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Abstract. A finite element model including plasma simulation is used to calculate the amplitude of 
acoustic resonances in HID lamps in a 2D axisymmetric geometry. Simulation results are presented 
for different operation parameters and are compared with experimental data. 

1. Introduction 
Today most low power High Intensity Discharge (HID) lamps (20 W to 150 W) used in indoor 
applications, such as shop lighting, are operated by low frequency square wave (LFSW) drivers. These 
drivers deliver a square current waveform at a frequency varying from 100 to 400 Hz. A disadvantage 
of LFSW drivers is that they are relatively bulky. It has been shown [1] that the optimum frequency of 
operation for the most compact drivers is around 300 kHz. However, at this frequency low power HID 
lamps suffer from acoustic resonances (AR) which can lead to an unstable plasma arc, causing lamp 
flicker and sometimes early lamp failure. 
 
Over the past years an enormous effort has been made to investigate and avoid the phenomenon of 
acoustic resonances in HID lamps. In [2, 3, 4] the frequency dependent fluctuation in light intensity is 
measured by broadband photodiodes for lamps of different geometries. In [5] lamp geometry and 
operating frequency schemes are used to reduce the negative effect of acoustic resonances. It is shown 
that a specific end burner construction in combination with high frequency operation with frequency 
modulation can indeed reduce instabilities. In [6] another operating method referred to as ‘spread 
spectrum’ is also reported to reduce lamp instabilities when operated at high frequency. 
 
Recently more attention has been dedicated to the fundamental understanding and modelling of 
acoustic resonances. In [7] acoustic streaming is determined as the cause of plasma instabilities in a 
frequency region where acoustic resonances are excited. Further modelling of acoustic resonances is 
found in [8] where the Navier-Stokes equation with an imposed standing pressure wave is solved 
numerically. In [9] the study is extended to the time domain, and the arc motion due to acoustic 
streaming is calculated. However, there is still a need for an acoustic resonance model which could be 
used as a fast and convenient tool for the design of HID lamps that are free of AR in given frequency 
domains. For instance, such a model could be used to determine the effect of the burner pressure and 
electrode distance on the amplitude of acoustic resonances, and predict the region of stable operation. 
 
In [10] we presented a finite element (FE) model describing the generation of acoustic resonances by 
an idealized Gauss-shaped excitation. In this article the plasma simulation is added in order to define a 
realistic temperature and power density profile. In a preprocessing stage, plasma equations are solved 
in defined gas mixture and burner geometry for a given current. Then, the acoustic modes frequency 
spectrum is computed using an eigenvalue equation. The amplitude of each mode is finally post-
processed. To keep memory and CPU-time requirements reasonable this computing scheme is applied 
in a 2D axisymmetric geometry. A more realistic treatment would require a 3D model since arc 
bending violates the axial symmetry. 
 



The model provides the acoustic resonance spectrum of a given lamp. The calculations are performed 
using the COMSOL Multiphysics Finite Element Method (FEM) tool and the solving time is 
approximately 30 minutes on a 64 bit computer. Simulation results are presented in this paper for 
different lamp parameters and are compared with experimental data.  

2. Model 

2.1 Plasma temperature and power density 
The plasma model is used to determine the temperature distribution and power density in the HID 
burner and these are then used as input for the acoustic calculations. A typical HID lamp is shown in 
Figure 1 (Philips CDM 70 W). The lamp salt fill consist of a mixture of Sodium, Thallium and 
Dysprosiym. 
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Figure 1. Typical HID lamp (Philips CDM 70 W) used in retail application. 
 
The plasma is considered at Local Thermodynamic Equilibrium (LTE) and no coupling with the 
electrodes is taken into account. Consequently, the plasma mechanisms are governed by three partial 
differential equations: 
 

• Current conservation equation for the determination of the distribution of the electric potential. 
• Conductive and convective heat transfer equation to determine the local temperature in the 

plasma. 
• Incompressible Navier-Stokes equation to simulate the convection of the burner content. 

 
The first differential equation applies only in the plasma domain: 
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rr

σ           (1) 
 
It corresponds to current conservation in a conductive medium. V is the electrostatic potential and σ is 
the electrical conductivity of the gas depending on the pressure and temperature [11].  
 
The boundaries of the plasma domain are set as Neumann boundary conditions:  
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rr σ . (2) 

 
In this case,  is the inward current density. Its value on the electrode tips is obtained by dividing the 
applied current by the transversal area of one electrode. This condition ensures a homogeneous current 
density on the tips. The upper electrode tip is set at a positive value and the lower electrode tip at a 
negative value. The sides of the electrodes and the walls of the lamp are defined as insulation 
condition ( ). The initial value of the potential is set to V(t

0J

00 =J 0) = 0. 
 



The temperature distribution inside the burner is obtained from 
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(κ thermal conductivity [11], T temperature, ρ mass density, U

r
vector of velocity, Cp heat capacity at 

constant pressure, Q heat source density).  
 
The source term is calculated from 
 

qEQ −= 2σ , (4) 
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r

with the electrical field . The temperature dependent quantity q is defined by an 

interpolation function and introduced to account for radiation losses [12, 13]. The mass density is 
calculated from the ideal gas law 
 

RT
pM
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-1 -1 -1Mp  for Hg, R = 8.32 J K( static pressure of the gas, molar mass of the gas = 0.2 kg mol mol  the 

perfect gas constant). 
 
Equation (3) is applied to the three domains (plasma, electrodes and walls). For the electrodes the 
coefficients κ , ρ and Cp are used directly from the library of the material “aluminum” in the 
COMSOL material database, the vector U

r
 is set at 0

r
 in the electrode domain as there is no 

convection, and the coefficient Q is also set as 0. 
 
For the wall of the burner, κ , ρ and Cp are set according to the values of the polycrystalline alumina 
(PCA) as 12 W m-1K-1 [14], 2203 kg m-3, and 703 J kg-1K-1, respectively. The vector U

r
 is set as 0

r
 

and Q is also set as 0.  
 
Finally, for the gas Hg, the coefficient κ is set as an interpolation function depending on the 
temperature [11], ρ is according to Equation (5), Cp is considered constant as 114 J kg-1K-1, the 
components of the vector U

r
are calculated from the Navier-Stokes Equation (8), and the term Q is set 

according to Equation (4). 
 
The boundaries conditions are set as follows: For the external edges of the electrodes, temperature 
boundary conditions are used with a constant value of T0 = 500 K. This temperature corresponds to an 
evaluation of the temperature when the lamp is in steady state. However, this value has a weak 
influence on the plasma temperature profile and a precise value is therefore not required. 
 
In a lamp, the burner is usually placed under vacuum in an outer glass bulb. It is consequently not 
affected by conduction and convection with an outer gas. Thus, it is assumed to lose its thermal energy 
by radiation only. As a result, for the external faces of the walls of the burner, the heat flux is specified 
according to: 
 

0qTn =∇⋅
rr κ ,           (6) 

 
where the inward heat flux q0 is calculated from the Stefan-Boltzmann law  
 

4           q0 = –σT (7) 
 



with the Stefan-Boltzmann constant σ = 5.6704x10-8 Wm-2K-4 and the emissivity assumed to be 1. 
 
The initial temperature T(t0) should not affect the final solution of the temperature profile. However, 
considering the nonlinearity of the equation system, an initial temperature profile close to the steady 
state solution is required. This prevents unrealistic solutions or long computing time. Consequently, 
T(t0) is defined according an interpolation function implemented from the experimental temperature 
profile measured on a 70W CMH lamp. Figure 2 displays the temperature profile for a unit radius. 
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Figure 2. Initial temperature profile chosen for the modeling based on a Philips CDM 70W 
measurement using X-ray photo-absorption.  
 
The incompressible Navier-Stokes is solved to compute the velocity field of the fluid 
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(η viscosity of the fluid, volume force identity operator). , 

 
Equation (8) is applied only to the domain corresponding to the plasma. The coefficient η is set as an 
interpolation function depending on the temperature [11], ρ is set according to Equation (5). The 
vertical component of the volume force F

r
is set to -10ρ (gravity force). As boundary conditions 

 (no slip) is used. 0
rr

=U
 
It is important to establish one point constraint for the pressure on the interior boundary. In this case, 
the point is placed at the vertices formed by the union of the lower electrode with the internal edge of 
the wall. The value of this point is set at the static pressure chosen for the lamp.  
 

( ) 00

rr
=tU ( )0tpThe initial value for the Equation (8) is , and  is set at the static pressure of the lamp. 

 
The plasma modeling described in this paragraph is quite simple and approximate. Considering the 
plasma at LTE, without any sheath, does not describe the fine mechanisms involved in this arc 
discharge plasma. However, it provides a satisfactory temperature profile in a relatively short 
computing time and with reasonable memory requirement for a desktop computer. This temperature 
profile is then used as the input parameter for the computing of the acoustic modes.   



2.2 Acoustic pressure 
As a result of the alternating current the lamp filling is periodically heated. Therefore, an acoustic 
wave with the modulation frequency of the power is generated. It propagates towards the walls where 
it is damped and reflected. Incident and reflected waves interfere which leads to the development of 
standing acoustic waves. At certain frequencies resonances form. The standing waves interact with the 
discharge arc and are responsible for its distortion and instability. In this section the calculation 
method of the acoustic amplitudes is described. Details can be found elsewhere [15, 16]. 
 
The starting point is the inhomogeneous Helmholtz equation for the acoustic pressure [17, 18]: 
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( ω,rH )r

γ  denotes adiabatic index. where  constitutes the Fourier transform of the power density 
deposited in the gas as computed from σ·E2. 
 
The temperature T  in the burner is not uniform but space dependent. The density ρ  of the burner 
filling and the speed of sound c  attain a space dependency as well. In this work, it is assumed that the 
relation of T  and ρ  is described by the ideal gas law Equation (5), and c  and T  are related through 

MT /Rc mγ= .  
 
Loss is accounted for via loss factors. The surface loss factor associated to the j-th acoustical 
eigenmode with pj eigenfrequency jω  of the burner (volume ) resulting from shear stress is 
calculated from the surface integral 
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 denotes the component of the pressure gradient tangential to the burner wall and the integral has 
to be taken over the entire surface of the burner. Surface loss due to heat conduction can be calculated 
from the similar integral 
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The integrals contain the associated transport coefficients η  (coefficient of viscosity) and κ  
(coefficient of heat conduction) respectively.  
 
Equation (11) is derived under the assumption that the thermal conductivity of the wall is very large 
compared to the thermal conductivity of the gas. A rough estimation of the ratio of the thermal 
conductivities results in ( )50/ plasmawall O=κκ . This is considered to be large and justifies the use of 
Equation (11). 
 
Volume loss due to shear stress is described by: 
 

( ) dVpp
VA

A
c

L
BV ji

Bj

i
i i

v
j ∫∑ ∗

∗

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ηω

ρ
η 1

3
4

2 .       (12) 

 



This equation is derived by following the reasoning in [19, 20] and considering . The 
amplitudes A

const2 =cρ
i and A  are defined below. If ηj  were constant, the above sum is reduced to a single term 

due to the orthogonality of the normalized eigenmodes . jp
 
In order to allow an estimation of the loss factor (see Equation (12)), we describe the viscosity as the 
sum of a constant and a space dependent part: 
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η is chosen to be the mean value between the largest and smallest viscosity inside the burner. This 
leads to 
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For volume loss due to thermal conduction we proceed in the same way. Splitting the coefficient of 
thermal conduction 
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leads to 
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In order to check if the correction terms in Equations (14) and (16) are negligible, we make the 
following estimation: Ignoring these corrections and using reasonable values for the physical 
quantities one can calculate the two volume loss factors. In this approximation volume loss scales 
linearly with frequency: 
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Critical damping corresponds to  and, therefore, occurs at a frequency . It is 
very unlikely that the correction terms would change f

( ) 2=v
jL GHz1crit ≈f

crit by orders of magnitude, and it is reasonable 
to disregard the corrections in the volume loss formulas for the frequency range considered in this 
paper [10]. 
 
The solution of the Helmholtz equation can be expressed as a superposition of the normalized 
eigenmodes 
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( )ωjAwhere the contribution of a certain mode is determined by the frequency dependent amplitudes . 

These amplitudes exhibit a Lorentzian profile according to 
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The excitation amplitude  corresponding to the jA j -th mode is calculated from a scalar product of 
the mode and the power density profile 
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3. Experiment 
The HID lamp is operated with modulated current. A function generator (Agilent 33220A) is used to 
define wave shape and frequency. The signal from the function generator is amplified by a high 
frequency amplifier (Amplifier Research 800A3) and fed to the lamp.  
 
The amplitude of the acoustic resonances is not directly detectable, i.e. we are not able to measure 
pressure level and fluctuations inside of the burner. However, acoustic resonances can have visible 
effects on the plasma arc. Three main instability modes can be observed: 
 

• Plasma arc bending 
• Plasma arc rotation 
• Plasma distortion resulting in light output fluctuation (light flicker) 

 
We measure these effects by monitoring the electrical parameters of the lamp using a power analyzer 
and the light fluctuation with a photodiode: 
 

• The lamp voltage gives an indication on arc bending, if an increase is measured, or arc 
straightening, if a decrease is measured.  

• The lamp voltage deviation indicates arc rotation or other arc instabilities. The deviation is 
calculated using 5 consecutive voltage measurements and comparing them to a reference 
voltage. 

• Light flickering indicates arc distortions. 
 
For the measurements the lamp is initially operated at a high reference frequency of 1.2 MHz where 
no instabilities are observed. At this frequency the reference voltage and current are measured.  
 
In order to determine the flicker level the lamp’s emission is collected using an optical fiber and 
measured with a photodiode (UDT PIN_10AP). After that, the DC part  and the AC part  
(peak-to-peak) are separated. A fast Fourier transform is applied to the AC signal so as to identify the 
different frequency components. For a specific frequency , the flicker level is defined as 
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The frequency is then decreased in fixed increments of 1 kHz from 1.2 MHz to a frequency where the 
recorded instabilities became too intense. The time between two successive frequency steps is set at 
60 s. After 10 successive measurements, the operating frequency returned to the reference where 
electrical parameters as well as light flicker are measured again. A schematic of the experimental set-
up is shown in Figure 3. 
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Figure 3. Schematic experimental set-up.  

4. Results 
We investigated an HID lamp with a somewhat unconventional burner shape that was especially 
designed and manufactured for this investigation. The burner is made of PCA. A cut through its rugby-
shape geometry and the different domains are shown in Figure 4 (right half only). The investigated 
lamp featured an electrode distance of 5 mm and an inside pressure of 15·105 Pa and a salt mixture 
filling consisting of Sodium, Thallium, Dysprosium. It was operated in vertical position at a voltage 
around 60 V (power: 20 W).  
 

 
 
Figure 4. Geometry and different domains of the HID lamp (dimensions in mm).  

Two different modulation techniques were applied to the HID lamp and in the following subsections 
theoretically and experimentally investigated: 
 

• Modulation with constant frequency (subsection 4.1). 
• Frequency modulation with 10 kHz around the center frequency (subsection 4.2). 

 
We measured the lamp’s voltage fluctuation and flicker level as a function of frequency using the 
experimental set-up and procedure described in section 3. Then we calculated the amplitudes of 
acoustic resonances using Equation (18). 
 
Since the response function considerably depends on the location for which it is determined, we 
calculated it for two different locations inside the burner: 
 

• Center of burner between the electrodes.  
• Center of the burner but at the wall. 

 
In the following subsections all frequencies refer to power frequencies. 

Electrode Plasma Wall 
domain domain domain



4.1 Modulation with constant frequency 
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Figure 5. Results for the HID lamp operated at a modulation with constant frequency. Top: Light 
flicker level measurement. Middle: Lamp voltage measurement. Bottom: Calculated acoustic 
resonance amplitudes (blue curve is pressure in the center of burner; red curve is pressure in the 
vertical center of the burner but at the wall). 



 
The two upper graphs of Figure 5 show the results of the measurements for the HID lamp operated at a 
modulation with constant frequency between 300 and 800 kHz. The flicker level can be seen in the top 
and the voltage rise in the middle diagram. Below 300 kHz instabilities became too intense and the 
experiment had to be aborted. The bottom graph displays the acoustic resonance amplitudes that have 
been calculated using Equation (18) in the frequency range 270 to 740 kHz. The blue curve represents 
the pressure in the center of burner. The red curve represents the pressure in the vertical center of the 
burner but at the wall.  
 
The resulting features in the three graphs have been distinguished in terms of color in order to simplify 
the correlation. It can be seen clearly that the two measurements and the calculation are in good 
agreement. Every single peak of the voltage measurement can be found in the simulation as well. Due 
to the increased width of the measured peaks they appear merged. The discrimination for the 
calculation is considerably more distinct. The resonance frequencies according to the simulation are 
20-40 kHz (approximately 7 %) shifted to lower frequencies compared to the measured values.  
 
The features of the flicker level measurement are similar pronounced as the simulation. However, not 
all of the peaks of the voltage measurement and calculation can be found. The weaker ones are 
missing. Comparing voltage and flicker level curves it can be concluded, that resonances 
corresponding to a voltage rise of 3 V and larger are detectable as light flicker. Therefore, the voltage 
rise is the more sensitive indicator for arc instabilities than the flicker level.  

4.2 Frequency modulation 
Due to extraordinary intense instabilities it is not possible to modulate the HID lamp with constant 
frequency below 300 kHz. Applying a frequency modulation instead influences directly the power 
density H by spreading the power over a wide frequency range. This reduces the energy deposition 
per frequency unit and, therefore, the excitation of acoustic resonances. Thus, a frequency modulation 
should bring the weaker acoustic resonances below a critical pressure value, leaving only the strong 
resonance to be measurable. 
 
Figure 6 shows the results for the HID lamp operated at a 10 kHz frequency modulation between 
200 kHz and 400 kHz. The flicker level measurement can be seen in the top diagram. A voltage rise 
was not recorded for this constellation. The bottom graph displays the acoustic resonance amplitudes 
in the frequency range from 180 to 400 kHz. Again, the blue curve represents the pressure in the 
center of burner and the red curve the pressure in the vertical center of the burner but at the wall.  
 
The resulting features have been distinguished in terms of color. Measurement and calculation clearly 
are in good agreement. Every peak of the flicker level measurement can be found in the simulation as 
well. Again, the measured peaks are wider than those of the calculation and shifted approximately 20-
40 kHz. The relative heights of the peaks are also in reasonable agreement. 
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Figure 6. Results for the HID lamp operated at frequency modulation. Top: Light flicker level 
measurement. Bottom: Calculated acoustic resonance amplitudes. Blue curve is pressure in the center 
of burner; red curve is pressure in the vertical center of the burner but at the wall. 

5. Conclusion 
The amplitudes of acoustic resonance in HID lamps have been calculated using FE method. The model 
includes the calculation of plasma behavior and acoustic pressure amplitudes. Simulation results have 
been compared to measurements on a prototype 20 W HID lamp that has been operated at two 
different modulation techniques. For modulation at constant frequency as well as for frequency 
modulation measurement and calculation were found to be in good agreement concerning resonance 
frequency and relative amplitude height. The explanation for the small frequency shift between 
calculation and measurement is probably a slight deviation in the model’s gas parameters from the 
actual values. The relative heights of the peaks are in reasonable agreement as well. 
 
This publication presents first results. Although preliminary they proof the potential of the model as a 
powerful tool for lamp design. More cases and different burner geometries need to be investigated in 
order to obtain a reliable model/experiment calibration. This is ongoing work. The model still holds 
certain limitations. Its 2-dimensionality assumes rotational symmetry. Therefore, arc bending and the 
like cannot be simulated. The goal is to further develop the model to a stage that allows predicting 



frequency regions of stable operation for any given burner shape and set of operation parameters and 
enabling the use of compact driver electronics.  
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