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ABSTRACT 

Optically Stimulated Luminescence (OSL) data from quartz can follow different 

mathematical forms depending on the stimulation mode. These data can be described 

in terms of different multi-exponential models and can be numerically fitted using 

several well-known methods. Here we make a comparative analysis of the 

performance and stability of two models, the decay and peak form, and we consider 

different transformation methods for obtaining the peak form.  For the numerical 

computations we use a nonlinear least squares (NLS) method and a method based on a 

first-kind Fredholm integral equation (FIE). Our analysis uses artificial data with three 

components (seven parameters including the background), and ten different levels of 

background, both the signal and the background contain Poisson distributed noise. 

Parameters derived using both models are acceptable (statistically consistent and on 

an average within ~1% of the expected value) and  no obvious preference is observed 

for any particular model, although there may be a suggestion that peak form data 

shows a smaller mean bias. This conclusion seems to be independent of the type of 

peak transformations investigated here. Furthermore, it is found that transformation of 

OSL decay data to a peak form gives better results than direct measurement of peak 

form data by, for example, varying the stimulation light intensity. The comparison of 

the two numerical methods suggests that the NLS method performs somewhat better 

than the FIE method; however, the latter has the advantage that it does not require the 
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user’s judgement on the number of components in the data. Testing of the NLS 

procedure on a measured quartz time-resolved OSL signal (TR-OSL) transformed into 

peak form yielded reliable parameter estimates even when the signal intensity was 

deliberately reduced by a factor of sixteen. 
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1. INTRODUCTION 

Luminescence is extensively used to determine absorbed dose (J/kg) in wide band gap 

insulators due to exposure to ionizing radiation. The dosimeters used are usually 

natural crystals, e.g., quartz and feldspars, or impurity doped artificially grown 

crystals such as lithium fluoride, aluminium oxide, etc. The irradiation of these 

crystals results in creation of free electrons and holes which are subsequently trapped 

in localised states (lattice defects) known as traps and recombination centres within a 

crystal, respectively. These trapping states thus store information about the absorbed 

dose, and the information can be read out in the form of luminescence by exposing the 

crystal to visible or near IR photons having sufficient energy to cause photoionisation 

of the occupied defects. Electron-hole recombination following photoionisation is the 

critical light generating step, and the resulting signal carrying dosimetric information 

is known as optically stimulated luminescence (OSL). Traditionally, OSL 

measurements use a constant, continuous flux of incident photons (CW-OSL); this 

results in a signal that usually shows monotonic decay with time. The OSL technique 

is widely used for estimation of absorbed dose from ionising radiation in wide ranging 

applications related to nuclear accidents, cosmic radiation in space, radiation facilities 

in health and power sectors, and in geochronology, i.e., dating sediments during the 

last 0.5 million years or so (see Bøtter-Jensen et al., 2003 for an overview).  

 

In addition to being of use for dosimetry, the OSL signal contains information about 

the distribution of traps and recombination centres in the crystal, and together with 

other techniques OSL signals can provide insights into the charge excitation, 
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movement, and recombination in crystals. Such insights are vital to our understanding 

of the luminescence mechanism.  

 

There are at least two instances where the OSL signal has a multi-exponential decay 

form: 

 

1) CW-OSL of quartz: In case of natural quartz (the most commonly used 

material in accident dosimetry and sediment dating), for example, it is 

generally argued that the monotonic decaying CW-OSL emitted during 

exposure to blue light of constant intensity  consists of several transients 

having an exponential form (Smith and Rhodes, 1994). The lifetimes of these 

transients are related to the photo-ionisation cross-sections (proportional to the 

decay constant) of the electron traps that participate in the luminescence 

process (Bailey et al., 1997). In natural quartz from around the world, up to 

seven electron trapping states have been identified to participate in the OSL 

process (Jain et al., 2003; Singarayer and Bailey, 2003).  

 

2) Pulsed OSL:  An alternative method to stimulate a crystal is by pulsing the 

light intensity to obtain pulsed OSL. The signal measured during and between 

the light pulses is known as time-resolved OSL (TR-OSL). The processes that 

govern these signals are generally exponential in nature; in case of quartz the 

TR-OSL measured between the pulses is a decaying signal and consists of a 

dominant exponential transient having a lifetime between 30 and 45 µs and 

two relatively minor transients having relatively shorter and longer lifetimes 

than the main transient when using standard quartz dating procedure 

(preheating to 260oC for 10 s and stimulating at 125oC) (Chithambo et al., 

2007; Ankjærgaard et al., submitted; Pagonis et al., 2009). These lifetimes 

reflect the relaxation of the excited state following electron hole-

recombination (Chithambo, 2007; Pagonis et al., submitted). 

 

Thus, the experimental data acquired during either continuous stimulation (CW-OSL) 

or between the pulses in pulsed stimulation (TR-OSL) of quartz, and perhaps also 

other dosimeters, can be described by the model:  
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where t is the time, Ni is proportional to the initial population undergoing decay, and 

λi is the decay constant for each of the n components in the signal. The constant b≥0 

accounts for any background light and dark counts of the detector, and ξ(t) represents 

the noise in the data. The purpose of such multi-component analysis is to determine 

the constants n, Ni and λi from the measured data, as these quantities give information 

on the relative number density and a physical characteristic of the trap or centre such 

as photoionisation cross-section or recombination/relaxation lifetime, respectively. 

 

In case of CW-OSL, the model (Equation 1) applies only in the case of negligible 

retrapping (first order kinetics); this is applicable, e.g., to the fast, medium and some 

of the slow components in quartz (see Jain and Lindvold, 2007a), but may not be 

applicable to all dosimeters. In TR-OSL the two dominant processes, i.e., the 

electronic transition from the conduction band to the recombination centre, and the 

relaxation of the excited state of the recombination centre, both follow first order 

kinetics. However, there are some materials that have non-first order processes, e.g., 

tunnelling, which will follow a different mathematical form. As discussed later a more 

general case can be defined using a spectral function for a continuous trap 

distribution; this can be reduced to a sum of n delta functions for discrete traps 

(Istratov and Vyvenko, 1999). 

 

In addition to better understanding the OSL processes, it is also highly desirable that 

we can estimate the individual transients in the OSL for higher accuracy in 

retrospective dosimetry (see, e.g., Jain et al., 2005). This objective can be achieved by 

fitting some form of Equation 1 to the CW-OSL or the TR-OSL data. Unfortunately, 

fitting multiple exponential functions is an ill-posed problem (e.g., see an excellent 

review by Istratov and Vyvenko, 1999). Bulur (1996) suggested that fitting of multi-

exponential OSL data could be made more robust if the data had a peak form rather 

than a monotonic decay form. An OSL peak form could be obtained experimentally 

by linearly increasing the stimulation light intensity during the OSL measurement; 

this technique was named as linearly modulated OSL (LM-OSL) (Bulur, 1996). LM-
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OSL results in a signal that can be described using the single trap/centre model by the 

following model:   
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where T is the total measurement time, and Ni, λi, b, and ξ(t) are as described above. 

Bulur (2000) and Poolton et al. (2003) have further shown that the same peak shaped 

signal could be achieved by transformation of the monotonically decaying multi-

exponential data (assuming first order kinetics). However, note that the transformation 

approach (to be discussed below) produces a linearly increasing background as a 

function of stimulation time t.  

 

Although the shape of the LM-OSL curve is fundamentally different from the CW-

OSL curve, the physical process causing them and the information contained in the 

two types of data are identical; the apparent differences arise because we view data in 

the time domain rather than in the event domain (Jain and Lindvold, 2007a).  If one 

considers the probability of luminescence light produced per incident stimulation 

photon, and if there are two components X and Y (n=2) then 
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σσ   Equation 3 

where aX and aY are the number density of the trapped electrons (cm-3) for the two 

different traps X and Y, aX0 and aY0 are the initial concentrations, Φ defines the time 

integrated number of excitation photons per unit area (fluence in cm-2), and σ X and 

σ Y (cm2) are the photoionisation cross-sections. For a given OSL measurement, 

00 / YX aa  and XY σσ −  are constant; therefore, for a given photon fluence, the ratio of 

the light output from any two components will be constant, no matter how that 

fluence was achieved in time. In the time domain, however, different shapes of 

luminescence intensity can be achieved by varying the fluence-rate or flux during the 

measurement, i.e., )(/ tIdtd =Φ , but the actual overlap of the signals will not differ 

for a given fluence (Jain and Lindvold 2007a). This problem has also been 

investigated by Wallinga et al. (2008) and Bos and Wallinga (2009a) in which several 

interesting examples of the data forms obtained by changing incident photon flux 

were studied. Nonetheless, it was concluded that the separation of the components at 

any given time was the same for all the different stimulation modes. One method of 
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increasing the physical separation of the transients is differentiation of the OSL signal 

(Bos and Wallinga, 2009b); however, this approach is not suited to low amplitude, 

slowly decaying components because of low signal-to-noise ratio. Since the nature of 

multi-exponential decay and multi exponential peak data (in other than differentiation 

based methods) are fundamentally identical, it has been discussed in the literature 

whether peak-form data has in fact any advantage over the decay-form data for 

exponential analysis (Huntley, 2006, 2007; Jain and Lindvold, 2007a, b; Wallinga et 

al. 2008; Bos and Wallinga, 2009a; Bos and Wallinga, 2009b). However, this 

question has not been thoroughly investigated to date. 

 

The aim of this work is to carry out a comparative analysis of the performances of the 

two above-mentioned data collection systems, decay and peak form, in predicting the 

‘true’ trap parameters. This analysis is based on artificially generated multi-

exponential TR-OSL data with seven parameters. We use two fundamentally different 

numerical approaches which have previously been used for fitting luminescence 

signals by different workers viz. a) multi-exponential analysis using a nonlinear least 

squares (NLS) formulation solved by a Levenberg-Marquardt approach (see, e.g., Jain 

et al., 2003), and b) the spectroscopic analysis using a first-kind Fredholm integral 

equation (FIE) (Agersnap, 1997; Whitley and McKeever, 2001; also see the review by 

Istratov and Vyvenko, 1999) with a view to derive a general protocol for 

multiexponential analysis of three discrete OSL components. The NLS method is a 

standard method for fitting data and is implemented in most mathematical and 

statistical software packages. This method requires that the number of exponential 

components is specified beforehand by the user. The FIE method is a radically 

different approach compared to NLS as this method automatically determines the 

number (or spectrum) of components without prior user input. These approaches are 

briefly described in Section 5. We emphasize that our goal is (primarily via simulation 

studies) to compare the above-mentioned methods for analysing OSL and TR-OSL 

data, with a focus on the robustness of the estimation of the parameters Ni and λi  in 

the underlying OSL models. We note that related work in Pereyra and Scherer (2009) 

focused on the fitting (or prediction) abilities of the two methods based  on the  

properties of the residuals; we note that this is an altogether different mathematical 
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problem and leads to a different conclusion than in the present study focussed on the 

precision and accuracy of the derived parameters. 

 

2. INSTRUMENTATION AND METHODS 

Much of this paper uses artificial data. However, laboratory measurements on a quartz 

sample are used to test the methods and to generate realistic artificial data for 

exponential analysis. These measurements were undertaken using a colluvium quartz 

sample from Tanzania, sample: 963602 consisting of 150-300 µm grains. The grains 

were extracted from the bulk sample by sieving, heavy liquid separation, and HF 

treatment as described in Wintle, 1997. Sample measurements were carried out on a 

Risø TL/OSL-20 reader with an integrated pulsing option to control the stimulation 

LEDs, and with a photon timer attachment with detection resolution of 100 ps to 

record the TR-OSL data (Lapp et al., 2009). The apparent bin-resolution can be re-

displayed after data collection, as it is specified as 2n×100 ps. Blue light stimulation 

was performed with a 470 ± 30 nm LED array delivering 50 mW.cm-2 at the sample, 

and a 7.5 mm thick Hoya U340 filter detecting between 340-350 nm was inserted 

beneath the photomultiplier tube (PMT). 

 

The TR-OSL data are recorded by time-stamping photons emitted from beta irradiated 

and preheated (260°C for 10 s) samples between the stimulation light pulses at 125oC. 

The net signal is then derived by summing several hundred thousands of these light 

pulses emitted from the sample. The duty cycle consisted of a 50 µs on-time and a 

500 µs off-time. The data are then summed up to be presented at the resolution of 0.4 

µs.  

 

In addition to the OSL counts, the PMT will register counts that constitute a 

background to the OSL signal. Background counts are generated by thermal excitation 

of electrons in the photocathode, system electronics, and interaction of the detector 

with cosmic radiation, which together constitute the ‘dark counts’ of the PMT, and 

any scattered or stray light from the stimulation source. As it is important to include 

these in the artificial data model, the background counts were also measured in the 

same way as above but using an annealed quartz sample (700°C for 5 min to remove 

nearly all trapped charge) instead of a beta irradiated sample. Note that in pulsed OSL 
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measurements, the stimulation light is switched off, therefore, background would be 

equivalent to the ‘dark counts’ of the detector. 

 

3. DATA SIMULATION FOR DECAY-FORM DATA 

Artificial TR-OSL data was created in order to compare the performance of different 

methods, and the data comprises two contributions – light from the sample and the 

background counts. 

 

In order to generate artificial data it is first important to understand the PMT counting 

statistics for these two processes; this involves measurement of a constant count rate 

by the detector and determination of the mean and spread in the distribution of the 

counts. Since the TR-OSL is a decaying signal it cannot as such be used for this type 

of analysis. Therefore, we used a constant light source; blue LEDs operated with 

attenuated detection (a neutral density filter inserted underneath the PMT instead of 

the U340 filter) is used to do the statistical analysis applicable to signal counts. We 

generated a similar count rate as the sample, was used to mimic distribution of 

luminescence counts. Data was collected during a 500 µs on-time. The background 

was measured in the same way as TR-OSL but on an annealed sample. Figure 1(a) 

shows the distribution of the background noise for a data resolution set to ~0.4 µs, and 

a Poisson distribution function with a mean of 5.7 cts.(0.4 µs)-1 (derived from 

integration of 40,000 pulse stimulations) has been fitted to the data (black line). A 

Matlab Chi-square goodness-of-fit test could not reject the hypothesis that the data is 

Poisson distributed with the probability of observing the given result: p = 0.9957. 

Therefore, in our artificial data model, we can assume that our instrumental 

background noise is Poisson distributed.  

 

The distribution of counts from the LEDs is shown in Fig. 1(b), with the same 

resolution as in 2(a), where it has been fitted to a Poisson distribution with a mean 

value of 14.8 cts.(0.4 µs)-1 shown as the black line. The Chi-square goodness-of-fit 

test rejected the hypothesis that the diode noise data is Poisson distributed with a 

probability of p = 2.21·10-9. It is very likely that this distribution is not perfectly 

Poisson distributed as the dark noise is also contained in this data, and so the 

condition to test whether the distribution is a single Poisson distribution is in fact false. 

For practical purposes, as can be seen in the figure, the data approximates a Poisson 
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distribution, and so we will assume that the (TR-OSL) signal follows a Poisson 

distribution.  

 

The values of the decay constants and amplitudes for generating the artificial data 

analogous to the TR-OSL of quartz in the 380 nm emission is based on experimental 

values found by Chithambo et al. (2007). The artificial data is chosen to contain three 

exponential transients following Equation 1 with amplitudes Ai = Ni·λi (cts/0.408 µs) 

and decay constants λi (µs-1) of A1 = 7000, λ1 = 0.500, A2 = 20000, λ2 = 0.0300, A3 = 

3000, and λ3 = 0.0125 (the decay constants correspond to lifetimes, τ of 2, 33 and 80 

µs). For the analysis, the lifetimes are converted into their reciprocal values, i.e., the 

decay constants used in Equation 1. The artificial data sets are generated to contain m 

= 2000 points with a bin width of 0.408 µs giving a decay length between the light 

pulses of 816 µs. From Equation 1 we can express the exact data through the model: 

∑
=

−=
3

1

)exp()(
i

ii tAtI λ       Equation 4  

The individual points Yj in the artificial data, with background, can therefore be 

written as: 

Yj = Ij + bj j = 1,…,m     Equation 5 

where Ij ~ P(I (tj)) and bj ~ P(b) are numbers randomly selected from Poisson 

distributions with mean values I (tj) and b, respectively (recall that b is the 

background). 

 

The relative level of background in an artificial TR-OSL curve is estimated by the 

initial-signal to background ratio (ISBR) defined as the ratio between the maximum 

signal amplitude at t = 0 and the constant background b, i.e., I(0)/b. For this study, ten 

different ISBR in the range 6-6000 were used to cover for the variations in the OSL 

sensitivities of different quartz samples. For each ISBR ratio we generated five 

instances of the same decaying TR-OSL signal but with different noise realisations. 

Thereby for each ISBR level, more realistic error estimates of the parameters were 

obtained than those estimated by the fitting algorithm. In total, 50 different instances 

of artificial decay data were produced. Before fitting the artificial data, an average 

background value 
_
b  found from the average over the last 10 data points is subtracted 
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in order to remove the constant background component, such that the final artificial 

data is: 
_
bYy jj −=         Equation 6 

This is standard procedure for analysis of measured TR-OSL data. As long as the 

background is truly constant (for times t greater than six times the lifetime of the 

slowest component), the number of data points used in the average background 

estimation is not critical. We used 10 points for reasonable statistics. 

 

Figure 1(c) shows an artificial TR-OSL curve from Equation 6 with an ISBR of 600 

(black line) together with the ‘exact’ curve from the model in Equation 4 (grey line). 

The curves were calculated using the parameters defined above. The insets to Fig. 

1(c) zoom in on the early and later parts of these curves. In Fig. 1(d) the deviation 

between the ‘exact’ curve I(t) and the noisy and background-corrected data yj (both 

from (c)) are shown. As expected from the Poisson statistics the random deviation 

increases with the magnitude of the data. More importantly, the errors do not show 

any structure and our model fitting should at best be able to mimic this.  

 

4. DATA SIMULATION FOR PEAK-FORM DATA 

Since TR-OSL is always a decaying signal, irrespective of the manner in which the 

sample was excited during a pulse, it is not possible to directly obtain a peak form 

signal such as in the LM-OSL.  However the decaying TR-OSL can be converted into 

a peak form such as LM-OSL  either by varying the integration intervals (e.g. Poolton 

et al., 2003) or by variable rescaling of the intensity and time axis (e.g. Bulur, 2000).  

 

In this work we transform the decay-form data yj, generated as described above, into 

two different types of peak forms: (i) a simple variable rescaling of the intensity 

(simple transformation) and (ii) a variable rescaling of the intensity and time space 

(pseudo LM-OSL of Bulur (2000)). Note, however, that in the context of TR-OSL off 

-time signal, the term LM-OSL does not have any physical connotation; it merely 

serves as a different mathematical transformation. The two transformations 

correspond to the two models: 

Simple transformation: ∑
=

+⋅=
3

1
i

2/1 )-exp()2()(
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i btAtTtI λ     Equation 7 
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Here we define T = 2tTR-OSL,max, twice the length of the TR-OSL decay length (1632 

µs), and we introduce a new independent variable 2/1)2( tTu = . Moreover, Ai = Ni·λi, 

where Ni is proportional to the initial population undergoing decay, λi is the decay 

constant for each of the n components in the signal, and b≥0 is a term to account for 

any background light and dark counts of the detector. The two types of peak data thus 

correspond to the transformations: 

yj → (2 tj T)1/2 yj,    tj unchanged  ,                                          Equation 9 

and 

yj → (2 tj / T)1/2 yj  ,   tj → uj  (by uj = (2tjT)1/2 ),      Equation 10 

respectively, of the artificial decay data after correction for background. The artificial 

decay data and the simple transformed peak data share the same linear time domain t, 

in contrast to the pseudo LM-OSL peak data which is a function of a ‘nonlinear’ time 

domain u.  

 

In Fig. 2, the artificial TR-OSL data from Equation 6 with an ISBR ratio of 15 is 

shown together with the same curve after the simple peak transformation in Equation 

9, and after the peak transformation in Equation 10 to obtain pseudo LM-OSL. The 

pseudo LM-OSL curve is ‘stretched’ compared to the simple peak transformation due 

to the time domain transformation and is plotted on the top axis as a function of u. 

The TR-OSL and the simple peak transformation is plotted on the bottom axis, t. 

 

5. NUMERICAL METHODS 

Two different numerical methods are used for parameter estimation. Both methods are 

least squares methods in the sense that they minimize the sum of squared residuals 

between the data and the model. One method is a standard nonlinear least squares 

(NLS) method, which is perhaps the most used method for exponential fitting. As an 

alternative, we also consider a method based on a Fredholm integral equation (FIE) 

approach, which has the advantage that it does not require the user to select the 

number of components in the model. To make a fair comparison between the two 

methods, we do not use any weighting in the least squares problems. 
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For the decay form in Equation 1, the nonlinear least squares (NLS) method fits the 

model ∑
=
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ii tAtI
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)exp()( λ  to the m data points yj after the background has been 

subtracted:   
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Here we have introduced the amplitudes Ai = Ni ·λi , and  t1,…,tm denote the 

measurement times. A similar expression can be written for the simple peak 

transformation in Equation 7. For the peak form in Equation 2, the model 
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where uj is the transformed time from equation 10. The underlying numerical method 

is known as the variable projection method, which is a Levenberg-Marquardt 

algorithm tailored to the specific problem; see Golub and Pereyra (2003) and Pereyra 

and Scherer (2009) for details. This algorithm is built into the software package 

SigmaPlot, which was used in this study. Since the data is fitted to a specific model, 

the user must specify the number of components n in this model prior to fitting the 

data. We impose the positivity constraints λi > 0 on the decay constants, but did not 

enforce positive amplitudes as negative values never were encountered.  

 

In the second method, a spectroscopic analysis approach is used (see, e.g., Agersnap, 

1997; Istratov and Vyvenko, 1999; Whitley and McKeever, 2001), in which λ is 

considered as a continuous variable and a(λ) ≥ 0 is an unknown ‘amplitude density 

function’ which identifies the decay constants (and thereby the components) present 

in the data y(t): 

)()()exp(
max

min

tydat =−∫ λλλ
λ

λ

         Equation 13 

This is illustrated in Fig. 3 for a set of artificial data y(t), shown inset, containing three 

components. The areas under the peaks of a(λ) are related to the amplitudes of the 

decay constants. The similar equation for the peak form is: 
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            Equation 14 

Equations 13 and 14 have the form of a Fredholm integral equation (FIE) of the first 

kind (see Hansen, 1998). Unlike in the NLS method, the user does not have to specify 

the number of components; the amplitude density function a(λ) determines this 

number (see below).  

 

To solve the FIE in Equation 13 numerically, it is discretized by means of a 

quadrature method (see Hansen, 1998) which leads to the linear least squares 

problem: 

∑ ∑
= =

−Δ−
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j
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k
kjkkj aty

1 1

2))exp(( λλ      Equation 15 

where λk are the quadrature points, kλΔ denotes the width of the interval that contains 

the kth quadrature point, and ak are the approximations to a(λ) at the quadrature points, 

i.e., kk aa ≈)(λ . We use p = 500 quadrature points, and due to the large range of λ-

values needed in OSL problems, the quadrature points are distributed logarithmically 

between λmin = 0.001 and λmax = 100. The same technique is used to discretize 

Equation 14.  No weighting of the data is used and non-negativity constraints are 

enforced on the solution which has the side effect of causing the spikes in the solution 

to be narrower than without constraints. The constrained problem is solved by means 

of the NNLS algorithm (Lawson and Hanson, 1995, Chapter 23) implemented in 

Matlab. It is beyond the scope of this paper to go into further details of the 

computational algorithms, and we refer to the above-mentioned books for details. 

 

When the data adheres to the model in either Equation 13 or 14, it is expected that the 

nonnegative function a(λ) has narrow spikes for iλλ ≈ , see Fig. 3. Moreover, if this 

is the case then it is also expected that the amplitudes are approximately equal to the 

area under each of the spikes, i.e., ∫Ω
≈

i

daAi λλ)(  where Ωi denotes a small interval 

around λi. For each spike we therefore compute the corresponding amplitude by 

means of 

∑
∈

Δ=
ik

kki aA
spike

λ .       Equation 16 
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More than n spikes were occasionally encountered (although a situation with less than 

n spikes never occurred), and thus a ‘rejection criterion’ was needed to remove 

spurious spikes. It is noted that the contribution to the total signal from the ith 

component can be measured by the integral: 

i

i
i

i

iT

ii
a

T
a

dtta
λ

λ
λ

λ ≈−−=−∫ ))exp(1()exp(
0

    Equation 17 

Spikes with ratios ai/λ smaller than a fixed threshold value determined by the area 

under the data and the noise level in the data are therefore rejected. In this paper, a 

threshold of 0.01 was used, i.e., components whose contribution is less than 1% of the 

total signal are rejected. 

 

6. ARTIFICIAL DATA RESULTS  

In this section the two fitting methods are used for analysing the artificial data sets for 

both decay and peak forms. 

 

6.1. Nonlinear Least Squares Method: Decay vs. Peak Form 

As described in Section 5, the nonlinear least squares algorithm, as implemented in 

SigmaPlot, is not able to identify the number of components present in the data, and 

therefore a model with a specific set of components must be chosen by the user prior 

to fitting the data under examination. To eliminate the advantage that the number of 

components is known in the artificial data sets, a systematic approach was used for 

each set of data to identify the number of components as if it was unknown. Each data 

set was fitted with first two, then three, and finally with four (and so on) components 

to identify the correct number of components present in the data set. This is illustrated 

in Fig. 4(a)-(c) for an artificial data set with an ISBR of 600 and fitting using a model 

with 2, 3, and 4 components, respectively, with corresponding parameter values listed 

in Table 1. Fitting with too few components caused a systematic behaviour in the 

residuals (Fig. 4(d)) which is undesirable, while the residuals from the three-

component fit (Fig 4(e)) are evenly spread around zero and they do not visibly behave 

systematically, which according to Fig. 1(d) is the desired result. When fitting with 

four components, and thereby forcing the algorithm to find more components than 

what is truly present in the data, either of two situations occur: (i) two components 

have identical decay constants or (ii) the algorithm creates a fourth component with a 
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decay constant very similar to an already existing decay constant and changes the 

remaining three decay constants slightly. Both of these possibilities resulted in no 

further visible improvement of the residuals, see Fig. 4(f). The redundancy in the 

four-component fit becomes clear by looking at the second (3 component fit 

parameters) and third column (4 component fit parameters) in Table 1. The fourth 

fitted component merely splits the third component into two parts and, as a result, the 

residuals are identical in the 3 and 4 component fits. This was tested for several 

curves and it is concluded that the condition for the best fit is the minimum number of 

components for fits with identical residuals. 

 

In Table 1, the Ai and λi parameters in the first three columns are listed with internal 

uncertainties estimated by SigmaPlot. To test whether these uncertainties are large 

enough to contain the variations in parameter values caused by the noise, five datasets 

with an ISBR of 600 were fitted to calculate the mean and standard error on the 

parameters. These values are presented in the last column of Table 1. The calculated 

standard errors based on five different realisations of the noisy curve are 

systematically bigger than those estimated by SigmaPlot for any individual curve. We 

therefore fit five datasets for each of the different ISBR values as presented in Section 

3 to get more realistic estimates of uncertainties on the parameters from the fits. 

 

Using the built-in nonlinear least squares algorithm in SigmaPlot, we fitted the 50 

decay formed curves, the 50 simple peak transformation data sets, and the 50 pseudo 

LM-OSL peak data sets. The results are shown in Fig. 5. The computed amplitudes A1, 

A2, and A3 are compared in (a)-(c), for the 10 different ISBR. Likewise, the decay 

constants λ1, λ2, and λ3 are compared in Fig. 5 (d)-(f). The dashed lines in each plot 

represent the ‘true’ values used in creating the artificial data. It is first observed that 

all amplitudes and decay constants using the two peak forms are identical; the NLS 

method does not seem to be able to distinguish the two types of data from each other. 

Secondly, the results from decay and peak form data are consistent with each other 

and within the ‘true’ value. The uncertainties on the parameters derived for fitting 

peak data are generally smaller than those for the decay form data. For very high 

ISBR there is a slight tendency for underestimation of the parameters from the peak-

form data fits, see Fig. 5 (c), (e), and (f).  
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6.2. Spectroscopic Method: Decay vs. Peak Form 

The Fredholm integral equation model was used to fit the same data sets from the 

previous section. It was observed that the number of components (n = 3) present in a 

data set is often overestimated by one, two, or three components; but with the 

rejection criterion from Section 5 almost all of these extra components are rejected by 

our method. This is shown in Table 2, which lists the number of extra components 

found in the 50 data sets before and after the rejection criterion (RC) has been used. 

The two peak forms had identical numbers of components present before and after use 

of the rejection criteria, and are therefore only described in one column. Out of the 50 

decay-form data sets, 38 had too many components and this number got reduced to 5 

after using the rejection criterion. Similarly, from the 50 peak-form data sets, 42 had 

too many components and this number was reduced to 3.  

 

Figure 6 shows the results from fitting with the Fredholm integral equation model, 

and again the amplitudes are compared in (a)-(c) while the decay constants are 

compared in (d)-(f). Similar to Fig. 5, the points in Fig. 6 are averages over the 

parameters from five data sets with the same ISBR. As described above, the results 

from five decay-form data sets and three peak-form data sets were rejected due to the 

overestimation of the number of components (see Table 2). Again we note that the 

parameters from the two peak forms are identical. The parameter estimates generally 

have larger uncertainties using this fitting method compared to those using NLS. 

Furthermore, there is a tendency to underestimate the parameters in Fig. 6(c), (e), and 

(f), and to overestimate the parameters in Fig. 6(b) for high ISBR levels for both 

decay and peak shaped data. For all three data forms, several of the parameters are not 

consistent with the ‘true’ parameter values at high ISBR levels. 

 

7.  COMPARISON OF THE METHODS 

To make an overall assessment of the performance of the two fitting methods and the 

two types of data, the parameters from the fitted decay- and peak-form data were 

analyzed by calculating the mean and the standard deviation of every parameter 

divided by its expected value. The optimum mean value should therefore be 1. The 

values are given in Table 3; columns 2 and 3 list the parameters found using the FIE 

method for decay- and peak-form data respectively, whereas columns 4 and 5 list the 
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parameters found using the NLS method for decay- and peak-form. Note that the 

values given in rows 3 and 5 are valid for both the simple peak transformation and for 

the pseudo LM-OSL transformation, as these parameter values were identical (see Fig. 

5 and 6). The number of data sets included in the calculation of the mean and standard 

deviations is given in row 2; for the FIE method this number is not 50 due to a few 

instances where the rejection criteria did not remove all over fitted components (see 

Table 2 and Section 6.1).  

 

If the decay and peak parameter results from the FIE method (columns 2 and 3) are 

compared, four peak parameters (A1, A3, λ2, and λ3) are slightly better estimated, i.e., 

have a smaller mean bias than the decay parameters, but the overall spread in the 

individual parameter estimates (standard deviation) is larger for peak fitting compared 

to the decay curve fitting. If the decay and peak parameters from the NLS method 

(columns 4 and 5) are compared instead, then the three peak parameters (A2, A3, and 

λ3) have smaller mean bias compared to the decay parameters, and the value of λ1 is 

identical for the two data types. Similarly the standard deviations are smallest for the 

four peak parameters (A2, A3, λ2, and λ3) compared to the decay parameters. There is 

an overall greater concordance in the mean values from the two models for the NLS 

method compared to the FIE method. In general both the models perform very well 

and the mean values are statistically indistinguishable from the expected values if one 

considers the measured spread in parameter estimates. However, even though there is 

no clear preference between the two models, our data may hint in favour of the peak 

model if one only considers the mean bias. 

 

When comparing the two fitting methods, FIE and NLS, on the basis of  the six 

parameters each estimated for each of the two models (decay and peak), the NLS 

fitted 10 out of 12 parameters more accurately, and 8 out of 12 standard deviations 

were the smallest compared to the FIE values. Although the FIE method is more 

objective, the numbers in Table 3 suggests that the NLS method estimates the 

parameters more accurately and with smaller error. 

 

8.  ‘TRUE’ LM-OSL VS. PSEUDO LM-OSL 
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We now investigate the relative performance of the peak model for two cases 1) 

pseudo LM-OSL data derived from transformation of decay form (CW-OSL or TR-

OSL) data, and 2) ‘true’ LM-OSL. There could be differences in the performance of 

the two data sets as the signals are measured with different signal to background ratios, 

and moreover, the transformation step in case 1) also involves transformation of the 

noise. Thus, it is not apparent whether a true peak measurement such as LM-OSL is 

preferable compared to a pseudo-LM-OSL or otherwise. Note that a true peak 

measurement is only possible in the conventional OSL where varying the stimulation 

light intensity gives rise to a peak shaped signal (see Section 4). This is not an option 

in TR-OSL measurements where the signal always decays with time between the two 

pulses. In this section we will compare the results from artificial ‘true’ LM-OSL with 

the previous results obtained using pseudo LM-OSL. 

 

We create artificial ‘true,’ i.e., experimentally obtained LM-OSL containing three 

components with the same parameter values as in Section 4 and including a 

background b≥0 arising from any dark counts of the detector (possible minor time 

dependent background from stray stimulation light is neglected in order to simplify 

the analysis), and a noise component ξ(u) that reflects the Poisson noise in the data:  

∑
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uI ξ
λ

    Equation 18 

where T is twice the length of the OSL decay length of 1632 µs (Bulur, 1996). Prior to 

fitting, an average background 
_
b  estimated from the last 10 data points is removed. 

As in the previous sections 50 ‘true’ LM-OSL curves are produced, 5 curves for each 

of the 10 ISBR levels. Fig. 7(a) shows the true LM-OSL (grey curve) and the pseudo 

LM-OSL (black curve) for the highest ISBR level, 6000 and in Fig. 7(b) the same 

curves but for the lowest ISBR of 6. In both figures, the ‘true’ LM-OSL curves appear 

much noisier than the pseudo LM-OSL and therefore one might presume that the 

pseudo LM-OSL would be a better choice for fitting. 

 

Using the NLS method the 50 new curves are fitted, and the parameters are shown in 

Fig. 8 (black circles) together with the values found from fitting the pseudo LM-OSL 

in Section 6.1 (grey circles). The computed amplitudes A1, A2, and A3 are compared in 

(a)-(c), for the 10 different ISBR. Likewise, the decay constants λ1, λ2, and λ3 are 
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compared in Fig. 8(d)-(f). For the low background levels (ISBR<100), the true LM-

OSL generally have very large error bars reflecting bad fits and large scatter in the 

parameter values within each level, and several parameter values are inconsistent with 

the known true parameter values. It is clear that the noise in the data for ISBR<100 

results in very poor fits and for noise levels of this magnitude, pseudo LM-OSL is 

clearly preferable. To make an overall assessment of the accuracy of the parameters 

compared to those of the pseudo LM-OSL data (column 5, Table 3), the mean and 

standard deviation was calculated for each of the six parameters and listed in column 

6 in Table 3. Although the mean values of the ‘true’ LM-OSL parameters are either 

very similar or better than the pseudo LM-OSL estimated parameters, the standard 

deviation is bigger for all the parameters, reflecting the much larger scatter found in 

the parameter estimates. 

 

It is therefore concluded, that using pseudo LM-OSL data results in better fits 

irrespectively of the noise level in the data compared to ‘true’ LM-OSL data. This 

conclusion assumes that the conditions of measuring the OSL decay curve or the LM-

OSL data are the same i.e. the same instrument is used and thereby the same light 

stimulation source. That pseudo LM-OSL is better than ‘true’ LM-OSL is probably 

because the signal-to-noise ratio for the decay curve measurement (CW-OSL) is 

always much higher than that for the corresponding true LM-OSL measurement. 

Therefore, the pseudo LM-OSL derived by transforming CW-OSL data is less noisy 

than the ‘true’ peak measurement. Moreover, there may be a problem of time varying 

background arising form the stimulation light in the true LM-OSL measurement. This 

problem can further complicate the exponential analysis of the true LM-OSL data. 

 

9. PERFORMANCE OF THE NLS METHOD ON MEASURED QUARTZ TR-

OSL DATA 

TR-OSL data was measured from the Tanzanian quartz sample for a regenerative 

irradiation dose of 30 Gy. Furthermore, this dose was repeated but now measured 

with a neutral density filter inserted beneath the PMT to attenuate the light from the 

sample by approximately a factor of 16 and thereby obtaining a smaller ISBR. Both 

curves were transformed into peak-shape according to the model in Equation 8 and 

are shown in Fig. 9(a). The curves are shown on a log intensity scale in the inset. 
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The data was initially fitted in SigmaPlot with one component, and the corresponding 

residuals are shown as the grey curve (30 Gy) and black curve (30 Gy, attenuated) in 

Fig. 9(b), upper and lower graph respectively; the grey residuals shows a strong trend 

indicating that the data is not fitted adequately, whereas the black curve show a much 

less visible trend. As the two curves are from the same sample, they must contain the 

same number of components, and so two components are sufficient to fit the data. The 

residuals from the two two-component fits are shown in Fig. 9(c), the upper grey 

curve being the 30 Gy residuals and the lower curve the attenuated 30 Gy residuals. 

The trend in the grey residuals has been reduced significantly and the black residuals 

have been improved slightly indicating that only two components are present in the 

measured TR-OSL data. Finally the curves were fitted with three components and the 

residuals from these two fits are shown in Fig. 9(d); the residuals have not improved 

to the eye, and the third component is clearly in excess as the decay constants are 

identical in both cases to an already identified component and the amplitudes have 

been halved. It is therefore clear that only two components are present in the data. The 

decay constants and amplitudes found from the two-component fits are given in Table 

4. The 30 Gy curve fit resulted in two components with lifetimes of 39 µs and 103 µs 

for amplitudes of 36,959 cts.(0.4 µs)-1 and 685 cts.(0.4 µs)-1. The attenuated 30 Gy 

curve fit gave the lifetimes 38 µs and 107 µs for amplitudes 2,219 cts.(0.4 µs)-1 and 

65 cts.(0.4 µs)-1.  

 

In Ankjærgaard et al. (2010), it was shown that for a wide selection of quartz samples, 

the main dominant commonly observed component has a lifetime of 37 ± 5 µs found 

from the mean and standard deviation from the 30 samples investigated. Furthermore 

they found that in some samples, a longer or a shorter lifetime component was present 

with lifetimes of 100 ± 40 µs and 6 ± 1 µs. The lifetimes found here are in good 

agreement with each other despite different noise levels, and are in very good 

agreement with published values in Ankjærgaard et al. (2010), Chithambo and 

Galloway (2000), and Chithambo et al. (2007). Given the above amplitudes, the ISBR 

ratios for the individual component for the attenuated curve were calculated to be 44 

and 1.3. Thus it is possible to estimate the parameters A2, λ2 for a second component 

even though the initial intensity of this component has a comparable size to the 

background.  
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10. CONCLUSIONS 

A thorough study of two different models for multi-exponential OSL data, the decay 

form and the peak form, has been undertaken to investigate which data form is better 

suited for fitting noisy data. Each of these data types  were analysed using two 

fundamentally different numerical methods, one based on solving the nonlinear least 

squares (NLS) data fitting problem by a Levenberg-Marquardt algorithm, and the 

other based on solving a linear first-kind Fredholm integral equation (FIE) by means 

of a non-negativity constrained linear least squares problem. We conclude the 

following: 

 

1) Parameters derived using both models are statistically consistent with the 

expected value, given the spread in the data. The mean values themselves are 

on an average within ~1% of the expected values for both the models. Of the 

two data types, the decay form and the peak form, neither is clearly superior 

over the other in estimating parameters when fitting with the FIE or the NLS 

method, although there seems to be a slight tendency for the peak form to 

show smaller mean bias in our limited dataset. Furthermore, the two numerical 

methods are insensitive to whether the peak shape is obtained by only variable 

scaling of the intensity, or by variable scaling of both intensity and the time 

space (e.g., pseudo LM-OSL)  

 

2) Although both numerical methods tested here perform well, there is a 

suggestion that the NLS method is marginally better and relatively less 

sensitive to the noise in the data. However, as demonstrated here, if an 

appropriate rejection criterion is incorporated into the routine, then the FIE 

method has an advantage that it does not require user to define the number of 

components. The computation time was similar for the two methods. 

 

3) For the continuous–wave OSL (CW-OSL) measurements we conclude that the 

fitting of peak transformed data (i.e., pseudo LM-OSL) is more robust than the 

fitting of ‘true’ LM-OSL data. This is probably because, for the same 

parameters, the CW-OSL can be measured with a higher signal-to-noise ratio 

than in the corresponding LM-OSL. It should, however, be noted that CW-
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OSL data should be collected with high enough frequency so as to be able to 

resolve the fastest decaying component in the signal to obtain the best fit of 

multi-exponential OSL data. 

 

Based on the above observations, a possible recommendation for analysing 

multiexponential data could be fitting peak-transformed decaying OSL signal using 

the NLS approach. This algorithm is already implemented in many commercial types 

of software such as SigmaPlot (used here). 

 

ACKNOWLEDGEMENTS 

We are grateful to the three anonymous referees for making several useful 

recommendations which helped to improve the article. 

 

REFERENCES 

Agersnap, N., 1997. Dosimetry based on thermally and optically stimulated 

luminescence. Unpublished Ph.D. thesis, Niels Bohr Institute, University of 

Copenhagen. 

 

Ankjærgaard, C., Jain, M., Thomsen, K.J., Murray, A.S., (2010). Optimising the 

separation of quartz and feldspar optically stimulated luminescence using pulsed 

excitation. Radiation Measurements. 

 

Bailey, R.M., Smith, B.W., Rhodes, E.J., 1997. Partial bleaching and the decay form 

characteristics of quartz OSL. Radiation Measurements 27, 123-136. 

 

Bos, A.J.J., Wallinga, J., 2009a. Optically stimulated luminescence signals under 

various stimulation modes assuming first-order kinetics. Physical Review B 79, 

195118-1-12. 

 

Bos, A.J.J., Wallinga, J., 2009b. Analysis of the quartz OSL decay curve by 

differentiation. Radiation Measurements, doi:10.1016/j.radmeas.2009.02.005. 

 

Bulur, E., 2000. A simple transformation for converting CW-OSL curves to LM-OSL 

curves. Radiat. Meas., 32, 141-145.  



 23

 

Bulur, E., 1996. An alternative technique for optically stimulated luminescence (OSL) 

experiment. Radiation Measurement 26, 701-709. 

 

Bøtter-Jensen, L., McKeever, S.W.S., Wintle, A.G., 2003. Optically Stimulated 

Luminescence Dosimetry. Elsevier, Amsterdam, The Netherlands, ISBN: 0-444-

50684-5. 

 

Chithambo, M.L., Preusser, F., Ramseyer, K., Ogundare, F.O., 2007. Time-resolved 

luminescence of low sensitivity quartz from crystalline rocks. Radiation 

Measurements 42, 205-212. 

 

Chithambo, M.L., 2007. The analysis of time-resolved optically stimulated 

luminescence. I: Theoretical considerations. J.Phys. D.: Appl. Phys. 40, 1874-1879. 

 

Chithambo, M.L., and Galloway, R.B., 2000. A pulsed light-emitting-diode system 

for stimulation of luminescence. Meas. Sci. Technol., 11, 418-424. 

 

Fuller, W.A., 1996. Instroduction to statistical time series, 2nd edn., Wiley, New York. 

 

Golub, G.H. and Pereyra,V., 2003. Separable nonlinear least squares: the variable 

projection method and its applications. Inverse Problems, 19:R1-R26. 

 

Hansen, P.C., 1998. Rank-Deficient and Discrete Ill-Posed Problems: Numerical 

Aspects of Linear Inversion, SIAM, Philadelphia. 

 

Hansen, P.C., Nielsen, H.B., Ankjærgaard, C., Jain, M., 2009. Two exponential 

models for optically stimulated luminescence. In Pereyra, V. and Scherer, G. (Eds), 

Exponential Data Fitting and its Applications, Bentham eBooks (Accepted).  

 

Huntley, D.J., 2006. Thoughts arising from “Choi, Duller and Wintle: Analysis of 

quartz LM-OSL curves. Ancient TL 24, 9-20 (2006)”. Ancient TL 24, 69-70. 

 

Huntley, D.J., 2007. Response to Jain and Lindvold. Ancient TL 25, 76-80. 



 24

 

Istratov, A.A., Vyvenko, O.F., 1999. Exponential analysis in physical phenomena. 

Review of Scientific Instruments 70 (2), 1233-1257. 

 

Jain, M., Lindvold, L.R., 2007a. Blue light stimulation and linearly modulated 

optically stimulated luminescence. Ancient TL 25, 69-75. 

 

Jain, M., Lindvold, L.R., 2007b. Response to Huntley. Ancient TL 25, 80. 

 

Jain, M., Murray, A.S., Bøtter-Jensen, L., Wintle, A.G., 2005. A single-aliquot 

regenerative-dose method based on IR (1.49 eV) bleaching of the fast OSL 

component in quartz. Radiation Measurements 39, 309-318. 

 

Jain, M., Murray, A.S., Bøtter-Jensen, L., 2003. Characterisation of blue-light 

stimulated luminescence components in different quartz samples: implications for 

dose measurement. Radiation Measurement 37, 441-449. 

 

Lapp, T., Jain, M., Ankjærgaard, C., Pirzel, L., 2009. Development of pulsed 

stimulation and photon timer attachments to the Risø TL/OSL reader. Radiat. Meas., 

doi:10.1016/j.radmeas.2009.01.012. 

 

Lawson, C.L., and Hanson, R.J., 1995. Solving Least Squares Problems, Classics in 

Applied Mathematics 15, SIAM, Philadelphia. 

 

Pagonis, V., Mian S.M., Chithambo, M.L., Christensen, E., Barnold C. 2009. 

Experimental and modelling study of pulsed optically stimulated luminescence in 

quartz, marble and beta irradiated salt. J. Phys. D.: Appl. Phys. 42, 1-12. 

 

Pagonis, V., Ankjærgaard, C., Murray, A.S., Jain, M., Chen, R., Lawless, J., Greilich, 

S., (Submitted). Modelling the thermal quenching mechanism in quartz based on 

time-resolved optically stimulated luminescence. Submitted to Journal of 

Luminescence. 

 



 25

Pereyra, V. and Scherer, G. (Eds.), 2009. Exponential Data Fitting and its 

Applications. Bentham eBooks. 

 

Poolton, N.R.J., Bøtter-Jensen, L., Andersen, C.E., Jain, M., Murray, A.S., Malins, 

A.E.R., Quinn, F.M., 2003. Measuring modulated luminescence using non-modulated 

stimulation: ramping the sample period. Radiation Measurements 37, 639-645. 

 

Singarayer, J.S., Bailey, R.M., 2003. Further investigations of the quartz optically 

stimulated luminescence components using linear modulation. Radiation 

Measurements 37, 451-458. 

 

Smith, B.W., Rhodes, E.J., 1994. Charge movement in quartz and their relevance to 

optical dating. Radiation Measurements 23, 329-333. 

 

Wallinga, J., Bos, A.J.J., Duller, G.A.T., 2008. On the separation of quartz OSL 

signal components using different stimulation modes. Radiation Measurements 43, 

742-747. 

 

Whitley, V.H., McKeever, S.W.S., 2001. Linearly modulated photoconductivity and 

linearly modulated optically stimulated luminescence measurements on Al2O3:C. 

Journal of Applied Physics 90 (12), 6073-6083. 

 

Wintle, A.G., 1997. Luminescence dating: laboratory procedures and protocols. 

Radiat. Meas. 27, 769-817. 

 

TABLE CAPTIONS 

Table 1 

Amplitude and decay constant parameters obtained from fitting an artificial data set 

with an ISBR of 600 with 2, 3, and 4 components (columns 1-3) using the nonlinear 

least squares algorithm in SigmaPlot. The uncertainties in the parameter values quoted 

in these columns are internal error estimates calculated by SigmaPlot. In column 4, 

the average parameters are calculated from fittings of five different realisations of TR-

OSL curves for the identical parameters, noise distribution, and an ISBR of 600. The 

quoted uncertainties are one σ (standard deviation).  
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Table 2 

Number of OSL curves with over-fitting by either one, two, or three exponential 

components, when using the Fredholm integral equation model (Section 5). The 

numbers are given before and after the use of the rejection criterion (RC). 

 

Table 3 

Summary of the mean (% mean bias) and standard deviations for the parameters 

presented in Figs. 5, 6, and 8 based  on data for all the ISBR values for the FIE 

method using decay (column 2) and peak (column 3) data, and for the NLS method 

using decay (column 4) and peak (column 5) data. The % mean bias has been defined 

as (expected value – measured value / expected value)*100. Columns 6 lists the 

values for the ‘true’ LM-OSL parameters, and these are to be compared to the values 

pseudo-LM-OSL in column 5. For each of the six parameters, the mean and standard 

deviation were calculated using the number of data sets given in row 1, for the FIE 

method, this number is less than 50 due to imperfect removal of components by the 

rejection criteria (see Table 2). Note that the values in columns 3 and 5 represent both 

the simple peak transformation parameters as well as the pseudo LM-OSL parameters 

as these are identical. 

 

Table 4 

Amplitude and decay constant parameters from fitting quartz TR-OSL from a 30 Gy 

dose (columns 1-2) and TR-OSL from a 30 Gy dose and attenuating the signal by a 

factor of 16 (columns 3-4). 

 

FIGURE CAPTIONS 

Figure 1 

(a) Distribution of dark counts measured during the off-time in 0.4 µs bins. The data 

was measured for 22 s with an on-time of 50 µs and an off-time of 500 µs. The noise 

distribution has been fitted to a Poisson distribution with a mean value of 5.7 cts⋅(0.4 

µs)-1 shown as the black line. (b) The distribution of photon counts from the blue 

LEDs. A Neutral Density filter was inserted underneath the diodes to reduce the light 

level significantly and data was collected for 22 s during an on-time of 500 µs. The 
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diode noise distribution has been fitted to a Poisson distribution with a mean value of 

14.8 cts.(0.4 µs)-1 shown as the black line. (c) Time-resolved OSL curve calculated 

from the expression: 4500⋅exp(-t/2) + 22500⋅exp(-t/33) + 3000⋅exp(-t/80), with t  

from 0 to 816 in steps of 0.4 µs (grey line) and the artificial data produced from the 

same curve including Poisson noise (both for the signal and the background dark 

counts) for an initial-signal to noise ratio (ISBR) of 600 (black line). Note that the 

average background level 
_
b  (the average of the last 10 points) has been subtracted. 

Left inset: A close view of the initial 20 µs, right inset: A close view of the last 600 µs. 

(d) The difference between the exact curve (grey line in (a)) and the curve resulting 

after the addition of noise (black line in (a)).  

 

Figure 2 

Artificial decay data from Equation 6 with an ISBR of 15 (black line), together with 

the same data transformed into peak form by using the simple transformation in 

Equation 9 (grey line) and transformed into pseudo LM-OSL using Equation 10 

(dotted black line). Note that the decay data and the peak data belong to different 

abscissa axes, and that the decay data and the simple transformed data share the same 

linear time domain t, while the pseudo LM-OSL data has a nonlinear time domain u. 

 

Figure 3 

A plot of the amplitude density function a(λ) given in Equation 13 vs. the parameter 

variable, λ, for a set of artificial data y(t) with three components. The artificial data yj 

and its three components )exp( jii tA λ−  are shown inset, see Equation 6.  

 

Figure 4 

Artificial decay data with an ISBR of 600 are shown together with (a) two, (b) three, 

and (c) four component fits to the data. The insets show the same on the log intensity 

scale. (d)-(f) show the corresponding residuals from the fits. 

 

Figure 5 

Results from fitting decay-form data (grey filled circles), simple transformed peak 

data (open black circles), and pseudo LM-OSL data (black diamonds) using the NLS 

method. In each plot the dashed line indicates the known parameter value, and each 
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point is the average over five parameter values for the same ISBR. The left column 

shows the results for the amplitudes (a) A1 = 7 000 cts.(0.4 µs)-1, (b) A 2 = 20 000 

cts.(0.4 µs)-1, and (c) A 3 = 3 000 cts.(0.4 µs)-1. The right column shows the results for 

the decay constants (d) λ1 = 0.5 µs-1, (e) λ2 = 0.03 µs-1, and (f) λ3 = 0.0125 µs-1 

 

Figure 6 

Results from fitting decay-form data (grey filled circles), simple transformed peak 

data (open black circles), and pseudo LM-OSL data (black diamonds) using the FIE 

model. See Fig. 5 for figure description. The results from eight data sets were 

discarded (five for decay-form and three for peak-form) as a result of inadequate 

removal of false components by the rejection criterion (see Section 5). 

 

Figure 7 

Pseudo LM-OSL (black curve) and ‘true’ LM-OSL (grey curve) as calculated from 

Equations 8 and 18 respectively, for (a) the lowest noise-level with an ISBR of 6000 

and (b) and the highest noise-level with an ISBR of 6. The parameters are the same as 

given in the caption of Fig. 1. 

 

Figure 8 

Results from fitting pseudo LM-OSL data (grey filled circles) and ‘true’ LM-OSL 

data (filled black circles) using the NLS method. In each plot the dashed line indicates 

the known parameter value, and each point is the average over five parameter values 

for the same ISBR. The left column shows the results for the amplitudes (a) A1 = 7 

000 cts.(0.4 µs)-1, (b) A 2 = 20 000 cts.(0.4 µs)-1, and (c) A 3 = 3 000 cts.(0.4 µs)-1. The 

right column shows the results for the decay parameters (d) λ1 = 0.5 µs-1, (e) λ2 = 0.03 

µs-1, and (f) λ3 = 0.0125 µs-1. 

 

Figure 9 

TR-OSL data measured from a colluvium quartz sample from Tanzania. The sample 

was given a dose of 30 Gy and was heated to 260oC for 10 s prior to blue LED 

stimulation at 125oC for 22 s. The on-time was 50 µs and the off-time was 500 µs. 

Prior to fitting, the data was transformed into a peak shape using Equation 7 (grey 

curve). The experiment was then repeated, but with a neutral density filter inserted 



 29

beneath the PMT to attenuate the incoming light from the sample (black curve) by a 

factor of 16. The inset shows the curves on log-scale. (b) residual curves for a one-

component fit of the 30 Gy data (grey curve) and the attenuated 30 Gy data (black 

curve) using the NLS method, (c) residual curves for a two-component fit of the two 

data sets, and (d) residual curves for a three-component fit of the curves for the same 

notation as in (b).  
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Figure 3
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Figure 4
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Figure 5
A1 = 7,000 cts.(0.4 µs)-1
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Figure 6
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Figure 7
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Figure 8 Α1 = 7,000 cts.(0.4 µs)-1
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Figure 9
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# components in 
LM fit

2 3 4 3 (average)

A1 = 7000 cts.(0.4 
µs)-1

7439 ± 61 6750 ± 29 6750 ± 29 7046 ± 150

A2 = 20,000 
cts.(0.4 µs)-1

21,950 ± 31 20,100 ± 112 20,100 ± 118 19,997 ± 189

A3 = 3000 cts.(0.4 
µs)-1

- 2899 ± 122 1449 ± 502 2994 ± 255

A4   cts.(0.4 µs)-1 - - 1450 ± 502 -

λ1 = 0.5000 µs-1 0.3554 ± 0.0056 0.4871 ± 0.0041 0.4871 ± 0.0041 0.5003 ± 0.0266

λ2 = 0.0300 µs-1 0.0252 ± 0.0001 0.0298 ± 0.0001 0.0298 ± 0.0001 0.0300 ± 0.0003

λ3 = 0.0125 µs-1 - 0.0124 ± 0.0002 0.0124 ± 0.0059 0.0125 ± 0.0003

λ4   µs-1 - - 0.0124 ± 0.0061 -

Table 1



Before RC After RC

No. extra 
components

Decay Peak Decay Peak

1 24 24 5 3

2 11 17 0 0

3 3 1 0 0

Table 2



5050504745# data sets used 
for mean and std

1.003 (-0.3)
± 3.9%

1.000 (0)
± 1.2%

1.001 (-0.1)
± 3.7%

1.007 (-0.7)
± 10.9%

0.998 (+0.2)
± 1.4%

1.006 (-0.6)
± 1.7%

NLS, decay
Mean (% bias)
± Rel St. Dev

0.998 (+0.2)
± 3.2%

0.999 (+0.1)
± 0.9%

1.001 (-0.1)
± 5.0%

0.995 (+0.5)
± 8.6%

1.000 (0)
± 1.1%

1.008 (-0.8)
± 3.7%

NLS, peak
Mean (% bias)
± Rel St. Dev

0.997 (+0.3)
± 3.6%

0.995 (+0.5)
± 1.2%

1.043 (-4.3)
± 8.2%

0.967 (+3.3)
± 10.8%

1.005 (-0.5)
± 1.5%

0.995 (+0.5)
± 7.8%

FIE, peak
Mean (% bias)
± Rel St. Dev

0.986 (+1.4)
± 2.9%

0.991 (+0.9)
± 1.0%

0.994 (+0.6)
± 6.2%

0.945 (+5.5)
± 7.8%

1.003 (-0.3)
± 1.2%

0.978 (+2.2)
± 5.2%

FIE, decay
Mean (% bias)
± Rel St. Dev

1.000 (0)
± 6.0%

1.000 (0)
± 1.5%

0.994 (+0.6)
± 7.4%

1.003 (-0.3)
± 15.3%

0.999 (+0.1)
± 2.3%

0.997 (+0.3)
± 4.8%

NLS, ‘true’ peak
Mean (% bias)
± Rel St. Dev

Fitting approach

A1 = 7000 
cts.(0.4 µs)-1

A2 = 20,000 
cts.(0.4 µs)-1

A3 = 3000 
cts.(0.4 µs)-1

λ1 = 0.5000 µs-1

λ2 = 0.0300 µs-1

λ3 = 0.0125 µs-1

Table 3



30 Gy 30 Gy, attenuated

Amplitude, Ai

cts.(0.4 µs)-1

Decay constant, 
λi, µs-1

Amplitude, Ai

cts.(0.4 µs)-1

Decay constant, 
λi, µs-1

36,959 0.0259 2,219 0.0267

685 0.0097 65 0.0093

Table 4
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