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ABSTRACT We present how to extract a realistic magnetic entropy value from nonequilibrium magnetization

data near the transition temperature of a typical first-order system with mixed phase state, influenced by the

phase transformation, which is responsible for large values reported, even higher than the theoretical limit. The

effect of the mixed phase state is modelled in the magnetization and its nonphysical contribution is removed to

obtain the magnetic entropy in accordance with calorimetric experiment and theoretical simulation. This

approach gives a reliable estimation of the magnetic entropy value incorporating experimental nonequilibrium

magnetization data and correcting the use of Maxwell´s relation.
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Materials with first-order magnetic transition draw attraction because of their reported giant

magnetocaloric effect (GMCE) with large peak values of magnetic entropy change (∆S) [1-4]. Large

entropy values are reported, which are obtained using Maxwell´s relation from magnetization

measurements. However, these values are often higher than the theoretical limit of pure magnetic

contribution [5-12] and are in disagreement with calorimetric measurements, indicating the probable

overestimation of entropy [13-16]. The use of Maxwell´s relation for a first-order system is

questionable for nonequilibrium experimental conditions (usually due to metamagnetic transition) [13-

17]. A realistic evaluation of entropy was proposed by Amaral et al [17] estimating equilibrium

magnetization from experimental nonequilibrium data and using Landau theory/mean field model.

Another solution to this problem was presented by Tocado et al [14], who suggested the use of

calorimetric measurements and taking temperature dependent magnetization data at constant field to

avoid the metamagnetic transition. However, such a procedure is lengthy as temperature stabilization is

very time-consuming. An approach to estimate a correct magnetic entropy change using data obtained

in common isothermal magnetization measurements is timely required.

Here, we have correlated the effect of the mixed state and phase transformation in a first-order

transition system on the magnetic entropy. Such contribution is identified as the cause for the reported

discrepancies and can be separated by carefully handling and appropriately modeling the experimental

data enabling a close estimation of realistic entropy value.

To justify and exemplify the procedure, we used doped MnAs samples with different mixed-

phase state characteristics. The compositions, Mn0.99Cu0.005Cr0.005As (S1), Mn0.98Cu0.01Cr0.01As (S2) and

Mn0.98Cu0.015Cr0.005As (S3) were prepared through the route used by Rocco et al [6]. The introduction

of Cu/Cr leads to some changes in TC, and in a higher extent, to a broadening of the phase transition,

which we use to illustrate the physical grounds and reliability of the calculation method.

Phase purity and crystal structure of the samples were confirmed by XRD. Magnetization

studies were carried out in a vibrating sample magnetometer (VSM) up to 320 K and the magnetic field

cycling up to 10 Tesla. Magnetic transition temperatures (TC) for these samples are 290-296 K for

cooling and 312-316 K for heating with thermal hysteresis ~18-22 K. The saturation magnetization

(MS) at 5 K is ~3.4 µB/f.u. for these samples. Each magnetic isotherm is measured for both increasing



and decreasing field starting with a pre-history of warming up to 320 K. The typical behaviour

obtained is shown in figure 1(a)-(b) up to 5 Tesla with a field cycling up to 10 Tesla. For the increasing

field below TC, the behaviour is ferromagnetic. Above it, in the mixed state, we find the characteristic

plateau followed by the metamagnetic transition to the ferromagnetic state at the critical field, as

typical for MnAs system [7]. For the decreasing field, no plateau is observed as we drive the

experiment above the critical magnetic field for each isotherm. An estimation of the pre-saturation

value of the ferromagnetic (FM) phase in the mixed state is obtained from each isothermal

magnetization curve for increasing field in the plateau. This gives a direct measure of the FM fraction

(x) in the system and is shown in the inset of figure 1(c) as a function of temperature. The derivative of

this FM fraction (figure 1(c)) reveals that the chemical doping by Copper and Chromium has

introduced different mixed phase characteristics into the system. The higher Chromium content (S2)

lowers the transition temperature and broadens the transition zone. However, Copper only influences

the mixed phase dynamics. The full widths at half maxima (FWHM) of this phase transition for the

samples S1 and S3 are 3.7 K whereas that for S2 is 8.4 K opening a wide temperature zone dominated

by mixed phase dynamics.

We use Maxwell´s relation ( )∫ ∂∂=∆
H

HMaxwell dHTMS
0

/ to estimate the entropy change from

magnetization data both on increasing and decreasing fields. Typical behaviour is shown for sample S1

in figure 1(f). We obtain different values of entropy, much higher in increasing field, presenting giant

peaks. However the most important fact to be observed is the striking similarity between the phase

fraction derivatives (inset of figure 1(c)) and the calculated entropy on increasing field for all samples

shown in figure 1(d) for 5 Tesla. The sharper phase derivative and higher entropy peaks are obtained

for samples S1 and S3 while for S2, a smaller and slower but wider phase dynamics is observed.

To estimate a real entropy value without the mixed-phase influence, we model the

magnetization ( M ) of the system as 21 )1( MxxMM −+= for )(THH C〈 and 1MM = for )(THH C〉 , where x

is taken as a function of temperature only, 1M , 2M are the magnetization of ferromagnetic and

paramagnetic phases, respectively and CH is the critical field of the phase transition. The entropy

change up to )(THH C〈 can be formulated as [18]
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Here, avgS∆ is the weighted contribution of the ferro- and paramagnetic phase in the system, while the

first term of equation(1) represents the main effect from nonequilibrium, and as such is a non-physical

contribution to the entropy calculation, which should be removed. To obtain the entropy change to a

field )(THH C〉 , the temperature dependence of )(THC plays an important role (leading to the latent heat

contribution). The total entropy change is then
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The first term here is again the non-physical contribution, the 2nd represents the fraction (1-x) of the

entropy coming from latent heat contribution (measured in the calorimetric experiment in the region of

mixed state, since a fraction x is already in the FM state at zero field) and the last two terms are from

magnetic contribution only.

For both cases, the contribution due to the temperature dependence of x (1st term in equations 1

and 2) represents the non-equilibrium effects. This contribution to the entropy calculation can be

removed by calculating the ( )∫ −
H

dHMM
0

21
integral, with the upper limit of the integral being the

lesser value of H and Hc(T), and multiplying it by T

x

∂
∂

. The integral is found to be temperature

independent in the mixed-phase range. The calculation of entropy can be graphically represented in an

entropy change vs T

x

∂
∂

plot, as shown in figure 1 e). A linear extrapolation of each point to 0=
∂
∂
T

x

using a slope equivalent to the calculation of the previous integral, will remove the non-physical

contribution, resulting in a realistic entropy change estimation. The value of this (constant) slope can

also be obtained from the regions of clear linearity in the entropy change vs T

x

∂
∂

plot. This graphical

representation of the method will be seen in a clearer way when applied to the simulated data,

presented later. Although this corrected entropy does not lead to the thermodynamic equilibrium value,

it removes the major nonphysical term of the entropy change calculation by considering the limiting

condition of no mixed phase change in the system, and includes the effect of latent heat of the

transformation.



For all the samples studied here, the entropy change vs T

x

∂
∂

curves for different field changes,

up to the critical field value, are approximately linear (inset of figure 1(e)) with an increasing slope of

the curve with increasing field. Around the critical field and above, the effect due to latent heat comes

into play, introducing extra terms in the entropy (equation 2) leading to a corresponding inflection in

the behaviour (figure 1(e)). The corrected value of averaged entropy change is shown in figure 1(f),

and includes the latent heat of the transformation. This entropy change is much less than that obtained

from Maxwell´s relation, demonstrating how the high values of magnetic entropy change near the

transition temperature are overestimated due to phase mixing introducing an extra contribution. The

actual entropy maximum of the present systems resulting from magnetic contribution only is ~ 21,

14.5, 22.4 J/kg.K for S1, S2 and S3 respectively at 5 Tesla, compared to values above 40 J/kg.K for all

samples. Also, the entropy corrected in this way is much closer to the value obtained from the

decreasing field curves (figure 1(b)), which show reduced mixed-phase behavior. However, this

corrected entropy is always less than the value in equilibrium condition. This is because we deal with a

fraction (1-x) of the phase M2 remaining to transform which will give a fraction of entropy due to

latent heat (equation 2) since part (x) of phase is already transformed at zero field. This average

entropy change weighted by the fraction of each phase present, can be measured in calorimetric

experiments. We regard x and its temperature dependence dx/dT as parameters that can be externally

manipulated by changing the measurement condition or the sample history and should therefore be

carefully considered in the data analysis procedure, in order to obtain the true entropy calculation.

To understand in a controlled way the results obtained, a theoretical simulation of mixed-state

first-order phase transition system was performed using the Bean-Rodbell model [19]. The details of

the simulation parameters and methodology are described in [18]. The phase fraction x(T) of the

system is chosen to be a relatively broad and smooth sigmoid function with a dx/dT curve of 3 K

FWHM, shown in figure 2(a). The isotherms near TC obtained are shown in the inset of figure 2(a).

The magnetic entropy change estimated with Maxwell´s relation results in a magnetocaloric peak

effect exceeding the magnetic maximum of NkB(2J+1) (figure 2(b)), but, more importantly, presents a

similar shape to the dx/dT vs T curve, confirming a direct relation between the peak effect and the

mixed-phase conditions (figure 2(a) and figure 2(b)). The plot of ∆S as a function of dx/dT is shown in

the inset of figure 2(b) and a linear extrapolation to null values of dx/dT leads to the actual entropy



value (figure 2(b)) which is again much lower than that obtained from Maxwell´s relation on

nonequilibrium magnetization. This theoretical simulation predicts the behaviour of entropy with phase

fraction in a similar way as that obtained from experimental data, with clear regions of a constant

entropy change versus dx/dT slope. These calculations support our previous analysis of experimental

data.

In conclusion, our results, for the 1st time, allow a realistic estimation of magnetic entropy

change solely from experimental mixed phase magnetization data. By removing the mixed-phase state

dynamic contribution to the results from Maxwell´s relation, we obtain entropy change values that

match well with experimental calorimetric data [14]. This work therefore gives a practical way to use

already available nonequilibrium magnetization data and obtain a correct value of actual entropy

change of first-order system with metamagnetic transitions, with no need to perform time consuming

heat capacity measurements or measuring isofield M versus T magnetization studies.
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Figure 1. Isothermal magnetization curve of sample S1 from 270 K to 320 K shown up to 5 Tesla for (a)

increasing and (b) decreasing field conditions, measured in the range 0-10 Tesla with 2 K temperature interval;

(c) Temperature dependence of the derivative of the ferromagnetic phase fraction of the samples, inset shows the

FM fractions; (d) magnetic entropy change ∆S of the samples at 5 Tesla field obtained with Maxwell’s relation

for increasing field; (e) variation of ∆S with FM fraction for the samples at 5 Tesla field, inset at 1, 2 and 3 Tesla,

the slope of the dashed lines, used for extrapolation, results from calculations described in the text; (f) ∆S of the

sample S1 for increasing field, green lines result from corrections at 3 and 5 Tesla, inset shows ∆S for decreasing

field. The colour symbols in (e) apply for all the figures.
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Figure 2 (a) Sigmoid function chosen for the FM phase fraction of the 1st order system for simulation and its

temperature derivative; inset shows the M vs H isotherms from Bean-Rodbell model incorporating the phase

fraction, (b) entropy vs. T from Maxwell´s relation, green line results from correcting phase transformation

effect; inset is the entropy change vs. phase fraction from the simulation, where the slope of the dashed lines,

used for extrapolation, results from calculations described in the text.
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