganize terms in

19 and correspondingly we distribute log(Z), T , kB and the time differential to obtain

dT

T
+
d log(Z)

log(Z)
= − κα

kBzllog(Z)
dt. (26)

The PA-experimental evidence indicates if we illuminate the sample for a period of time, say

t0, then within the interacting volume we will induce a change of local temperature. Going

from initial T0 to a final value T = T0 + δT . Thus, we integrate (26) to get
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log

(
δT + T0

T0

)
= −

[
κα

kBzllog(Z)
t0 +

∫
d log(Z)

log(Z)

]
. (27)

Since we want to solve for the temporal change of temperature, from (27) we obtain that

δT = T0

{
−1 + exp

[
− κα

kBzllog(Z)
t0

∫
d log(Z)

log(Z)

]}
. (28)

Here (28) is somewhat similar to (22), except for the extra term
∫ d log(Z)

log(Z)
. Therefore,

in this case any macroscopic temperature measurement would produce a noticeable bias

temperature field resulting from the variations in the distribution of microstates. In this

case, one is immediately tempted to ask: how measurable is the temperature variation? In

fact, this will depend on how this temperature variation compares with the fluctuation of

the microstates. Further, remembering that Z is a quantity of statistical nature, then the

comparison should also be in statistical terms.

What is of interest is that in both regimes covered by (19), a flux of external energy in a

confined volume of the sample provokes a local increase of temperature and that this is via

non-radiative processes. This phenomenon is the engine that triggers an elasto-mechanical

wave which travels within the sample as a sound-like wave; i.e. the photo-induced PA-signal.

The analysis for the short time scale, τL, regime has not been included since it requires an

specific and detailed analysis, in view that the theoretical set up is different from the current

one, τM . This is τM � τL, and different conditions arise.

5. Discussion of results

Up to date, neither, experimentally nor theoretically, is it possible to truly perform quanti-

tative real-time PA-measurements. The best we have is the deterministic process of back-

tracking the temporal evolution of a process such as the burst of energy occurring in the

PA-phenomenon. The current study displays some aspects of this backtracking. In particu-

lar this related to describe how the absorbed and thermal energy evolve in time; this is made

in terms of the PA-signal representations. From the set of expressions we obtain here there

seems to exist a way to perform an effective quantification of the transference of energy,

from optical to thermal processes. As we describe, in the modulated illumination regime,

the standard model provide us with conditions to obtain the product ακ, which appears to
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be a consistent result for each case covered by such model. Furthermore, this interpretation

bring us to understand that once a dielectric sample is set to interact with a radiation ex-

ternal field, the sample’s response to the field is in terms of how this field is coupled to local

vibrational modes. If one takes into account the product ακ, then one can estimate that

a measure of such coupling is some how proportional to the thermal conductivity. Then

these conditions permit us to define a flux of energy in a similar way as in fluids theory or as

described by an electric current. We recall that the current results correspond to the case for

low frequency of modulation for the external field. However, the current results are hinting

that it could exist similar type of relationship for the short-time scale τL; such as this with

the case for short laser pulses (> 20ns). Therefore, it would be very much needed to study

and understand the implications on the existence of a more general relationship between α

and κ. Specially if we want to know which are the necessary and sufficient conditions for

this relationship to exist. By now we consider that regardless the time regime. For the PA

phenomena to occur, is required to set up these common features: 1) a flux of external opti-

cal energy interacting within a portion of the local volume, that provokes a local increase of

temperature; 2) the so induced non-radiative processes, would trigger an elasto-mechanical

wave which travels within the sample as a sound-like wave [1, 9, 11]. This bring us to set the

definition and actual physical meaning of the product we analyse in the section 4. On one

hand it is constructed from its interpretation as proportional to a flux of radiative energy,

which is work that is made on a solid [17]. As result we arrive to establish that that the

relationship between the optical absorption and the thermal conductivity is via a partition

function.

6. Conclusions

So far the experimental and theoretical interpretations of the PA phenomenon has been

well satisfied by a qualitative approach. For general applications one starts by defining the

spatial volume within which the optical absorption takes place, and assumes this volume

as a heat source q, regardless the nature of the source. For practical applications related

to condensed matter and gases, this is a good enough. The existence of different models is

consequence of the many possible dynamics that the non-radiative process can follow due

to many possibilities for boundary conditions and material properties. It should be noticed
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that we have considered all the physically valid combinations between optical and thermal

transparency, that occur for illumination at low frequency modulation regime. There is

evidence that at short-time scale similar type of results would be obtained. In itself this calls

for defining a new set of phase space that equates with the Hamiltonian type of phase space

derived form Liouville’s theorem (conservation of energy [18, 19]. Our results demonstrates

that for any type of sample the PA technique at low-modulation illumination mode, by

now, can be used to obtain a complete set of the optical and thermal characteristics of the

dielectric sample.
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