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Abstract. We investigate the polarization of Bloch waves in two dimensional
piezoelectric phononic crystals and phononic crystal waveguides managed therein. It is
found that in addition to the strong coupling induced for waves polarized in the plane
of the periodic structuration, a weaker but non negligible coupling of polarization
components originates from material anisotropy. Numerical illustrations are given for
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1. introduction

Phononic crystals are periodic structures that can give rise to complete band gaps (BG)

for acoustic waves in fluids or elastic waves (acoustic phonons) in solids [1, 2], in the very

same way that photonic crystals prohibit the propagation of optical or electromagnetic

waves [3, 4]. The dispersion of the bands composing the band structure, the frequency

position and the width of the band gaps are conditioned by the contrast between material

constants of the constituent media on the one hand, and by the filling fraction, the

geometrical shape of the inclusions and the lattice topology on the other hand. Within

a frequency band gap, a phononic crystal acts as a mirror for incident waves, as a result

of destructive interferences between waves scattered on the periodic inclusions. Thanks

to the wide operating frequency range of acoustic and elastic waves, complete band

gaps have been demonstrated theoretically and experimentally at different scales, for

bulk waves [2, 5, 6] and surface waves [7, 8, 9, 10, 11], as well as for phononic crystal

slabs [12, 13, 14]. Phononic crystals also allow for the obtaining of confined states

or guided waves through the introduction of point or linear defects [15, 16, 17, 18].

Phononic waveguides, resonators and stubs have been proposed as possible ways to

create filtering and multiplexing structures based on the coupling of resonance and

waveguiding phenomena [19, 20, 21].

In the case of acoustic waves in fluids, because of the single polarization involved

(longitudinal), the band structure in the perfect crystal case and the transmission

coefficient in the waveguide case are usually considered sufficient to characterize a

phononic crystal. But for elastic waves propagating in a solid, both transverse

and longitudinal polarizations exist and are possibly coupled owing to the periodic

structuration. Taking the polarization state into account in the analysis of band

diagrams is hence compulsory to show a complete picture of elastic wave propagation.

This has for example been shown by a previous study dedicated to polarization effects

in a perfect 2D phononic crystal made of air inclusions in an epoxy matrix [22]. This

work highlighted the influence of the filling fraction on the coupling between in-plane

transverse and longitudinal polarizations, where in-plane refers to the plane normal

to the inclusion axis. The in-plane polarization components were found to be more

coupled for higher filling fractions and a continuous variation of the polarization when

the wavevector sweeps the first Brillouin zone was reported. This continuity of the

elastic displacement fields along band structures has also been investigated in order to

study the repulsion level between different branches in the band diagram for both one-

[23] or two- [24] dimensional phononic crystals. We are not aware of similar works for

phononic crystals involving anisotropic materials or phononic waveguides, though the

dependence of the guided waves dispersion on a change in the central inclusion radius

or in the waveguide width has been reported recently [25, 26]. With the configurations

proposed in these works, some branches initially located outside the band gap in the

case of the perfect phononic crystal can enter or exit the band gap when the dimensions

of the defect vary. The displacement field of some confined modes was reported as well
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Figure 1. (a) 2D piezoelectric phononic crystal consisting of a two-dimensional square-
lattice array of circular cylindrical holes in lithium niobate. (b) Corresponding first
Brillouin zone.

and it was observed that following the same band as the Bloch wavevector varies in the

first Brillouin zone, the polarization of the displacement field can change partially or

totally. A detailed investigation of this phenomenon however remains to be performed.

In this paper, we first investigate the consequences of material anisotropy on the

coupling of polarization components in two-dimensional phononic crystals. Of particular

relevance is the combination of the effects of material anisotropy and of the periodic

structuration. It is well known that a two-dimensional periodic structuration introduces

a coupling for the in-plane polarization components, while the out-of-plane component

remains decoupled. We here show that material anisotropy can result in the coupling of

all polarization components. For illustration purposes, we numerically investigate the

evolution of the polarization of Bloch waves in a two-dimensional piezoelectric phononic

crystal composed of a square-lattice array of holes in lithium niobate (LiNbO3). As

a piezoelectric material, LiNbO3 is anisotropic for elastic wave propagation, so that

in general the two shear and the longitudinal components of the polarization are not

decoupled. The coupling induced by the anisotropy of LiNbO3 is rather weak compared

to the coupling induced by the periodic structuration, but will be shown not to be

negligible. Along our analysis, we first concentrate on the perfectly periodic phononic

crystal. The plane wave expansion (PWE) method combined with an energy balance

criterion are used to compute band structures displaying additional information related

to the weighting of each polarization. We underline cases where polarizations are

exchanged between interacting bands or conversely when this exchange does not happen

upon band crossing. The study is then extended to the case of a phononic waveguide

obtained by inserting a line defect in the initial phononic crystal thanks to the super-cell

technique.

2. Polarization coupling

In this section, we investigate the influence of the anisotropy on the coupling of

polarization components in phononic crystals. The considered geometry, and the

definition of axes and Brillouin zone are given in Figure 1. The following analysis as well
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as the computation of band structures and modal distributions in the next sections are

based on the PWE method. The PWE method is based on a direct application of the

Bloch-Floquet theorem to the representation of Bloch waves as the product of a periodic

function, given by a discrete sum over Fourier harmonics in the reciprocal-lattice space,

with a time-harmonic exponential function with frequency ω and Bloch wave vector k.

For instance, the displacements in the x direction read

ux(r) =

(
N∑

n=1

Uxn exp(−ıGnr) exp(−ık.r)

)
, (1)

where the Gn are the reciprocal lattice vectors and ı2 = −1. Similar expressions hold for

uy and uz. We specifically use the formulation by Wilm et al. for bulk and plate waves

in piezoelectric media [27], which was later extended to surface waves in anisotropic and

piezoelectric media [9, 10]. The representation of hollow inclusions follows the procedure

exposed in Ref. [10]. The secular equation (Equation 5 of Ref. [10]),

ω2R̃Ũ =

( ∑

i,j=1,3

ΓiÃijΓj

)
Ũ , (2)

defines an eigenvalue problem for the frequency as a function of the wave vector and is

used to obtain band structures. In this expression, Ũ is a vector gathering the Fourier

coefficients of the three displacements and the electric potential, and the matrices Γi,

Ãij, and R̃ contain 4N×4N Fourier coefficients. The detailed expressions of the different

matrices will be useful to investigate the incidence of anisotropy on Bloch waves and

their polarization. These matrices read

Ãij =




Aij0 AijG1−G2 . . . AijG1−GN

AijG2−G1 Aij0 . . . AijG2−GN

...
...

. . .
...

AijGN−G1 AijGN−G2 . . . Aij0


 , (3)

Γi =




(ki + G1
i )Id 0

(ki + G2
i )Id

. . .

0 (ki + GN
i )Id


 , (4)

R̃ =




ρ0Ĩ ρG1−G2 Ĩ . . . ρG1−GN Ĩ

ρG2−G1 Ĩ ρ0Ĩ . . . ρG2−GN Ĩ
...

...
. . .

...

ρGN−G1 Ĩ ρGN−G2 Ĩ . . . ρ0Ĩ


 , (5)

with AilG(j, k) = cijklG, AilG(j, 4) = elijG, AilG(4, k) = eiklG, AilG(4, 4) = −εilG. Id

is the 4 × 4 identity matrix and Ĩ = Id but for Ĩ(4, 4) = 0. cijkl, eijk, and εij are the

elastic, piezoelectric and dielectric tensors, respectively. The Γi and R̃ matrices are each

formed of N2 4 × 4 diagonal blocks. Material anisotropy enters the Ãij matrices only,

and the structure and symmetries of these matrices are directly dependent on those of
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the material tensors cijkl, eijk and εij. In turn, the influence of anisotropy in the secular

equation (2) is contained in the matrix

Ã =
∑

i,j=1,3

ΓiÃijΓj (6)

appearing in the right-hand side. Ã retains the block structure of the Ãij matrices.

More precisely, the (m, n)-th sub-block reads

ÃGm−Gn =
∑

i,j=1,3

(ki + Gm
i )(kj + Gn

j )AijGm−Gn. (7)

The above expressions can be further detailed for a two-dimensional phononic

crystal. In this case, the summation i, j = 1, 2 and using the contracted notation

for tensors we arrive at

A11G =




c11G c16G c15G e11G

c61G c66G c65G e16G

c51G c56G c55G e15G

e11G e16G e15G −ε11G


 , A12G =




c16G c12G c14G e21G

c66G c62G c64G e26G

c56G c52G c54G e25G

e16G e12G e14G −ε12G


 ,

A21G =




c61G c66G c65G e16G

c21G c26G c25G e12G

c41G c46G c45G e14G

e21G e26G e25G −ε21G


 , A22G =




c66G c62G c64G e26G

c26G c22G c24G e22G

c46G c42G c44G e24G

e26G e22G e24G −ε22G


 .

(8)

In the absence of any structuration, i.e for a homogeneous material, the summations

on the reciprocal lattice vectors would be limited to G = 0, and the matrix Ã would

be formally equivalent to the Christoffel tensor [28]. In this case, propagation in the

x direction would only involve the A110 matrix (resp. A220 for propagation in the y

direction). The periodicity of the phononic crystal is manifested by non zero Gm and

Gn components for (m, n) 6= 0 and causes a mixing of matrix elements in Equation (7),

whatever the propagation direction k.

In the case of general anisotropic media, inspection of the block matrices in

Equation (8) reveals which polarization components are coupled. Such an analysis

is straightforward but should be conducted for every crystallographic symmetry class

and every material orientation considered. As an example, we have considered two

cases in Table 1. In the case of materials with isotropic or cubic crystalline symmetry

(e.g., silicon), the periodic structuration results in non-zero off-diagonal terms coupling

displacements ux and uy, but the out-of-plane displacement uz and the electric potential

φ are uncoupled. This directly explains the coupling between in-plane polarization

components and the decoupling of the out-of-plane polarization component in isotropic

2D phononic crystals. The case of materials with trigonal 3m symmetry (e.g., lithium

niobate) is different. In the homogeneous material, propagation along the x and y

directions occurs according either to a non-piezoelectrically coupled wave (decoupled ux

polarization), or to piezoelectrically coupled waves (coupled uy, uz, and φ polarization).

With the additional consideration of a periodic structuration in the (x, y) plane, all

polarization components get coupled. This analysis, of course, is based only on the
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Table 1. Shapes of the Aij matrices in the case of materials with isotropic, cubic, and
trigonal 3m crystalline symmetry. Orientation along the principal crystallographic
axes is assumed. Zero elements are indicated by dots (.) while non-zero values are
indicated by circled crosses (⊗).

Symmetry A11G or A22G A12G or A21G ÃGm−Gn

Isotropic or cubic

(e.g., silicon)




⊗ . . .

. ⊗ . .

. . ⊗ .

. . . ⊗







. ⊗ . .

⊗ . . .

. . . .

. . . .







⊗ ⊗ . .

⊗ ⊗ . .

. . ⊗ .

. . . ⊗




Trigonal 3m

(e.g., lithium niobate)




⊗ . . .

. ⊗ ⊗ ⊗

. ⊗ ⊗ ⊗

. ⊗ ⊗ ⊗







. ⊗ ⊗ ⊗
⊗ . . .

⊗ . . .

⊗ . . .







⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗




nullity or not of matrix elements, and the strength of the coupling induced by the

periodic structuration and material anisotropy depends quantitatively on the actual

magnitude of the matrix elements. Numerical illustrations are given in the subsequent

Sections in the case of lithium niobate.

3. Two-dimensional piezoelectric phononic crystal

We consider in the following a two-dimensional piezoelectric phononic crystal made

of a square-lattice array of circular cylindrical holes in LiNbO3. The crystallographic

orientation of LiNbO3 is chosen to be the Z-cut, so that the Z crystallographic axis

is parallel to the z axis of the reference frame of Figure 1a. The filling fraction is

64%. Theoretical and experimental properties of such a phononic crystal have been

investigated before, and the existence of a complete band gap for both bulk and surface

waves has been demonstrated [10, 11, 29]. Here we further consider the evolution of the

polarization of Bloch waves.

The two dimensional Fourier expansions are truncated to the 36 first harmonics in

this section, as a result of a compromise between convergence and computation time,

but also to obtain band structures that are directly comparable with those obtained

for waveguides with the super-cell technique in the next section. With this choice,

convergence in terms of frequencies is within a few per cent of the high number of

harmonics limit.

In order to avoid possible confusions, we use throughout this paper the displacement

field components ux, uy, and uz to represent polarizations. In this way, we avoid using

the terminology of longitudinal, horizontal and vertical shear polarizations, which are

dependent on the direction of propagation. In the band structures, polarization is

represented by three positive numbers summing to unity. For instance, the amount of
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Figure 2. Band structure of the phononic crystal depicted in Figure 1a. The complete
band gap is indicated by the grayed region. The three band structures depict the same
dispersion relations but the coloring of the bands shows the amount of polarization
along (a) the x axis, (b) the y axis and (c) the z axis. Points A, B, C, D, E, F and G
mark the (k, ω) positions of the first seven intersections of repelling branches.

polarization along the x direction is given by

p2
x =

∫
|ux|2dr∫

(|ux|2 + |uy|2 + |uz|2)dr
, (9)

with the integral taken over the unit-cell. Similar expressions hold for the amounts of

polarization p2
y and p2

z measured along the y and the z axes, respectively.

Figure 2 displays the band structure giving the dispersion relation for elastic waves

propagating in the phononic crystal of Figure 1a. The structure shows a complete band

gap with a 33% fractional bandwidth. The three band structures actually display the



Polarization state and level repulsion in two-dimensional phononic crystals and waveguides in the presence of material anisotropy8

Figure 3. Enlarged dispersion relations in Figure 2c in the vicinity of repelling bands
near (a) point A, (b) point B, (c) point C and D, (d) point E, (e) point F and (f) point
G.

same ω(k) dispersion relations, but with the additional information of the amounts of

polarization p2
x, p2

y, and p2
z in Fig. 2a, Fig. 2b and Fig. 2c, respectively.

It can be observed in Figure 2 that the bands do not in general possess a pure

polarization, except for some portions of them. The coupling of the in-plane polarization

components (ux and uy), however, appears much stronger than the coupling with the out-

of-plane component (uz), especially above the complete band gap. This observation is

fully consistent with the results of the previous Section. If it were not for the anisotropy

of LiNbO3, the two-dimensional periodic structuration would introduce a strong coupling

of the in-plane polarization components, but the out-of-plane component would remain

completely decoupled. The coupling between in-plane polarization components is

especially strong in Fig. 2 for propagation directions that encompass the M point of

the first Brillouin zone. The comparatively weaker coupling of all three polarization

components is caused by material anisotropy.

As a general rule, it can be observed that the polarization varies continuously as the

Bloch wave vector sweeps the first Brillouin zone. There are, however, intriguing points

in the band structure where bands cross without interacting or conversely interact and

repel each other. Points at which repelling between bands occurs have been labeled

A to G in Figure 2. Figure 3 displays closer views at these seven points, with the

color indicating the p2
z component of the polarization. Each couple of repelling bands

is composed of a mostly in-plane polarized band and of a mostly out-of-plane polarized

band, which leads us to the conclusion that repelling occurs as a result of the coupling

provided by the anisotropy of LiNbO3. It can be observed that when bands repel, they
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Figure 4. Spatial distribution of the polarization components ux, uy and uz of the
displacement field for points before and after the repulsion in point C.

exchange their polarization state, so that the polarization remains a continuous function

of the wave vector k.

Two different cases are further observed. Repelling at points C, D, F and G

introduces a local band gap, while, conversely, repelling at points A, B and E does

not introduce any. We observe that the occurrence of a local band gap is conditioned

by the two repelling bands being either on opposite sides of a horizontal line passing

at the repelling point (presence of a local BG), or on the same side (absence of a local

BG).

Figure 4 illustrates in more detail how the polarization is transferred between the

two repelling bands at point C. At the left of point C, the upper band is mostly polarized

along z, while the lower band is mostly polarized in-plane and rather along the y axis.

After repelling, the respective polarizations have been exchanged from out-of-plane to

in-plane, and vice versa.

4. Piezoelectric phononic crystal waveguide

In this Section, we consider a phononic crystal waveguide managed by removing a

row of holes from the phononic crystal along the x direction and investigate how the

polarization and repelling properties obtained in the previous section for the perfectly

periodic phononic crystal are modified. The PWE method can be used to obtain the

dispersion of guided waves for frequencies that fall within the complete band gap, using

the super-cell technique [25, 26]. In practice, the considered unit-cell shown in Figure 5

is made 7 times longer along the y direction, as compared to the unit-cell in Figure 2, and

thus includes three holes on both sides of the central guiding section. The holes have the

same filling fraction as in the previous section and the number of Fourier harmonics has

been increased by a factor of 6 in the y direction to achieve convergence conditions similar

to those obtained in the previous section. Because of periodicity in the computations,
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Figure 5. Phononic crystal waveguide created by removing a row of holes from the
phononic crystal along the x direction. The framed box shows the unit-cell used for
super-cell computations.

six holes separate neighboring waveguides. We have checked that this separation is

actually sufficient to isolate the periodically repeated waveguides by computing the

band structure along the ΓY direction of the first Brillouin zone and verifying that only

flat bands are obtained within the complete band gap (if we had obtained dispersion

then this would have been an indication of coupling between adjacent waveguides).

Figure 6 displays the dispersion relations of Bloch waves guided by the structure in

Figure 5 and propagating along the x direction for frequencies within the complete

phononic band gap. As for the band structure of the perfectly periodic phononic

crystal depicted in Figure 2, the band structure for guided Bloch waves is repeated

three times with the additional information of the amounts of polarization p2
x, p2

y, and

p2
z in Figures 6a, 6b, and 6c, respectively. Eight different bands are apparent and are

numbered sequentially. Bands 1 and 4 are mostly polarized in-plane and repel midways

between the Γ and the X points. Bands 2 and 6 are also mostly polarized in-plane.

For all these bands, the distribution between in-plane components px and py does not

remain constant as the wavevector varies from the Γ to the X points. Band 3 is purely

polarized out-of-plane (vertical shear wave), while band 8 is mostly polarized out-of-

plane. The cases of bands 5 and 7 are more intriguing, since these two bands are

respectively mostly polarized in-plane and out-of-plane before point I and J where they

repel, create a local band gap, and abruptly exchange their polarization state. The

mechanism for the coupling between these two bands is made possible thanks to the

anisotropy of LiNbO3, similarly to what was discussed in Section II.

Figure 7 illustrates how polarization transfer occurs at the repelling of bands 5 and

7. We have chosen to show the modulus of the real part of the displacements ux. It

can be observed that the distribution of ux at point K on band 7 is transferred without

almost any alteration to point J on band 5. At the wavevector for which the bands

are the closest, i.e. at points I and L, the modal distributions are very similar. In the

absence of anisotropy, the repelling point would have been replaced by a crossing of the

two bands, and points H and M would have been on the same band (similarly, points J
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Figure 6. Band structure along the ΓX direction for the phononic waveguide displayed
in Figure 5, showing the dispersion relation for guided Bloch waves. The band structure
is repeated three times with the information of the amount of polarization (a) p2

x, (b)
p2

y, and (c) p2
z.

and K would have been on the same band).

5. Conclusion

In summary, we have investigated the polarization of Bloch waves in a two dimensional

piezoelectric phononic crystal and a phononic crystal waveguide managed inside it. By

examining the structure of the matrices involved in the secular equation and by studying

band structures, it was found that in addition to the strong coupling induced for waves

polarized in the plane of the periodic structuration, a weaker but non negligible coupling

of all polarization components originates from material anisotropy. As a consequence,

when a band mostly polarized in-plane gets close to a band mostly polarized out-
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Figure 7. Spatial distribution of the modulus of the real part of the displacements
ux at the repelling of bands 5 and 7, shown for the six points H to M indicated in
Figure 6. Points H, I, and J are placed along band 5 before, at and after the repelling
point, respectively. Points K, L and M are similarly placed along band 7.

of-plane, a phenomenon of repelling can occur between them that in some instances

introduces a local band gap. This interaction is accompanied by a transfer of the

polarization state from one band to the other. The findings in this paper illustrate

that when anisotropic materials are involved, dispersion relations for Bloch waves in

phononic crystals in the form ω(k) do not give a complete picture of wave propagation

and must be supplemented with the dependence of the polarization on the wavevector.
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