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Abstract

It is shown that Steenbeck’s principle of minimum power, or voltage, for dis-
charges with fixed current is a not a corollary of the principle of minimum entropy
production, in contrast to what is frequently assumed; besides, the latter princi-
ple itself does not provide a reasonable approximation in gas discharge physics.
Similarly, Steenbeck’s principle is not a corollary of mathematical models of gas dis-
charges. Hence, this principle contradicts the mathematical models. A methodically
correct evaluation of the error caused by the use of Steenbeck’s principle requires a
comparison of a solution obtained with the use of this principle with an exact solu-
tion to the same problem, rather than with experimental results or results deemed
reasonable from the point of view of common sense. Such comparison is performed
for two examples from the theory of a cylindrical arc column. The examples show
that the error incurred by the usage of Steenbeck’s principle is uncontrollable and
may be unacceptably high.

1 Introduction

In 1932, Max Steenbeck proposed [1] that parameters of a current-controlled cylindrical
arc discharge, such as the arc temperature, vary in a way that the axial electric field
in the arc attains a minimum value. This proposal attracted a lot of attention in the
literature and became known as Steenbeck’s minimum principle. Brief comments on
the history of this principle can be found in [2]. A special role in advancing Steenbeck’s
principle has been played by the work [3], where a conclusion was drawn that this principle
follows from the principle of minimum entropy production, well-known in non-equilibrium
thermodynamics.
Nowadays, Steenbeck’s principle of minimum power, or voltage, is broadly understood

as follows: states that are realized in gas discharges with fixed current are those that
require minimal power (voltage) for their maintenance. This principle has been extensively
invoked in investigations of many gas discharge phenomena, in particular cylindrical arcs
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[4], effect of normal current density on glow cathodes [5], cathode spots in arc discharges
[6]. Steenbeck’s principle has still been used in the literature, e.g., [7—20].
The present note is concerned with discussion of mathematical meaning of application

of Steenbeck’s principle in theoretical models of gas discharges and of errors incurred.
The outline of the paper is as follows. Section 2 is concerned with discussion of the
following questions: whether Steenbeck’s principle is a corollary of fundamental physical
laws; whether it can be proved for particular models of gas discharges; whether a lower
power (voltage) is an indication of stability of a particular mode of a discharge; what the
mathematical meaning of Steenbeck’s principle is. In section 3, a comparison of a solution
obtained with the use of this principle with an exact solution of the same problem is
shown for two examples from the theory of a cylindrical arc column, one of these example
being a simple analytical model and the other a wall-stabilized arc in air. Conclusions are
summarized in section 4. Appendix A is concerned with Gouy-Stodola theorem, which has
been employed in proofs of relation of Steenbeck’s principle with the principle of minimum
entropy production. The question whether the principle of minimum entropy production
provides a reasonable approximation in discharge physics is analyzed in Appendix B for
the example of a cylindrical arc.

2 General discussion

2.1 Is Steenbeck’s principle a corollary of fundamental physical
laws?

Most of the authors who make use of Steenbeck’s principle seem to believe that it is related
to laws of thermodynamics. This belief can be traced back to the work of Peters [3], who
concluded that Steenbeck’s principle for an LTE arc discharge follows from the principle of
minimum entropy production, well-known in non-equilibrium thermodynamics [21]. The
derivation [3] may be summarized as follows. The entropy production in the arc vessel
was expressed in terms of the electrical power supplied to the discharge by means of the
formula

P =
IU

Tw
, (1)

where I and U are the arc voltage and current and Tw is the temperature of walls of
the arc vessel. For convenience, a derivation of this formula is given in Appendix A.
Note that this formula represents a particular case of the Gouy-Stodola theorem, which
is well-known in applied thermodynamics (e.g., [22]).
According to the principle of minimum entropy production, the entropy production,

of all possible states of a system, attains a minimum value in the stationary state, i.e., in
a state that is governed by steady-state equations. From here the author [3] concluded,
invoking the Gouy-Stodola theorem, that the stationary state corresponds to the minimum
of the electrical power IU , which for discharges operated at constant I amounts to a
minimum of U .
Note, however, that the Gouy-Stodola theorem (1), being valid only for stationary

states, cannot be employed for evaluation of entropy production in states that are not
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stationary. Therefore, a transition from the principle of minimum entropy production
to the principle of minimum of power with the use of this theorem is unjustified, which
invalidates the reasoning [3]. The same is true for the reasoning of the works [16, 20], in
which an attempt was made to derive Steenbeck’s principle of minimum power from the
principle of maximum entropy production.
Note that Steenbeck’s principle is frequently applied to a set of stationary states, i.e.,

a state with a minimum voltage is sought among a family of stationary states with the
same discharge current. Then the Gouy-Stodola theorem is applicable to each of these
states and the application of Steenbeck’s principle is equivalent to finding a state with
a minimum entropy production. (An example of such situation is found in the channel
model of cylindrical arc; see section 3.1.) However, this procedure is not equivalent to
application of the principle of minimum entropy production as it is understood in non-
equilibrium thermodynamics [21]. The reason for this is as follows. If a family of different
stationary states exist at the same discharge current, then normally these states refer to
different discharge properties. Hence, a minimum in the Steenbeck procedure is sought
among stationary states of different systems, while in the principle of minimum entropy
production a minimum is sought among all possible states of the same system and these
possible states are not stationary, i.e., do not satisfy steady-state equations.
Of course, there is also a serious problem concerning the principle of minimum entropy

production itself: for continuous systems, this principle may be derived from laws of
thermodynamics only in certain very special cases [21], and a question arises whether this
principle provides a reasonable approximation in gas discharge physics. This question is
studied in Appendix B for the example of a cylindrical arc and a negative answer is found.
Thus, Steenbeck’s principle cannot be derived from (i.e., is not a corollary of) laws

of thermodynamics or, for that matter, of any other fundamental physical law, being in
this respect fundamentally different from well-known variational principles such as the
principle of least action in mechanics or the Fermat principle in geometrical optics.

2.2 Can Steenbeck’s principle be proved for particular models
of gas discharges?

Although Steenbeck’s principle is not a corollary of fundamental physical laws, one still
could think of proving it for a particular situation on the basis of a particular mathemat-
ical model describing the discharge being considered. That is, one should formulate an
appropriate mathematical model of the discharge which will include all the relevant differ-
ential (or integrodifferential) equations supplemented with necessary boundary conditions,
and then to try to derive an inequality having the meaning of a principle of minimum
power under some constraints or other. However, no accurate derivation of a principle
of minimum power from a meaningful model of a gas discharge is known. On the other
hand, there are counterexamples; see, e.g., section 3 below. One should presume therefore
that Steenbeck’s principle is not a corollary of mathematical models of gas discharges.
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2.3 Is a lower power (voltage) indication of stability?

Some authors assume, on the basis of arguments stemming from Steenbeck’s principle
of minimum voltage, that if different modes of discharge are possible at the same dis-
charge current, the mode with a lower voltage drop is the preferred (stable) one. The
incorrectness of such point of view is immediately clear from the well-known experimental
fact that transitions between different modes are frequently accompanied by hysteresis.
It fact, stability of different modes, as predicted by an accurate linear stability theory,
has nothing to do with which one of them operates at a lower voltage; see, for example,
discussion of hysteresis occurring in transitions between diffuse and spot modes of current
transfer to cathodes of high-pressure arc discharges in Section 3.4.2 of review [23].

2.4 What is mathematical meaning of Steenbeck’s principle?

Given that Steenbeck’s principle is not a corollary of mathematical models of gas dis-
charges, the mathematical meaning of any approach making use of this principle amounts
to the following: one or more equations describing the discharge physics are discarded (or
not invoked from the very beginning) and replaced by an unjustified relation.
The same idea may be formulated in even stronger terms. If a complete mathematical

model, which includes all relevant equations and boundary conditions, is supplemented
by an additional relation, then two cases are possible: either this relation conforms to the
model, i.e., represents its corollary, or it contradicts the model. Steenbeck’s principle is not
a corollary of mathematical models of gas discharges; therefore this principle contradicts
mathematical models.
Of course, there are many arguments against legitimacy of application of such proce-

dures not only in theoretical physics but in applied physics as well. An extreme point
of view is that the introduction of an arbitrary relationship, the only criterion being an
agreement of results with common sense and/or the experiment, is no better than fitting
experimental results by an arbitrary formula. A strong argument against the usage of
Steenbeck’s principle is that in most cases it can be implemented in many different ways
(which is a consequence of it not being a rigorous variational principle), therefore any
subsequent researcher tends to implement Steenbeck’s principle in his own way and his
results are different from those obtained by his predecessors in the same problem.
However, Steenbeck’s principle (or principle of minimum or maximum entropy pro-

duction) is still in use in gas discharge physics, and the reasons being invoked are, as
formulated in the recent work [20], the existence of modeling problems with a lack of
information that often appears in practice and belief that such principles give a ‘best’ or
‘most unbiased’ estimate on the basis of the information available. Setting aside the dif-
ference in terminology ("a lack of information" in terms of [20] amounts to "not invoking
one or more equations describing the discharge physics" in terms of the present work),
one is led to a pragmatic question: how big is the error incurred by the use of Steenbeck’s
principle?
A methodically correct evaluation of this error requires a comparison of a solution

obtained with the use of this principle with an exact solution to the same problem, rather
than with experimental results or results deemed reasonable from the point of view of
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common sense. Such comparison is a subject of the next section.

3 Examples: applying Steenbeck’s principle to cylin-

drical arc column

3.1 The model

The problem of cylindrical column of a wall-stabilized arc is a classic object of appli-
cation of the minimum principle. Under LTE conditions the radial distribution of the
temperature T in the column is governed by the Elenbaas-Heller equation

1

r

d

dr

(
rκ
dT

dr

)
+ σE2 = 0, (2)

r = 0 :
dT

dr
= 0; r = R : T = Tw. (3)

Here r is the the distance from the axis of the discharge tube, E is the (axial) electric
field, κ and σ are the thermal and electrical conductivity coefficients, and R is the tube
radius. Radiative losses are neglected. Eqs. (2) and (3) should be supplemented with
Ohm’s law

I = 2πE

∫ R

0

σr dr. (4)

Eqs. (2)-(4) allow one to calculate the discharge parameters as functions of the discharge
current I, provided that dependences κ = κ (T ) and σ = σ (T ) are known.
There is an approach to obtaining approximate solution called the ‘channel’ arc model

(e.g., [4, 5]), and it is in the framework of this approach that the minimum principle is
invoked. The channel model is based on dividing the arc into an arc channel, which is
a current-carrying arc region of a radius r∗, and a surrounding region r > r∗ which is
assumed to be non-conductive. The temperature inside the arc channel is assumed to be
constant, T = T0, the temperature in the surrounding current-free region decreases, due
to conductive heat transfer, from T0 at r = r∗ to Tw at r = R. The arc parameters in the
framework of this model are governed by the relations

I = σ0Eπr
2

∗
, 2πS0 = IE ln

R

r∗
, (5)

where S is the heat flux potential: S = S (T ) =
∫ T
Tw
κ dT , σ0 = σ (T0), and S0 = S (T0).

Two equations (5) involve, at a given current I, three unknown variables: E, T0, and
r∗, hence one more relation is needed. Many different ways to establish this relation
have been discussed in the literature, in particular, in several-decade old Soviet works;
e.g., [24, 25] and references therein. The way which is of interest in the context of this
work is to invoke Steenbeck’s minimum principle: the lacking relation is assumed to be
the condition of minimum of the arc power per unit length, IE, for a given current I
or, equivalently, minimum of the electric field E. The mathematical formulation of this
condition can be derived as follows. One differentiates equations (5) with respect to
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r∗, considering the material property σ as a function of S, arc parameters E and S0 as
functions of r∗, and parameter I as fixed. Setting in the obtained equations dE/dr∗ = 0
and eliminating dS0/dr∗, one arrives at the desired relation:

r2
∗
= R2 exp

[
−d (lnσ)
d (lnS)

]

S=S0

. (6)

In the subsequent sections, the solutions obtained by means of equations (5) and (6)
are compared with the exact solutions for two particular sets of material properties.
We conclude this section with a discussion of relation between Steenbeck’s principle

and the principle of minimum entropy production for the particular case of arc channel
model. Application of Steenbeck’s principle to the arc channel model amounts to finding a
state with a minimum electric field among states with different channel radii and with the
same wall temperature Tw and the same arc current I. It was proved in [3] by evaluation
of the integral (17) of Appendix B that the Gouy-Stodola theorem is applicable to each
of these states. This result is not surprising since all these states are stationary. (Of
course, the same result follows from equation (15) of Appendix A. Note that although
the temperature gradient inside the arc channel is neglected, the term ∇ · q in equation
(15) must be retained in the arc channel.)
States with different channel radii are characterized by different values of T0, i.e.,

of the temperature at which the electrical conductivity of the plasma switches from 0
to σ0 = σ (T0). In other words, these states refer to plasmas with different material
properties, and this is why stationary states with different channel radii are possible at
the same arc current. Hence, application of Steenbeck’s principle to the arc channel model
is equivalent to finding a state with a minimum entropy production among stationary
states of different systems, in contrast to the principle of minimum entropy production in
non-equilibrium thermodynamics where a minimum is sought among all possible states of
the same system, including states that are not stationary.

3.2 Analytical example

The most convincing example is a one which admits an exact analytical solution. When
the temperature of an LTE plasma is relatively low and the ionization degree is below, say,
10−3, the dependence σ (T ) is very strong (Arrhenius) and σ increases with an increase of T
very rapidly. As T grows further and the ionization degree approaches 10−3, the Coulomb
collisions come into play and the increase of σ becomes much slower: the dependence
σ (T ) follows the Spitzer formula and σ ∼ T 3/2. If one assumes that the dependence
κ (T ) may be approximated by a square-root function and takes into account that the
wall temperature Tw is much lower than temperatures inside the arc, then one can set
S ∼ T 3/2. Thus, one can assume that σ is negligible at low S and equals aS at high S,
where a is a given coefficient (material constant).
The above-described model has a number of features in common with the well-known

model introduced by Maecker [26]. The model is merely illustrative and is not intended to
provide a quantitative approximation for a particular arc. It is worth stressing once again
that the task of this section is to compare an approximate solution obtained with the use
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of Steenbeck’s principle with an exact analytical solution rather than with experimental
data for a particular arc, and the model is well suited for the task.
In the framework of this model, the derivative on the right-hand side of Eq. (6) equals

unity, i.e., does not depend on S0. Therefore Eq. (6) is decoupled from Eqs. (5) and one
immediately finds r∗ = e−1/2R ≈ 0.61R. Thus, in the framework of such approach the
arc channel radius is independent of the arc current; a surprising result.
One can try to improve the arc channel model by taking into account variation of

the temperature inside the channel. Let us transform the Elenbaas-Heller equation, Eq.
(2), to the unknown function S and set σ = aS, u = 0. The obtained equation may be
solved in terms of the Bessel functions and the distribution of heat flux potential inside
the channel is

S = CJ0
(
E
√
ar
)
. (7)

Here C is an integration constant and Ji (x) here and further is the Bessel function of the
first kind of order i. Eqs. (5) are replaced with

I = 2πC
√
ar∗J1 (x) , J0 (x) = xJ1 (x) ln

R

r∗
, (8)

where x = E
√
ar∗.

Eqs. (8) involve three unknowns: C, E, and r∗. In order to try establish the lacking
relation by means of Steenbeck’s principle, one can differentiate the second equation (8)
with respect to r∗ and then set dE/dr∗ = 0. However, the obtained equation has no
meaningful roots. It follows that the dependence E (r∗) is monotonic in the improved
channel model and Steenbeck’s principle cannot be invoked.
Let us proceed to finding the exact solution. For the material functions being con-

sidered, the exact solution describes distributions with an arc channel and a surrounding
current-free region. The heat flux potential distribution inside the channel is governed by
Eq. (7) and integral parameters of the arc obey Eqs. (8). The fact that one equation is
missing means that information has been lost. Indeed, one must completely specify the
dependence σ (S) in order to have a closed statement of the problem, and this has not been
done up to now: the value of S at which switching occurs from σ = 0 to σ = aS remains
unspecified. In other words, one must specify the temperature at which the ionization
degree reaches the above-mentioned value around 10−3 where the Coulomb collisions come
into play. (Note that this temperature depends only on the plasma-producing gas and
its pressure and should be treated as a material constant in the present context.) Let
us designate this temperature by T∗. Then S∗ = S (T∗) should be treated as a given
parameter and the dependence σ (S) being considered reads: σ = 0 at S < S∗, σ = aS at
S > S∗. (Note that this approximation does not describe the variation of σ (S) from very
low values to aS∗, which rapidly occurs in a narrow temperature range in the vicinity of
T = T∗. An approximation of σ (S) which describes this variation is known [25], however
it is unnecessary for the purposes of this work and the above-described discontinuous
approximation will suffice.)
Thus, the missing boundary condition reads CJ0 (x) = S∗. This equation must be

solved jointly with Eqs. (8). The solution may be conveniently expressed in a parametric
form, with x playing the role of a control parameter instead of I: C, r∗, E, and I can be
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found as functions of x by means of the expressions

C =
S∗
J0 (x)

, r∗ = R exp

[
− J0 (x)

xJ1 (x)

]
, E =

x√
ar∗
, (9)

and of the first equation (8). The parameter x varies between 0 and the first root of
the Bessel function J0, which approximately equals 2.40. Analysis of properties of Bessel
functions reveals that as x increases, I monotonically increases, E monotonically de-
creases, and the channel radius r∗ monotonically increases from 0 to R as one should have
expected.
In summary, a distribution with an arc channel and a surrounding current-free region

represents an exact solution in the example being considered. However, an attempt to
determine the radius r∗ of the arc channel by means of invoking Steenbeck’s principle
either fails, since the dependence E (r∗) is monotonic, or leads to the conclusion that r∗
is independent of the arc current and equals to a fixed fraction of the arc tube radius
(0.61R). The latter result may be viewed at best as correct in order of magnitude and is
no better that to assume, without any justification, that r∗ equals, say, 0.5R.

3.3 Wall-stabilized arc in air

As the second example, we present results of calculations of arc discharges in atmospheric-
pressure air in a cooled tube (at Tw = 300K) with radius R = 1 cm. Radiation losses are
neglected, which is justified in the range of discharge currents being considered, I < 20A.
The lower boundary of the current range was set equal to 0.02A, as non-LTE effects come
into play at lower currents [27]. The dependences κ (T ) and σ (T ) were taken from [28].
Values of the electric field E and of the temperature T0 on the axis of the arc are

shown as functions of the discharge current in figures 1 and 2. The data obtained both by
means of numerical solution of the Elenbaas-Heller equation and by means of Eqs. (5) and
(6) (i.e., in the framework of the channel model supplemented with Steenbeck’s minimum
principle) are depicted. It is seen that the channel model with Steenbeck’s principle gives
a reasonable estimate of the electric field. However, the estimate of the arc temperature
deviates substantially from the results of numerical solution.
Note that the electric field given by the channel model with the minimum principle is

lower than the exact (numerical) E value in the current range 0.1A � I � 0.4A (figure 1).
It is possible in this current range to choose, in the framework of the channel model (5), a
value of r∗ which would ensure values of E and T0 that are much closer to the exact values
than those governed by the minimum principle. As an example, the dependences E (r∗)
and T0 (r∗), given by Eqs. (5), are shown in figure 3 for I = 0.2A. The horizontal lines in
this figure mark exact values of E and T0 for this I. The minimum of E corresponds to
r∗ ≈ 0.05 cm, while a much better agreement with exact E and T0 values can be obtained
by choosing r∗ in the range 0.12 − 0.15 cm. It follows that the best choice among the
solutions to equations of the channel model is in a general case not the one corresponding
to the minimum principle.

8



4 Conclusions

Steenbeck’s principle of minimum power, or voltage, is not a corollary of mathematical
models of gas discharges. Hence, this principle contradicts mathematical models. The
mathematical meaning of any approach making use of this principle amounts to disre-
garding one or more equations describing the discharge physics and replacing them by an
unjustified relation. The error incurred by the usage of Steenbeck’s principle is uncon-
trollable and may be unacceptably high, as show the above examples.
Equally unjustified is the idea that if different modes of discharge are possible at the

same discharge current, the mode with a lower voltage drop is the preferred (stable) one.
A proper way to avoid the usage of Steenbeck’s principle and of similar unjustified rela-

tions is, of course, to look for information where it has been lost. As far as channel models
are concerned, this means an appropriate matching of solutions describing the channel
and the current-free surrounding. Asymptotic treatment is a proper means of performing
such matching for the channel model of a cylindrical arc column [25,29,30]. The same is
true for the channel model of arc cathode spots; [31] and references therein. The effect
of normal current density in glow discharges can be mentioned as another example: the
current density inside the normal spot considerably exceeds the current density at the
point of minimum of the current density-voltage characteristic, in contrast to what some
authors assume on the basis of Steenbeck’s principle, and approximately corresponds to
the current density which occurs in the abnormal mode at the same discharge voltage [32].

Acknowledgements The work was supported by the project PTDC/FIS/68609/2006
of FCT and FEDER and the project Centro de Ciências Matemáticas of FCT, POCTI-219
and FEDER.

A Gouy-Stodola theorem for arc discharges

Let us consider an arc discharge in a quasi-neutral LTE plasma with constant mole frac-
tions of chemical elements. Pressure in the discharge vessel is given (and fixed), walls of
the vessel have a given temperature Tw. Assuming that Joule heating and heat removal
by heat conduction are the only mechanisms of heat generation in the arc, one can write
the equation of conservation of entropy as

ρT
ds

dt
= −∇ · q+ j · E, (10)

where s, ρ, and T are entropy per unit mass, mass density, and temperature of the plasma,
q = −κ∇T and j = σE are densities of heat flux and electric current, E is the electric
field, and κ and σ are the thermal and electrical conductivity coefficients of the plasma.
Following the standard formalism (e.g., [21], p. 24), one can rewrite this equation as

ρ
ds

dt
= −∇ · q

T
+ σs, (11)

where q/T has the meaning of the density of entropy flux and

σs = −
1

T 2
q · ∇T + j · E

T
(12)
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is the entropy production per unit volume and unit time.
The total entropy production in the arc (or, more precisely, in the discharge vessel) is

P =

∫

V

σs dV. (13)

Here V is the volume of the discharge vessel. In the case of a cylindrical (or, more
precisely, cylindrically symmetric) arc, P is the entropy production per unit length of the
discharge tube and V is the corresponding volume.
Equation (12) may be rewritten as

σs = ∇ ·
(
q

T
− q

Tw

)
+
j ·E
Tw

+

(
1

T
− 1

Tw

)
(−∇ · q+ j ·E) . (14)

The integral over V of the first term on the rhs vanishes. The integral of the second
term equals IU/Tw, where I and U are the arc current and voltage. (In the case of a
cylindrical arc, the axial electric field E appears in place of U .) Hence, equation (13) may
be rewritten as

P =
IU

Tw
+

∫

V

(
1

T
− 1

Tw

)
(−∇ · q+ j · E) dV. (15)

If the arc is in a stationary state, then the rhs of equation (10) vanishes, i.e., the
temperature distribution in the arc satisfies the Elenbaas-Heller equation

−∇ · q+ j · E = 0. (16)

Then the integral on the rhs of equation (15) vanishes and this equation is reduced to the
Gouy-Stodola theorem (1).

B Does principle of minimum entropy production

provide a reasonable approximation for a cylin-

drical arc?

In certain situations, stationary non-equilibrium states are characterized by a minimum
of the entropy production [21]. However, continuos systems do not belong to such situa-
tions except in very special cases. Therefore, a question arises whether a state of an arc
discharge characterized by a minimum of the entropy production is reasonably close to
the stationary state, or not. The aim of the present Appendix is to study this question
using as an example a cylindrical arc.
An expression for the entropy production per unit length of the discharge may be

found by applying equations (12) and (13) to the particular case of a cylindrical arc;

P = 2π

∫ R

0

[
κ

T 2

(
dT

dr

)
2

+
σE2

T

]

r dr, (17)

where all designations are the same as in section 3.
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We need to find a state of the arc with a given wall temperature Tw and a given arc
current I at which the entropy production attains a minimum value. In other words,
we need to minimize P on a set of pairs [T (r) , E] with functions T (r) and constants E
satisfying the boundary conditions (3) and equation (4) with Tw and I given. Following
the standard procedure, we represent T (r) = T0 (r) + εT1 (r), E = E0 + εE1, where
[T0 (r) , E0] are the (desired) temperature distribution and the electric field for which P
assumes the minimum value, T1 (r) is an arbitrary function, E1 is an arbitrary constant,
and ε is a parameter. Then

dP

dε

∣∣∣∣
ε=0

= 0 ∀ [T1 (r) , E1] (18)

is the necessary condition for P to take a minimum value in the state associated with the
pair [T0 (r) , E0].
Substituting equation (17), one can transform equation (18) to

∫ R

0

[
d

dT

( κ
T 2

)(dT
dr

)2
+
d

dT

(σ
T

)
E2
0

]

T=T0

T1r dr

+ 2

∫ R

0

κ0
T 2
0

dT0
dr

dT1
dr
r dr + 2E0E1

∫ R

0

σ0
T0
r dr = 0. (19)

Here and further σ0 = σ (T0), κ0 = κ (T0).
The second integral on the lhs of equation (19) may be evaluated by means of inte-

gration by parts:

∫ R

0

κ0
T 2
0

dT0
dr

dT1
dr
r dr =

[
κ0
T 2
0

dT0
dr
r T1

]r=R

r=0

−
∫ R

0

T1
d

dr

(
κ0
T 2
0

dT0
dr
r

)
dr. (20)

Since the set of functions T (r) under consideration satisfies the boundary conditions (3),
function T0 (r) satisfies these conditions as well and T1 (R) = 0. Hence, the first term on
the rhs of equation (20) vanishes.
A relation between T1 and E1 may be obtained by differentiating equation (4) with

respect to ε:

E0

∫ R

0

[
dσ

dT

]

T=T0

T1r dr + E1

∫ R

0

σ0r dr = 0. (21)

Note that the second integral on the lhs may be conveniently expressed as I/2πE0. Solving
this equation for E1 and substituting the obtained expression and equation (20) into
equation (19), one obtains

∫ R

0

[

r
d

dT

( κ
T 2

)(dT
dr

)
2

+ r
d

dT

(σ
T

)
E2
0
− 2 d

dr

(
r
κ

T 2
dT

dr

)
− rAE2

0

dσ

dT

]

T=T0

T1 dr = 0,

(22)
where

A =
4πE0
I

∫ R

0

σ0
T0
r dr. (23)
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Since equation (22) is valid for any function T1 (r), the multiplier in the square brackets
must be identically zero. This is the Euler equation for the variational problem being
considered. After simple transformations, this equation may be written as (the index 0 is
dropped)

1

r

d

dr

(
rκ
dT

dr

)
−
[
1 +

1

2

d (lnκ)

d (lnT )

]
κ

T

(
dT

dr

)
2

+
1

2

[
1− (1− AT ) d (ln σ)

d (lnT )

]
σE2 = 0. (24)

Thus, the temperature distribution associated with a state with a minimum entropy
production, among all possible states with a given wall temperature Tw and a given arc
current I, satisfies equation (24).
Alternatively, one can be interested in finding a state with a minimum entropy pro-

duction among all possible states with a given wall temperature Tw and a given electric
field E. It can be shown that an equation describing this state coincides with equation
(24) provided that the multiplier in front of the derivative d (lnσ) /d (lnT ) in the last
term on the lhs is dropped, or, equivalently, that A is formally set equal to zero.
Equation (24) would coincide with the Elenbaas-Heller equation (2) provided that

three conditions are satisfied: κ is proportional to T−2, σ is proportional to T−1, and
A = 0. The third condition is not problematic by itself: it is perfectly legitimate to
calculate an arc for a given electric field, rather than for a given arc current. However,
this condition becomes problematic if the aim is to relate the principle of minimum entropy
production to Steenbeck’s principle of minimum power, which refers to states with the
same current.
On the other hand, the first two conditions for real plasmas are not satisfied even

approximately: electric conductivity of an LTE plasma is an increasing function of tem-
perature; thermal conductivity typically is an increasing function for monoatomic gases
and a non-monotonic function for molecular gases (e.g., [28]). As a consequence, the
physics described by equation (24) has nothing to do with the physics described by the
Elenbaas-Heller equation (2) except that heat conduction is described in both equations
in the same way (the first term on the lhs). As an example, let us apply equation (24) to
an arc with a given electric field burning in a gas with an increasing dependence κ (T ).
Note that the derivative d (ln σ) /d (lnT ) equals approximately 1.5 at high temperatures,
where the Coulomb collisions are dominating, and exceeds this value at lower T , where
the dependence σ (T ) is Arrhenius-like. Therefore, the quantity in the square brackets
in the last term on the lhs of equation (24) is negative (below −0.5) in the considered
example, i.e., the Joule effect in equation (24) results in cooling of the plasma rather than
heating. Furthermore, the quantity in the square brackets in the second term on the lhs
of equation (24) is positive (and exceeds unity), hence this term describes a cooling effect
as well.
Thus, equation (24) is not even approximately close to the Elenbaas-Heller equation.

Hence a stationary state of a cylindrical arc, which is governed by the Elenbaas-Heller
equation, is not even approximately close to a state at which the entropy production is
minimal and which is governed by equation (24).
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Figure 1. The electric field versus the current in an air arc: numerical solution (solid),
channel model with Steenbeck’s principle (dashed).
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Figure 2. The temperature at the discharge axis versus the current in an air arc:
numerical solution (solid), channel model with Steenbeck’s principle (dashed).
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Figure 3. The electric field and the temperature at the discharge axis in the channel
model versus the arc channel radius. Air arc, I = 0.2A.
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