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Treating volumetric inequality constraint in a continuum media with a
coupled X-FEM/Level-Set strategy

N. Bonfils, N. Chevaugeon, N. Moës

Abstract

Some mechanical problems involve inequality kinematic constraint. This study deals with an orig-
inal approach to handle those difficult problems. The main issue is the treatment of the variational
inequalities due to the fact that the constrained area is a priori unknown. The method, introduced
here, is to find the exact constrained area iteratively starting from an intialtrial one. Thanks to
numerical tools such as level-set and X-FEM we turn the constrained minimization problem into
a shape equilibrium problem.

1. Introduction

The goal of this study is to propose a new approach to deal with continuum media subjected
to a kinematic inequality constraint. A kinematic constraint is a restriction on the deformations
a body can undergo. In this document, we will treat the problem of a media subjected to a volu-
metric inequality constraint. In fact, this paper is first step toward handling anextensibility limit
constraint in hyperelastic materials.

Classical methods used to enforce inequality constraint within a media are the Lagrange multi-
plier method [2], the penalty method [7], and the augmented Lagrangian method [3]. The penalty
method does not permit to enforce exactly the kinematic constraint and can lead to a bad condi-
tioning of the tangent stiffness matrix. Both the Lagrangian and augmented Lagrangian method
assure the respect of the constraint. However, their numerical treatmentimply the use of specific
algorithms such as the Uzawa method [2] or the Generalized Newton Method [8], and parameters
have to be specified. These parameters play a major role in the convergence of those algorithms
and it is often very difficult to choose them appropriately. Note that in most cases, those algorithms
are used to treat inequality constraint on the boundary of a media (unilateral contact condition).
The constraint studied here is a volumetric constraint.

After a brief statement of the constraint minimization problem studied here, we will describe
in the first section an already existing method [6] (close to augmented lagrangian method) used
for contact problems and that can be applied to our problem. This is an interesting method since it
does not need the use of a Generalized Newton Method and can be solvedusing a kind of Active
Set algorithm [9]. However, we will show that in our particular case, this method is not really
efficient. First, it offers poor rate of convergence and the presenceof user-set parameters for the
active set algorithm may deteriorate its stability.

In the next section, we will present our new approach. The strategy consists in turning the
minimization problem under inequality constraint into a shape equilibrium one. The inequality
constraint induces variational inequalities because we do not know a priori the shape of the active
constraint and unactive constraint zone in the media. The strategy proposed here is to replace the
inequality constraint by an equality constraint over an unknown domain. This domain is called the
active constraint domain. Hence, we assimilate the media to a two elastic phases media. On one
phase, no constraints are imposed and on the second one an equality constraint is imposed. Each
phase has a mechanical behaviour that depends on the state of the constraint (active or inactive).
With the help of the configurational mechanic and the notion of configurational force, the exact



shape of each phase is found iteratively. Finally, the notion of level-set [23] and the X-FEM [24, 5]
will be used to give an implicit description of the interface separating the two phases. Several
numerical tests will be shown in the final section so as to compare the first methodto the new one.

2. Statement of the problem

A linear elasticity two-dimensional problem is considered, with an isotropic homogeneous
material in a plane strain state. Consider the domainΩ as shown in Figure 1. On the boundary, a
Dirichlet conditionu= ud is applied onΓu and a Neumann conditionσ.n= td is prescribed onΓt .
Finally, the whole domain is submited to a body forcef .

In this study we will adopt a particular form of the constraint in the small strainsetting. The
constraint reads:

γ(ε) = Tr ε−α ≤ 0 onΩ

with ε, the classical strain tensor andTr ε the trace ofε.

Figure 1: Problem statement

Let use define the space of kinematically admissible displacements

V = {v∈ H1(Ω)|v= ud on ΓU} (1)

V0 = {v∈ H1(Ω)|v= 0 onΓU} (2)

And the total potential energy of the mechanical system:

Π(u) =
∫

Ω
ψ(ε)dΩ−

∫
Ω

f .udΩ−
∫

Γt

td.udΓ (3)

whereψ(ε) = 1
2ε : C : ε andC is the fourth-order elasticity tensor. We are looking for the

infimum of Π(u)

inf
v∈S

Π(v), S= {v∈V | γ(ε(v))≤ 0} (4)

The spaceS is the space of kinematically admissible displacements. The problem (4) is called the
primal problem. The introduction of the inequality constraint in the search of the infimum yields
to a variational inequality [11].
If u is an infimum, then
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∫
Ω

ε(u) : C : ε(v−u)dΩ ≥
∫

Ω
f .(v−u)dΩ+

∫
ΓT

td.(v−u)dΓ ∀v∈ S (5)

This result is a variational inequality characterizing the solutionu of the problem (4). This is
also the primal variational formulation of this problem. Unlike classical variational principles
encountered in solid mechanics, we obtain an inequality because of the constraintu∈ S.

3. A classical approach

3.1. The variational formulation

Constrained optimization problems like (4) are difficult to formulate and to solve.Indeed the
inequality constraint prevents us from solving it directly.
The goal of this section is to transform a constrained problem into an unconstrained one. In this
section, we will recall how our constrained minimization problem can be transformed into saddle
point problem using the method of Lagrange multiplier [2] (duality principles).First, to take
into account the constraintγ(ε), we add to the elastic strain energy functionψ(ε) the following
characterisic function

ψ(ε) = ψr(ε)+ I−γ(ε) (6)

whereψr , is the parent or regular potential (ψr(ε) = 1
2ε : C : ε) and I−(x), is the characteristic

function ofR− such that

I−x =

{

0 if x≤ 0
+∞ otherwise

(7)

The constitutive law then reads:

σ =C : ε+ pI (8)

γ(ε)≤ 0 , p≥ 0 , γ(ε)p= 0 (9)

Now, let the Lagrange multiplier trial functions beq. These functions reside in the following space

Q+ = {q∈ Q|q≥ 0},Q= {q∈ L2(Ω)} (10)

Since

I−γ(ε) = sup
q∈Q+

{qγ(ε)} (11)

the above infimum problem becomes a saddle-point problem with the following functional :

L(v,q) =
∫

Ω

[

ψr(ε)+qγ(ε)
]

dΩ−
∫

Ω
f .vdΩ−

∫
Γt

td.vdΓ (12)

We are looking for the saddle-point of this functional
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inf
v∈V

sup
q∈Q+

L(v,q) (13)

Unfortunately, there is still an inequality constraint. Indeed, the lagrange multiplier q has to
respect the positivity conditionq≥ 0. We still have to solve a constrained problem.

If (u, p) is the saddle point of the functionalL(v,q), then

DL(u, p)[v] = 0 ∀v ∈V0 (14)

DL(u, p)[q− p] ≤ 0 ∀q ∈ Q+ (15)

whereDL(u, p)[q− p] denotes the directional derivative ofL(u, p) with respect top in the
arbitrary direction(q− p) andDL(u, p)[v] the directional derivative ofL(u, p) with respect to the
motion in the arbitrary directionv.

Rewriting (14) and (15), we obtain once again a variational inequality of theform [2]:

∫
Ω

ε(u) : C : ε(v)dΩ+
∫

Ω
pTr ε(v)dΩ =

∫
Ω

f .vdΩ+
∫

ΓT

td.vdΓ ∀v ∈V0 (16)
∫

Ω
γ(ε(u))(q− p)dΩ ≤ 0 ∀ q∈ Q+ (17)

An alternative is to use an Augmented Lagrangian formulation [12] which is a composition of
an ordinary lagrangian method and a penalty method. This alternative method permits to regularize
the saddle point problem [13] and to give an unconstrained problem. Then, we augment once again
the functional with a term that ensures the positivity condition [3].

The functional becomes :

L+(v,q) =
∫

Ω
ψr(ε)dΩ+

1
2ρ

∫
Ω
〈q+ργ(ε)〉2

+dΩ−
1
2ρ

∫
Ω

q2dΩ−

−
∫

Ω
f .vdΩ−

∫
Γt

td.vdΓ (18)

where〈...〉+ denotes the positive part of the considered quantity, andρ is a postive parameter,
called augmentation parameter.

The saddle point problem becomes

inf
v∈V

sup
q∈Q

L+(v,q) (19)

The constraint onq has been removed and the stationnary condition of the above functional
reads:

If (u, p) is the saddle point of the functionalL+(v,q), then

DL+(u, p)[v] = 0 ∀v ∈V0 (20)

DL+(u, p)[q] = 0 ∀q ∈ Q (21)

The stationary condition leads to the following formulation
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∫
Ω

[

ε(u) : C : ε(v)+ρχ(g)Tr ε(u)Tr ε(v)
]

dΩ+
∫

Ω
χ(g)pTr ε(v)dΩ =

∫
Ω

[

f .v+χ(g)ραTr ε(v)
]

dΩ+

+
∫

ΓT

td.vdΓ ∀v ∈V0 (22)

−1
ρ

∫
Ω
(1−χ(g))pqdΩ+

∫
Ω

χ(g)Tr ε(u)qdΩ =
∫

Ω
χ(g)αqdΩ ∀q∈ Q (23)

where

χ(x) =
{

0 if x< 0
1 if x≥ 0

(24)

andg designates the augmented multiplier [3]

g= p+ργ(ε) (25)

The parameterρ does not affect the correctness of the theorical formulation, but from anumer-
ical point of view its choice does affect the convergence of the scheme and the condition number
of the tangent stiffness matrix.

The strong form associated to this problem is depicted in Table 1.

Ω

mechanical equilibrium div(σ)+ f = 0

σ.n= td

constitutive relation σ =C : ε+χ(g)gI

p−χ(g)g= 0

g= p+ρ(Tr ε−α)

kinematic conditions u= ud

ε = 1
2(∇(u)+∇(u)t)

Table 1: The strong form

3.2. Numerical strategy

3.2.1. The active-set algorithm
Starting from the formulation stated previously, we have to solve it numerically.Firstly, this

formulation represents a set of non-linear equations even if our setting is the linear elasticity.
Indeed, the functionχ presented above introduces a non-linearity. This non-linearity due to the
constraint condition could be solved with a Generalized Newton Method [8],but we will use here
another method. A kind of fixed point algorithm described in [14, 6, 15, 16, 17, 18] is here used.
This algorithm is close to the active set method [9, 10] and permits to update iteratively the values
of χ. This active-set algorithm is explained below
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Algorithm 1 Active-set algorithm

Initialization of χ(0) = 0
loop

Computing ofui et pi

Updatingχi = χi(ui , pi)
if χi = χi−1 (convergence criterion)then

break
end if

end loop

At each step of the loop, the fieldχ is completly known over the whole domain. We can then
solve a linear problem, and then update the state ofχ.
In this algorithm, all the states of theχ function are changed at the same time. (this function is
evaluated at the Gauss points since we use a Gauss quadrature integration). Unfortunaletly, the
convergence of this algorithm is proved only if just one state is changed ateach iteration. We
prefer here to change all the states at the same time [16] so as to obtain a significant gain in speed.

Convergence criterionWe evaluate theχ function at the Gauss points during the numerical
integration procedure. The active-set algorithm has converged whenthe values ofχ at the Gauss
points has not changed. Let

[

χi
]

the vector containing the values ofχ of all Gauss points at iteration
i of the algorithm. The algorithm has converged when

[

χi
]

−
[

χi−1
]

= [0]. Unfortunately, in this
algorithm, cases of looping between several states ofχ may occur. These oscillations prevent the
algorithm from converging and may deteriorate the accuracy of the results.

3.2.2. The discretization
Once the non-linearity due to the presence of the inequality constraint is solved, we have to

establish the spatial discretization. We denoteph et uh the discrete Lagrange multiplier field and
discrete displacement field. The discretized weak form at iterationi of the active set algortithm
yields

Find (uh, ph) such that

a(uh,vh)+b(ph,vh) = l(vh) ∀ vh ∈Vh (26)

b(uh,qh)+c(ph,qh) = p(qh) ∀qh ∈ Qh (27)

with

a(ui
h,vh) =

∫
Ωh

ε(ui
h) : C : ε(vh)dΩ+

∫
Ωh

χi−1ρTr ε(ui
h)Tr ε(vh)dΩ (28)

b(pi
h,vh) =

∫
Ωh

χi−1pi
hTr ε(vh)dΩ (29)

l(vh) =
∫

Ωh

f .vhdΩ+
∫

ΓT

td.vhdΓ+
∫

Ωh

χi−1ραTr ε(vh)dΩ (30)

c(pi
h,qh) =

−1
ρ

∫
Ωh

(1−χi−1)pi
hqhdΩ (31)

b(ui
h,qh) =

∫
Ωh

χi−1Tr ε(ui
h)qhdΩ (32)

p(qh) =
∫

Ωh

χi−1αqhdΩ (33)

whereQh andVh are the discrete finite dimensions subspaces ofQ andV.
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The discretization of the weak form involves two fields : the displacementu and the Lagrange
multiplier p. The shape functions for the Lagrange multiplier differ from those for thedisplace-
ments. Hence, we will use different symbols for the two approximations. Theclassical FEM
discretization on an elementΩe reads

uh|Ωe =
N

∑
i=1

uh
i Nu

i

ph|Ωe =
N′

∑
i=1

ph
i Np

i (34)

whereN and N′ is the number of coefficients describing the approximation, andNi is the
shape function associated to the coefficienti. If the use of a Lagrange multiplier field ensures
the respect of the constraint, its discretization involves a major problem. Indeed, the interpolation
used has to respect the well-known Ladyzhenskaya-Babuska-Brezzi compatibility condition [19]
which guarantees the stability of the mixed method.
Denoting

b′(vh,qh) =
∫

Ω
Tr ε(vh)qhdΩ (35)

This condition reads

inf
qh∈Qh

sup
vh∈Vh

b′(vh,qh)

‖vh‖1‖qh‖0
= βh ≥ β > 0 (36)

Where‖ . ‖1 and‖ . ‖0 designate respectivlely theH1 andL2(Ω) norms, andβ is a positive real
independent of the mesh size.

Among all mixed elements, only a few respect this condition. Moreover, we have used mixed
elements with discontinuous pressure because we have noticed that this kindof elements permits
the stability of the active-set algorithm. These elements can be used becausewe do not need
the derivative of the pressure field in the weak formulation. One basic discontinuous pressure
element has been selected. The mixed element chosen is theP2+/P1disc (see Figure 2). This
element is composed of a quadratic displacement enriched by a cubic bubblefunction and a linear
discontinuous pressure. The upper script+ designates the enrichment by the bubble function. The
displacement is enriched with this special function so as to increase the degree of the displacement
interpolation and to ensure the stability of the formulation.

More preciselly, the shape functions for each component of the displacement field are the
regular second order lagrange shape function (P2), plus a bubble function. The bubble function
that we used is defined in each triangle as :b(x) = λ1(x)λ2(x)λ3(x) where theλi are the barycentric
coordinates relative to the three nodes of the triangle. The pressure fieldis defined independently in
each element by a linear combination of the three order one lagrange shapefunction on the triangle.
This finite element formulation therefore give a total number of degree of freedomndo f= 2∗nv+
2∗ne+(2+3) ∗nt, wherenv is the number of vertices,ne is the number of edges andnt is the
number of triangle.

4. A new approach

4.1. The strategy

The essential difficulty of the problem described in section 2 is that the region where the con-
straint is active is not known a priori. This observation has motivated a newstrategy of resolution.
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Figure 2:P2+/P1disc mixed element

We consider here the same domainΩ and the same boundary conditions as before. But the strat-
egy proposed here is to split the whole domainΩ into two distinct subdomains separated byΓ.
The first domain denoted byΩc is the constrained zone or active zone where an equality constraint
is imposed. The second domain denoted byΩ f is the unconstrained or unactive zone, where no
constraints are imposed.

Ωc∪Ω f = Ω (37)

Ωc∩Ω f = /0 (38)

∂Ωc∩∂Ω f = Γ (39)

Figure 3: Problem statement 2

On each subdomain, the same linear elastic isotropic homogeneous material is considered. But
in the domainΩc we impose the following constraint

γ(ε) = Tr ε−α = 0 onΩc (40)

The elastic energy in domainsΩ f andΩc are given by

ψc =
1
2

ε : C : ε+ I0
γ(ε) = µεD : εD +

κ
2

α2+ I0
γ(ε) (41)

ψ f =
1
2

ε : C : ε = µεD : εD +
κ
2
(Tr ε)2 (42)

whereκ = λ+ 2
3µ is the bulk modulus, withλ andµ the Lamé coefficients andI0(x), is the

characteristic function of 0 such that

I0(x) =

{

0 if x= 0
+∞ otherwise

(43)
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The corresponding constitutive laws then read

σ
c
= 2µεD +καI + pI (44)

σ
l
= 2µεD +κTr εI (45)

Note thatp is not the classical pressure (Tr σ), it is what is needed forσ to be in equilibrium
We can notice that the behaviour in domainΩ f andΩc no longer involve inequalities and differ
from the original behaviour (8).

The total potential energyΠ′(u) of the system reads

Π′(u) =
∫

Ωc

ψc(ε)dΩ+
∫

Ω f

ψ f (ε)dΩ−
∫

Ω
f .udΩ−

∫
ΓT

td.udΓ (46)

The interface between the two domains can be seen as a surface of discontinuity and the
strategy is to propagate correctly the front separating the two elastic phases Ωc andΩ f so as to
find the exact location ofΓ. Then, we have replaced the initial problem of a media subjected to a
kinematic inequality constraint by a problem of a media subjected to an equality constraint over
an unknown restricted domainΩc.

The interfaceΓ is a coherent interface, thus the jump of the displacement fieldu has to vanish
across the interfaceΓ, preventing separation, penetration or slipping of the two domains. We do
have the continuity of the normal stress vector.

Let Γ be fixed for the moment. We are looking for the infimum ofΠ′(u)

inf
v∈V

Π′(v) (47)

Rewriting (47) as the following saddle point problem

inf
v∈V

sup
q∈Q

L′(v,q) (48)

whereL′(v,q) designates the following Lagrangian functional

L′(v,q) =
∫

Ωc

[

ψc(ε)+qγ(ε)
]

dΩ+
∫

Ω f

ψ f (ε)dΩ−
∫

Ω
f .udΩ−

∫
ΓT

td.udΓ (49)

The stationary condition of the above functional leads to the variational form
Find (u, p) such that:

a(u,v)+b(p,v) = l(v) ∀v ∈V0

b(u,q) = p(q) ∀q ∈ Q (50)

a(u,v) =
∫

Ω
ε(u) : C : ε(v)dΩ (51)

b(p,v) =
∫

Ωc

pTr ε(v)dΩ (52)

l(u,v) =
∫

Ω
f .vdΩ+

∫
ΓT

td.vdΓ (53)

b(u,q) =
∫

Ωc

Tr ε(u)qdΩ (54)

p(q) =
∫

Ωc

αqdΩ (55)
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The strong formulation associated to this new problem reads:

Ωc Γ Ω f

mechanical equilibrium div(σ)+ f = 0 [[σ.n]] = 0 div(σ)+ f = 0

σ.n= td on ∂Ωc∩ΓT σ.n= td on ∂Ω f ∩ΓT

constitutive relation σ =C : ε+ pI σ =C : ε

Tr ε−α = 0

kinematic conditions u= ud on ∂Ωc∩ΓU [[u]] = 0 u= ud on ∂Ω f ∩ΓU

ε = 1
2(∇(u)+∇(u)t) ε = 1

2(∇(u)+∇(u)t) ε = 1
2(∇(u)+∇(u)t)

Table 2: TheΓ problem

Unlike the previous approach, we obtain a fully linear set of equations. Indeed, the non-
linearity introduced by the functionχ has been removed. The intrinsec non-linearity due to the
presence of the inequality constraint will be solved by changing iterativelythe shape of each
phase. Note that this formulation does no involve any parameter since the equality constraint on
Ωc is solved using an ordinary Lagrangian method.

We denote

ψ(ε(x),x) =
{

ψc(εc(x)) if x∈ Ωc

ψ f (ε f (x)) if x∈ Ω f
(56)

Let us consider now the directional derivative ofΠ′(u) for a configurational changeθ of Γ.
Here,u is the solution of the infimum problem (47) for a given locationΓ of the interface. We
could then writeΠ′(u) = Π′(u(Γ),Γ).

Following [20], we get:

DΠ′(u(Γ),Γ)[θ] =
∫

Ω f

Dψ f [θ]dΩ+
∫

Ωc

Dψc[θ]dΩ+
∫

Ω f

ψ f D(dΩ)[θ]+
∫

Ωc

ψcD(dΩ)[θ]−

−
∫

Γt

td.Du[θ]dΓ−
∫

Ω
D f [θ].udΩ−

∫
Ω

f .Du[θ]dΩ−
∫

Ω
f .uD(dΩ)[θ](57)

DΠ′(u(Γ),Γ)[θ] =
∫

Ω f

σ : ε(Du[θ])dΩ+
∫

Ωc

σ : ε(Du[θ])dΩ−
∫

Γt

td.Du[θ]dΓ−
∫

Ω
f .Du[θ]dΩ+

+
∫

Ω f

(ψ f − f .u)∇.θ−σ : (∇u.∇θ)−D f [θ].udΩ+

+
∫

Ωc

(ψc− f .u)∇.θ−σ : (∇u.∇θ)−D f [θ].udΩ (58)

The first four term above in the right hand side cancel out because ofthe equilibrium. Then
noting the expression of the Eshelby tensor [21]P,

P= (ψ(ε)− f .u)I −∇ uT .σ (59)
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we get

DΠ′(u(Γ),Γ)[θ] =
∫

Γ
θ.[[P]].ndΓ (60)

After calculus (Appendix A), we get

DΠ′(u(Γ),Γ)[θ] =
∫

Γ
τθdΓ (61)

where

τ = (λ+2µ)−1 p2
c

2
=

(λ+2µ)
2

(Tr ε
f
−α)2 (62)

Remark The termτ is the driving force or the configurational force acting on the interface
Γ. One can notice that the configurational force is always positive whatever the location of the
interface.

The exact location of the interface is the one that verify the following optimality criteria.

Ωc Γ Ω f

configurational equilibrium div P+∇ f .u= 0 τ = 0 div P+∇ f .u= 0

optimality conditions pc ≥ 0 Tr ε
f
−α ≤ 0

Table 3: TheΓ optimality

Indeed, if the configurational equilibrium is satsified, thenp is continous accrossΓ andp≥ 0.
Moreover,Tr ε is also continous accrossΓ andTr ε ≤ α. In this case, the couple(u, p) verify
the equilibrium conditions, the boundary conditions, and the Karush-Kuhn-Tucker conditions of
optimality (9). Hence,(u, p) is the solution of the problem (4). The final algorithm, therefore
will consist in finding the position ofΓ such as the configurational equilibrium defined in Table 3
is ensured . Then, we verify the conditions of optimality exposed in Table 3. Around the points
where these two conditions are violated, a new trial boundary needs to be introduced . We then
evolve once again the whole new interface so as to verify the configurational equilibrium.

4.2. Analytical solution on a one-dimensional example

Let us consider the simple one dimensional problem in the small strain elastostaticsetting with
uniaxial state of strain as shown in Figure 4. We wish to limit the uniaxial strain ofa truss by a
valueα under a linear prescribed loadf (x) = f x.

We split the bar into two domains. The constrained domain[0,y] and the unconstrained domain
[y,L].

Figure 4: A one-dimensional example
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The exact displacement, strain, and pressure field expression along thebar for any given loca-
tion y of the interface are given in Appendix B.

We chooseα such that the exact location of the interfaceye is at the middle of the bar.

α =
3 f

8(λ+2µ)
L2 (63)

Denotingε̃ = ε(λ+2µ)
f L2 and σ̃ = σ

f L2 , the exact strain and stress fieldsε̃ and σ̃ are depicted in
Figure 6.

The evolution of the potential energy and the configurational force with thelocation of the
interface are depicted in Figure 5 and the analytical expression are given in Appendix B.

Φ (λ+2µ)
f 2L5

ξ
10.50

-0.06

-0.065

∂Φ
∂ξ

(λ+2µ)
f 2L5

ξ
10.50

0.06

0.04

0.02

0

Figure 5: Evolution of the potentiel energy (left) and its derivative (right)with ξ
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Figure 6: The strain and stress field forξ < 1
2 (left), ξ = 1

2 (middle),ξ > 1
2 (right)

When the interface is not located at the exact position, the strain field is discontinuous at the
interface. On can notice that the potential energy of the system is stationary, when the interface
is located atξ = 1

2. It means that at the exact location of the interface, the configurational force
is zero, as one can see in Figure 5. Finally, one can see that the configurational force is always
positive whatever the location of the interface and is minimum at the exact location. Hence, the
total potential energy is always increasing with the location of the interfaceξ. The exact location
makes the potential energy stationary but not minimum as one can see in Figure5.
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4.3. Shape sensitivity
The goal of this section is to establish the change in(u, p) as a result of the migration of the

interface. Consider the perturbed constrained zoneΩτ
c and the perturbed unconstrained zoneΩτ

f .
Let us introduce a velocity fieldθ responsible for the migration of the interface and the following
transformation:

Ωc → Ωτ
c

xτ = x+ τθ(x) ∀x∈ Ωc

Ω f → Ωτ
f

xτ = x+ τθ(x) ∀x∈ Ω f

The shape change of each phase is expressed using a sufficiently smooth velocity fieldθ and
a parameterτ. The trick introduced in [25] is to use the classical continuum terminology and
assimilate the change of shape to a motion of a body. We rewrite the state equation(50) with the
parameterτ.

a(τ,u,v)+b(τ, p,v) = l(τ,v) ∀v ∈V0 (64)

b(τ,u,q) = p(τ,q) ∀q ∈ Q (65)

Taking the derivative of the above equation with respect toτ

a(τ,
∂u
∂τ

,v)+b(τ,
∂p
∂τ

,v) =
∂l(τ,v)

∂τ
−

∂a(τ,u,v)
∂τ

−
∂b(τ,u,q)

∂τ
∀v ∈V0

b(τ,
∂u
∂τ

,q) =
∂p(τ,q)

∂τ
−

∂b(τ,u,q)
∂τ

∀q ∈ Q (66)

Defining ∂u
∂τ = u̇ and ∂p

∂τ = ṗ, the above formulation becomes
Find (u̇, ṗ) such that:

∫
Ω

ε(u̇) : C : ε(v)dΩ+
∫

Ωc

ṗTr ε(v)dΩ =
∫

Ωc

p ∇θT : ∇vdΩ−
∫

Ωc

p div(θ)Tr (∇v)dΩ+

+
∫

ΓT

td(−n.∇θTn+ div(θ))vdΓ+

+
∫

Ω
f (x) div(θ).vdΩ+

∫
Ω
(∇ f θ).vdΩ+

+
∫

Ω
T : ∇vdΩ ∀v ∈V0 (67)

with T = [C : (∇u∇θ)s+C : ∇su∇θT −C : ∇su div(θ)]

∫
Ωc

Tr ε(u̇)qdΩ =
∫

Ωc

Tr ((∇u∇θ)s)qdΩ−
∫

Ωc

Tr (∇su) div(θ)qdΩ+

+
∫

Ωc

α div(θ)qdΩ ∀q ∈ Q (68)

We can notice that the two bilinear forms of (66) are similar to the bilinear forms of(50). Only
the linear forms on the right hand side are different and they imply the knowledge of the fields
(u, p) and the velocity fieldθ. This weak form can be discretized as the previous one.

If we use the same approximation for the two couple of fields(u̇, ṗ) and(u, p), we will obtain
two linear systems to solve with the same tangent stiffness matrix. From a numerical point of view,
this remark has a huge importance, since we will not have to compute twice the tangent matrix. If
we use a LU solver for the two linear systems, we then make the LU decompositionjust once.
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4.4. Numerical Strategy

The goal of this section is to present the numerical tools and the numercial procedure to move
the interfaceΓ towards its exact location.

4.4.1. Level-set/X-FEM
To represent the surface of discontinuity separating the domainΩc et Ω f we used the notion

of level-set [23, 22]. The level-set method permits an implicit representationof surfaces through
a higher dimensional functionφ(x).
A level-set is a function that evaluates at each point of the domain the signeddistance to the surface
of discontinuity. The surfaceΓ is then defined by

Γ = {x | φ(x) = 0} (69)

By convention, the sign of the level-set is negative if the point is located inΩc and positive if
the point is located inΩ f .

φ(x)< 0 if x∈ Ωc (70)

φ(x)> 0 if x∈ Ω f (71)

The iso-zero of the level-set locates the true location of the interface. Thelevel-set is evaluated
at the nodes of the mesh and we interpolate these values with the classical linear interpolation
functionsNi .

φ(x) = ∑
i

Ni(x)φi (72)

Because of the presence of the surface of discontinuityΓ, the strain tensor field presents a
discontinuity. To avoid poor rates of convergence we enrich the classical approximation through a
partition of unity technique for strain jump [5]. The classical discretization (34) becomes

uh|Ωe =
N

∑
i=1

uh
i Nu

i +
N′

∑
j=1

Nu
j F(x)b j (73)

Additional degrees of freedomb j have been added at the nodes for which the support is split
by the interface. The enrichment functionF , is chosen such that its gradient is discontinuous along
Γ. Thus, we can represent the discontinuity in strain. The functionF is defined as [5]:

F(x) = ∑
i

|φi |Ni(x)−|∑
i

φiNi(x)| (74)

The functionF is depicted in Figure 7, for a one dimensional case.
In our case, we enrich the linear part of the approximation. It means that the Nu

j functions are
the classical linear interpolation function even if theNu

i are quadratic. The pressure fieldp is only
defined over the domainΩc. To take into account the presence ofΓ, the weak form involvingp is
integrated only onΩc. Thanks to the level-set notion, the interfaceΓ do not need to be meshed.
We just have to take care of the integration step as desribed in [4].
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Figure 7: The enrichment function

4.4.2. Front evolution
We have shown in section 4.1 that the condition in Table 3 ensures that(u, p) is the solution

of (4). Numerically, we will first find the location of the interface that ensures the conditionτ = 0.
When this location is found, we verify the two other one.

Thanks to (62), the conditionτ = 0 onΓ is equivalent to the conditionp= 0 onΓ. Rewriting
this condition as a variational form, we get

∫
Γ

pq∗dΓ = 0 ∀q∗ ∈ L2(Γ) (75)

We now take the directional derivative of (75) for a configurational changev, wherev is a
normal velocity responsible for the migration of the interfaceΓ.

D

(∫
Γ

pq∗dΓ
)

[v] =
∫

Γ
Dp[v]q∗+

∫
Γ

pq∗DdΓ[v] (76)

Since

DdΓ[v] = ∇sur.v= ϑv.n (77)

whereϑ denotes the curvature of the interface and∇sur.v is the surfacic divergence ofv
We thus get

D

(∫
Γ

pq∗dΓ
)

[v] =
∫

Γ
Dp[v]q∗dΓ+

∫
Γ

ϑpv.nq∗dΓ (78)

The algorithmic scheme is the following. We first initializeΓ = Γ0. And then at iterationk,
we calculate the velocityvk using the following Newton-Raphson procedure

∫
Γk

pq∗dΓ+D

(∫
Γk

pq∗dΓ
)

[vk] = 0 (79)
∫

Γk

pq∗dΓ+
∫

Γk

Dp[vk]q
∗dΓ+

∫
Γk

ϑpvk.nq∗dΓ = 0 (80)

If we use a modal representation for the velocity fieldvk and the test functionsq∗

vk = ∑
i

Fi ṽin (81)

q∗ = ∑
i

Fi q̃
∗
i (82)
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The modesFi are functions defined over the interfaceΓ. To do so,Γ is parametrized using a
curvilinear abscissas∈ [0,2π]. Two types of modes are here introduced to describe the field.

• cosinus modes

Fi = cos(is) (83)

• sinus modes

Fi = sin(is) (84)

If we neglect the curvature term
∫

Γk
ϑpvk.ndΓ that becomes small asp tends to zero, we get

∫
Γk

Dp[vk]q
∗dΓ =−

∫
Γk

pq∗dΓ (85)

that leads to the following matricial system

[S][ṽ] = [P] (86)

where[S] is the matrix containing the sensitivity ofp to the migration of the interface for each
modesFin, and[P] is the vector containing the coefficients of the modal projection of the pressure
field p on the interfaceΓ.

We now present the procedure to calculate the matrix[S]. For example, we want to determine
the sensitivity ofp to the migration of the interface for the modei . This field is denotedDp[Fin].
To calculate this field using the formulation developed in section 4.3, we first need to extend the
velocityFin to the whole domainΩ.

Let us define the extended velocityθi as

θi = Fi(s(x))∇φ(x)r(x) (87)

Where the gradient of the level-set∇φ is used to make the velocity normal to the interface.
Since the level-set function is a signed distance function, it must be of norm1. The last function
r(x) is a function which permits to extend the velocityΩ. This function is only non zero in a thick
band, where its value is 1. This band can be defined as a layer of elements around the interface.
The Figure 8 shows the band around a circular interface.

The size of the band determines the size on which the right side of (67) and (68) need to be
computed. The optimal size of the band with regard to numerical accuracy willbe the subject
of further work. But, in all numerical experiments shown in this study, the band has a thickness
of approximately 4 elements. As defined above,s is a curvilinear coordinate along the interface
Γ. This curvilinear coordinate needs to be extended inΩ for equation 87 to make sense. One
possibility is to computes at each nodev of the mesh by taking the value ofs on the closest
node tov on the interface. This algorithm is very similar to some implementation of the velocity
extension algorithm very common in level-set method, where a field only knownon the iso-zero
of the level-set need to be extended every where else [23].

Once the fieldDp[θi ] is known, we determine the modal projection of this field on the interface
Γ. The coefficients found constitutes the vectori of the matrix[S].
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Figure 8: The band of elements around the level-set on the left, and the normal velocity on the right

Once the velocity fieldvk is found, the final step is to propagate the level-set by solving the
following Hamilton-Jacobi equation. [26] To solve it, we use the triangulated versions of the level-
set methods as presented in [23], more preciselly, the so called explicit positive coefficient scheme.

∂φ(x, t∗)
∂t∗

+(vk.n)‖∇φ(x, t∗)‖= 0 (88)

Wheret∗ designates a fictious time.
Once the level-set is propagated, we have to renormalize the level-set using the same type of

equation.
Convergence criterionAfter each propagation step, and once the level-set is normalized, the

equilibrium (50) is solved. Then, the following criteria is computed

cp =

(∫
Γ

p2dΓ
) 1

2

≤ ε (89)

whereε is a tolerance that can be set arbitrarily.
If the convergence criterion is not verfied, a new interface velocity is computed, and the level-

set is once again propagated.
The whole algorithm, composed of two overlaped loops, is detailed below

4.4.3. Discretization
To enforce the constraint imposed onΩc, we have used a Lagrange multiplier approach. We

have to discretize both the displacement and the Lagrange multiplier fields. As explained in the
previous part, we have to use specific mixed elements that satisfy the LBB condition. Unfor-
tunately, the ridge function introduced in the X-FEM enrichment modify the finitedimensions
subspaceVh. However, it is shown in [28] that the stability of enriched mixed element is preserved
through the numerical inf-sup test. Where the pressure is defined (all elements that have at least
one node insideΩc), the element used is theP2/P1cont (see Figure 9). This element is composed of
a quadratic displacement and a linear continous pressure. Here, the useof continuous pressure ele-
ment is possible unlike with the classical approach where this type of elements causes problems of
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convergence of the active-set algorithm. Other element are simply classical quadratic lagrange el-
ement for the displacement field. Each component of the displacement field isfurther enriched, at
all the nodevethat have there support cut byΓ, by the functionF defined previously. This formu-
lation therefore give a total number of degree of freedomndo f= 2∗nv+1∗nvp+2∗ne+2∗nve
wherenv is the total number of nodes,ne the total number of edges,nvp the total number of node
where a pressure is defined, andnve, the total number of node where the displacement field is
enriched.

Figure 9:P2/P1cont mixed element

5. Numerical examples

5.1. Convergence studies

Two cases will be studied here. A one-dimensional case and a cylinder case for which the
analytical solution is known. The analytical solution will be used to determine theh-convergence
of each method. To compare the exact and the numerical solution, we use theL2 norm for the
pressure field (90) and the energy norm for the displacement (91).

ep =

(∫
Ω(ph− pex)

2dΩ
) 1

2

(
∫

Ω p2
exdΩ)

1
2

(90)

ee =

(∫
Ω(εD

h
− εD

ex
) : C : (εD

h
− εD

ex
)dΩ

) 1
2

(∫
Ω εD

ex
: C : εD

ex
dΩ

) 1
2

(91)

Algorithm 2 Algorithm of front evolution
1: Compute(u, p) using (50)
2: while Conditions of optimality in Table 3 are not verifieddo
3: Detect points where these conditions are violated
4: Initialize an interface around these points
5: loop
6: Compute(u, p) using (50)
7: if cp ≤ ε then
8: break
9: end if

10: ComputeDp[q
i
] for each mode

11: Compute the front velocity using (86)
12: Update Level-Set
13: end loop
14: end while
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5.1.1. One-dimensional case
We apply now the new approach to solve the simple one-dimensional problem inthe small

strain elastostatic setting with uniaxial state of strain described in section 4.2. Wewish to limit the
uniaxial strain of a truss by an arbitrary valueα under a prescribed loadf (x) = f x. We setα = 3

8,
(λ+2µ) = 1, f = 1 andL = 1.

The analytical solution of this problem is given in Appendix B.
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Figure 10: Convergence of theL2 norm error on the pressure (left), and the energy norm error (right)

The results of convergence are presented in Figure 10. With the classical approach, theL2 norm
error on the pressure and the energy norm error on the displacement exhibits a rate of convergence
in O(h

3
2 ). The rate of convergence is degrated because of the presence of a singularity in the exact

solution as we can see in Figure 6. With the new approach, thanks to the X-FEM enrichment, we
can catch the singularity and we recover the optimal rate of convergence inO(h2).

5.1.2. Two-dimensional case
The second case studied here is an axisymmetric problem. It is presented in Figure 11. We

consider a cylinder subjected to a volumetric forcef = ur , whereur is the unit radial vector. The
cylinder is held fixed at radiusa= 0.5 and the external radius isb= 1. We chooseλ = 0 andµ= 1

2
for the Lamé coefficients. We want to limit the value ofTr (ε) by α = 0.5. The analytical solution
is given in Appendix C.

The results of convergence are presented in Figure 12. With the classical approach, theL2 norm
error on the pressure and the energy norm error on the displacement exhibits a rate of convergence
in O(h

3
2 ). As in the one-dimensional case, the rate of convergence is degraded because of the

Figure 11: Axisymmetric problem
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Figure 12: Convergence of theL2 norm error on the pressure (left), and the energy norm error (right)

presence of a low regularity in the exact solution. With the new approach, thanks to the X-FEM
enrichment, we can catch the low regularity and we recover the optimal rate ofconvergence in
O(h2) for the L2 norm error on the pressure. Unfortunately, we do not recover the optimal rate
of convergence inO(h2) for the energy norm error on the displacement. It comes from the fact
that the interface is discretized with straight edges while the displacement is quadratic. We could
improve the convergence using the method described in [27].

5.2. A more complex case and related numerical experiments.

We want here to apply the new approach to a more complex two-dimensional case as shown
in Figure 13. The example studied here is a zero centered 2D rectangular plate subjected to a body
force f (x) and held fixed at the bottom. The heightb of the plate is set to 1 and the widtha is set
to 0.5. We chooseλ = 0.9 andµ= 0.6 for the Lamé coefficients.

The following body force is chosen :

f (x,y,z) = xux+yuy (92)

Figure 13: A more complex case

This kind of body force permits us to have a non homogeneous repartition ofTr ε. Without
any constraint, the equilibrium solution can be computed and in this case the iso-values ofTr ε
are ellipses. With the constraint on, we do not know of an analytical solutionfor this example. It
would be too complex to calculate the exact shape ofΩc, but this example exhibits an interesting
repartition ofTr ε such that the numerical research of the shape ofΩc involves several modes.
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The starting position of the interfaceΓ is chosen circular and zero-centered. The initial radius
of the cylinder is fixed arbitrarily atr = 0.1. Only four modes are used to describe the shape
changes. After four iterations, the convergence criteria is reached and the interface is close to
an ellipse. It can be compared to the constrained zone as computed by the classical algorithm,
by displaying the values ofχ. On figure 14, left, we therefore show a representation ofχ, only
evaluated at gauss point during the computation, as a linear by element field.On top of this field
we display the iso-zero value of the level-set representing the interface as obtained with the new
approach. As can be seen on the figure, both method give similar results in term of constrained
zone. The new approach has the advantage of defining the zone in a moreexplicit sense.

The problem we are solving here are for now too small to do a proper efficency comparaison
of the two methods: the solving time is below one minute on regular desktop for bothmethod.
The new method is probably, for equal meshes, more expensive at eachiteration than the classical
one. Indeed The sensibilities for each velocity mode need to be computed, and then an Hamilton
Jacoby equation need to be solved. This last comment can still be nuanced abit since the pressure
field needed to enforce the equality constrain is only defined inside the constrained zone, delimited
by the zero value of the level-set, and the Hamilton Jacoby equation could be solved in a narrow
band only. Over all, the most expensive computations are the assembly and the factorisation of
the linear system needed to solve the elasticity problem. For the mesh we used for the present test
case, this cost is equivalent in both method, since the total number of degree of freedom is 11576
for the classical method and reach 10689 at convergence for the new method.

The advantages of the new method is that it is able to give more precise resultson a given mesh
than the classical one, as shown by the convergence rate in previous section. It provides a clear
answer to the question of the position of the interface, which enable the enrichment its enrichment
to better capture the irregularities of the fields and eventually the description of more involved
physics at this interface.

In order to stress the presented algorithm a little bit more, we tried to solve the same problem
with different starting position of the interface. Figure 14, middle and right, show the evolution
of the constrained zone during the iterations. The middle picture show the evolution when the
starting interface is an off center circle. The right picture show the evolution when the starting
interface is made of two circles. In both cases the algorithm converge to the same final shape as
the one obtain with the previously defeined starting interface. To obtain the correct results, more
modes are needed in this two cases than for the first one. In fact this tests permitted to discovers
that the numbers of mode used are optimally set when it is proportional tol , the total lenght of the
interface divided byh, a characteristic size of the finite elements. Indeed, when the interface lenght
is very small, there is no point to compute a large number of modes, since those modes are going
to be very badly represented on the mesh. When the relative lenght of the interface become larger,
more mode can be used. In the experiment shown here, we used a number of moden such asn is
the closest integer tol2h. Our numerical experiments also shown that, when during the iteration the
local curvature of the interface become to high compared to the element size,the algorithm may
take a very long time or even fail to converge. The case when we started withthe interface made of
two circle is one such a case. Indeed, when the two circles merge, there is apoint where the local
curvature could even become singular. This problem might be due to the fact that we neglicted the
curvature term in equation 80. To avoid computing the curvature, we used the following fix : as
long as the residual in the newton method is big enough, the level-set functionis smoothed prior
to compute the new advance. We used a very simple smoothing the level-set : ateach nodev, the
value of the level-set is replaced by the result of a least-square fit of thelevel-set values at each
nodes connected to the current nodev.
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Figure 14: Left : Comparaison between the classical and new the method. In black, χ = 1, in greyχ = 0, for the
classical method. The interface between constrained and unconstrained zone for the new method is the white line.
Middle and Right : evolution of the interface during iterations for the new approach. Middle: the starting interface is
one off centered circle. Right: the starting interface is made of two circle.

6. Conclusion

We have presented in this study a new approach to deal with continuum media subjected to an
inequality constraint. The main difficulty of inequality constrained minimization problems is that
the shape of the constrained zone is a priori unknown. Hence, the strategy proposed in this paper
is to fix arbitrarily an initial constrained zone and to propagate it correctly until the correct shape
is found following a specific criteria.

After a theoretical presentation of the problem and the classical approach, we have developed
an algorithmic scheme that ensures to find the exact location of the interface.This new approach,
relies on the notion of level-set , which is a powerful tool to represent moving interfaces in a
domain, coupled with a X-FEM enrichment. Several numerical examples havebeen performed
and exhibit a significant gain in convergence compared to the classical approach. Indeed the exact
representation of the constrained zone avoids the loss of convergencedue to the lack of regularity
of the exact solution.

It must be made clear that proposed approach has some limitations related to thediscretization.
If the active zone is too small (or too thin), for the mesh size, it will not be detected. The detection
will only be possible if the loading increases and the zone enlarges. If the knowledge of the loading
for the active zone initiation is important, adaptivity could be introduced.

Finally, the new use of level sets to handle inequality contraints (or ILS in short for Inequality
Level Set) introduced in this paper could be applied to other type of constraints such as inextensi-
bility constraints in hyperelastic materials.

Appendix A

In this appendix, we demonstrate the equation (62). We consider the velocityθ normal to the
interface. If we take into account the continuity of the displacement field andnormal stress accross
the interfaceΓ and assume the volumetric forcef to be continous accrossΓ, we get

τ = n.[[P]].n= (ψ f −ψc)− (σ.n).((∇uc−∇uf ).n) (93)

We will next denote bypc the pressure field on the domainΩc and bypf the pressure field on
the domainΩ f . We then have
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p(x) =

{

pf (x) if x∈ Ω f

pc(x) if x∈ Ωc
(94)

In the same way, we denote byε
c

the strain field on the domainΩc and byε
f

the strain field
on the domainΩ f and we have

ε(x) =

{

ε
f
(x) if x∈ Ω f

ε
c
(x) if x∈ Ωc

(95)

ψ f −ψc = µ(ε
c

: ε
c
− ε

f
: ε

f
)+

λ
2
(α2− (Tr ε

f
)2) (96)

= µ(ε
c
+ ε

f
) : (ε

c
− ε

1
)+

λ
2
(α+Tr ε

f
)(α−Tr ε

f
) (97)

= (µ(ε
c
+ ε

f
)+

λ
2
(α+Tr ε

f
)I) : (ε

c
− ε

f
) (98)

= (
σ

l
+σ

c

2
−

pc

2
I) : (ε

c
− ε

f
) (99)

We thus get

τ = n[[P]]n = (
σ

l
+σ

c

2
) : (ε

c
− ε

f
)− (σ.n).((∇uc−∇uf ).n) (100)

=
pc

2
(Tr ε

f
−α) (101)

= (λ+2µ)−1 p2
c

2
(102)

=
(λ+2µ)

2
(Tr ε

f
−α)2 (103)

On the intertface, we have due to the continuity of the normal stress vector

p= (κ+
3
4

µ)(Tr ε
f
−α) = (λ+2µ)(Tr ε

f
−α) (104)

Appendix B

In this appendix, we detail the analytical solution for the 1D problem

u(x) =

{

αx if 0 ≤ x≤ y
f

6(λ+2µ)(y
3−x3)+ f

2(λ+2µ)L
2(x−y)+αy if L ≥ x≥ y

(105)

ε(x) =

{

α if 0 ≤ x≤ y
f

2(λ+2µ)(L
2−x2) if L ≥ x≥ y

(106)

p(x) =

{ f
2(L

2−x2)− (λ+2µ)α 0≤ x≤ y
0 if L ≥ x≥ y

(107)

Let us now compute the potential energyΦ in the system for any given locationy of the
interface.
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Φ =
∫ y

0

(λ+2µ)α2

2
dx+

∫ L

y
f 2(L

2−x2)2

8(λ+2µ)
dx−

∫ y

0
f αx2dx−

−
∫ L

y
f x(

f
6(λ+2µ)

(y3−x3)+
f

2(λ+2µ)
L2(x−y)+αy)dx (108)

Denotingξ = y
L , and after calculus, we obtain

Φ(ξ) =
f 2L5

(λ+2µ)
(

ξ5

40
−

ξ3

48
+

ξ
128

−
1
15

) (109)

∂Φ
∂ξ

=
f 2L5

(λ+2µ)
(
ξ4

8
−

ξ2

16
+

1
128

) = Lτ(y) (110)

whereτ(y) = [[P]]y is the configurational force at the interfacey.

Appendix C

In this appendix, we detail the analytical solution for the axisymmetric problem

p(r) =

{

−r +D if r < re

0 if r ≥ re
(111)

u= u(r)ur (112)

with

u(r) =

{

α r
2 +

C
r if r < re

− r2

3 + C1r
2 + C2

r if r ≥ re
(113)

ε =





εrr 0 0
0 εθθ 0
0 0 0



 (114)

εrr =







α
2 −

C
r2 if r < re

−2
3r + C1

2 − C2
r2 if r ≥ re

(115)

εθθ =







α
2 +

C
r2 if r < re

− r
3 +

C1
2 + C2

r2 if r ≥ re

(116)

wherer designates the radial coordinate. AndD is the a constant defined by
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D =−
2
3

re+
C1

2
−

C2

r2
e
−

α
2
+

C
r2
e
+ re (117)

C=−
αa2

2
(118)

C1 = (
α
3
+

α
2
+C+

r3
e

3
)

2
1+ r2

e
(119)

C2 =−
2
3
+

C1

2
(120)

The constantre is the zero of the equationg(y) = 0, with g

g(y) =−
2
3

y+
C1

2
−

C2

y2 −
α
2
+

C
y2 (121)
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