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Treating volumetric inequality constraint in a continuum media with a
coupled X-FEM/Level-Set strategy

N. Bonfils, N. Chevaugeon, N. Moés

Abstract

Some mechanical problems involve inequality kinematic constraint. This stutbdigdaan orig-
inal approach to handle those difficult problems. The main issue is the treadfriba variational
inequalities due to the fact that the constrained area is a priori unkndwenméthod, introduced
here, is to find the exact constrained area iteratively starting from an iriihbne. Thanks to
numerical tools such as level-set and X-FEM we turn the constrained mininmzaiblem into
a shape equilibrium problem.

1. Introduction

The goal of this study is to propose a new approach to deal with continuutiasebjected
to a kinematic inequality constraint. A kinematic constraint is a restriction on therrdafions
a body can undergo. In this document, we will treat the problem of a mebjactad to a volu-
metric inequality constraint. In fact, this paper is first step toward handlirexgmsibility limit
constraint in hyperelastic materials.

Classical methods used to enforce inequality constraint within a media aragharge multi-
plier method [2], the penalty method [7], and the augmented Lagrangian m&hddE penalty
method does not permit to enforce exactly the kinematic constraint and @htoleabad condi-
tioning of the tangent stiffness matrix. Both the Lagrangian and augmentgdrngian method
assure the respect of the constraint. However, their numerical treatmagtthe use of specific
algorithms such as the Uzawa method [2] or the Generalized Newton Metha@shf{Bparameters
have to be specified. These parameters play a major role in the convefehose algorithms
and it is often very difficult to choose them appropriately. Note that in messtg, those algorithms
are used to treat inequality constraint on the boundary of a media (uniilatertact condition).
The constraint studied here is a volumetric constraint.

After a brief statement of the constraint minimization problem studied here,ilvdescribe
in the first section an already existing method [6] (close to augmented |lagnamgthod) used
for contact problems and that can be applied to our problem. This is anstitgyenethod since it
does not need the use of a Generalized Newton Method and can be gsirgd kind of Active
Set algorithm [9]. However, we will show that in our particular case, thishoeis not really
efficient. First, it offers poor rate of convergence and the presehuaser-set parameters for the
active set algorithm may deteriorate its stability.

In the next section, we will present our new approach. The strategsiste in turning the
minimization problem under inequality constraint into a shape equilibrium one. ifdguality
constraint induces variational inequalities because we do not knowratheshape of the active
constraint and unactive constraint zone in the media. The strategygepere is to replace the
inequality constraint by an equality constraint over an unknown domais.diimain is called the
active constraint domain. Hence, we assimilate the media to a two elastic phaias @ one
phase, no constraints are imposed and on the second one an equalitginbisimposed. Each
phase has a mechanical behaviour that depends on the state of thainb(attive or inactive).
With the help of the configurational mechanic and the notion of configurdtfonze, the exact



shape of each phase is found iteratively. Finally, the notion of leveR8¢thd the X-FEM [24, 5]
will be used to give an implicit description of the interface separating the tvesgsh Several
numerical tests will be shown in the final section so as to compare the first mettr@new one.

2. Statement of the problem

A linear elasticity two-dimensional problem is considered, with an isotropic lgemaous
material in a plane strain state. Consider the dor@aas shown in Figure 1. On the boundary, a
Dirichlet conditionu = u, is applied o, and a Neumann conditiamn =t is prescribed offi;.
Finally, the whole domain is submited to a body foifce B

In this study we will adopt a particular form of the constraint in the small ssatting. The
constraint reads:

y(e) =Tre—a <00nQ

with g, the classical strain tensor a'rﬁdg the trace oi::.

Figure 1: Problem statement

Let use define the space of kinematically admissible displacements

V={veHYQ)v=ugonly} (1)
V0= {veHY(Q)lv=0o0nly} 2)

And the total potential energy of the mechanical system:

/qJ £)dQ — /fudQ ty.u0r 3)

where(g) = 3¢

Mo

: € andC is the fourth-order elasticity tensor. We are looking for the
infimum of M(u) B

nfN(v), S={veV |y(ew) <0} @

The spacé&is the space of kinematically admissible displacements. The problem (4) is caled th
primal problem. The introduction of the inequality constraint in the searcheointfimum yields

to a variational inequality [11].

If uis an infimum, then
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This result is a variational inequality characterizing the solutioof the problem (4). This is
also the primal variational formulation of this problem. Unlike classical variatigminciples
encountered in solid mechanics, we obtain an inequality because of theagminsc S.

8(9)1C:§(y—u)d92/j-(y—g)d0+ i tg.(v—uydr  Wwes 5)

3. Aclassical approach

3.1. The variational formulation

Constrained optimization problems like (4) are difficult to formulate and to sdhdeed the
inequality constraint prevents us from solving it directly.
The goal of this section is to transform a constrained problem into an stvagred one. In this
section, we will recall how our constrained minimization problem can be wamefd into saddle
point problem using the method of Lagrange multiplier [2] (duality principleSiyst, to take
into account the constraite), we add to the elastic strain energy functipfe) the following
characterisic function N N

W) = W' (e)+ 1y (6)
wherey', is the parent or regular potentiap'(e) = %g :C:¢g) andl~(x), is the characteristic
function of R~ such that B

_ 0 ifx<O0
b= { +o  otherwise 0
The constitutive law then reads:
g=Cre+pl (8)
Y(€) <0, p>0,y(E)p=0 9)

Now, let the Lagrange multiplier trial functions lge These functions reside in the following space

Q" ={qeQq>0},Q={ge L*Q)} (10)

Since
| — 11
e qsélég{qv(g)} (11)

the above infimum problem becomes a saddle-point problem with the followmgidnal :

Lva) = [ [w©+ave]da- [ fyda- [ tovdr (12)

We are looking for the saddle-point of this functional
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|nf supL(v,q) (13)
VgeQt

Unfortunately, there is still an inequality constraint. Indeed, the lagrandgpiiar g has to
respect the positivity conditiog > 0. We still have to solve a constrained problem.
If (u, p) is the saddle point of the functionialyv, q), then

DL(u,p)Y = OWv eV® (14)

DL(u,p)l[g—p] < 0vgeQ' (15)

whereDL(u, p)[g— p] denotes the directional derivative bfu, p) with respect top in the
arbitrary direction(q— p) andDL(u, p)[v] the directional derivative df(u, p) with respect to the
motion in the arbitrary directiomn.

Rewriting (14) and (15), we obtain once again a variational inequality ofiditme [2]:

|ew:

o

£(v)dQ + /Q pTrEVdQ = / fdQ + /r twrw Ve (1)
/Q y(E(W)(q—p)dQ < 0VqeQ' (17)

An alternative is to use an Augmented Lagrangian formulation [12] which érgposition of
an ordinary lagrangian method and a penalty method. This alternative mesiroidgto regularize
the saddle point problem [13] and to give an unconstrained problemm, Wesaugment once again
the functional with a term that ensures the positivity condition [3].

The functional becomes :

LY (v,q) = /lIJr(S)dQ—i-Zl/Q(q—pr( Q——/qde—

/ fvd [ to.vdr (18)

where(...) ; denotes the positive part of the considered quantity,maisch postive parameter,
called augmentation parameter.
The saddle point problem becomes

JF
¢25§£L (v,a) (19)

The constraint o has been removed and the stationnary condition of the above functional
reads:
If (u, p) is the saddle point of the functionit (v, q), then

DL (u,p) = OW eV° (20)

DL™(u,p)[g] = 0Vq eQ (21)

The stationary condition leads to the following formulation
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rs(v)+px(g)Tr8(u)Tre(V)] dQ+ /Q X(9)pTre(v)dQ = /Q [j.y+x(g)paTr§(y) dQ+

+ / tovdr W VO (22)
Mt

- (1-x(9))pqdQ + / X(9)Tre(u)qdQ = / X(9)aqdQ Vg e Q (23)
p Ja Q Q
where
x={ 1 fso (24)

andg designates the augmented multiplier [3]

g=p-+pyE) (25)

The parametep does not affect the correctness of the theorical formulation, but froomzer-
ical point of view its choice does affect the convergence of the schachéha condition number
of the tangent stiffness matrix.

The strong form associated to this problem is depicted in Table 1.

Q
mechanical equilibrium div(ig)+f=0
on=ty
constitutive relation og=C:e+x(gal
P—Xx(g)g=0

kinematic conditions u=Uy

Table 1: The strong form

3.2. Numerical strategy
3.2.1. The active-set algorithm

Starting from the formulation stated previously, we have to solve it numeridailigtly, this
formulation represents a set of non-linear equations even if our setting inthar elasticity.
Indeed, the functiory presented above introduces a non-linearity. This non-linearity due to the
constraint condition could be solved with a Generalized Newton Methot{8}we will use here
another method. A kind of fixed point algorithm described in [14, 6, 151¥618] is here used.
This algorithm is close to the active set method [9, 10] and permits to updativiégrahe values
of X. This active-set algorithm is explained below
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Algorithm 1 Active-set algorithm
Initialization of X(® =0
loop
Computing ofu' et p
Updatingx' = x'(u', p)
if X' = x~1 (convergence criteriorthen
break
end if
end loop

At each step of the loop, the fiejdis completly known over the whole domain. We can then
solve a linear problem, and then update the staje of
In this algorithm, all the states of thefunction are changed at the same time. (this function is
evaluated at the Gauss points since we use a Gauss quadrature intggtatiftortunaletly, the
convergence of this algorithm is proved only if just one state is changedddt iteration. We
prefer here to change all the states at the same time [16] so as to obtain aaiqgéin in speed.
Convergence criterionWe evaluate thg function at the Gauss points during the numerical
integration procedure. The active-set algorithm has converged thieralues of at the Gauss
points has not changed. Lb@i] the vector containing the valuesybf all Gauss points atiteration
i of the algorithm. The algorithm has converged whgh — [X'~1] = [0]. Unfortunately, in this
algorithm, cases of looping between several statesmby occur. These oscillations prevent the
algorithm from converging and may deteriorate the accuracy of the results

3.2.2. The discretization

Once the non-linearity due to the presence of the inequality constraint sdsabe have to
establish the spatial discretization. We dengiest u,, the discrete Lagrange multiplier field and
discrete displacement field. The discretized weak form at iteratadrthe active set algortithm
yields

Find (uy,, pn) such that

a(Un, Vi) +b(pn, V) = 1(Vh) V Vi, € Vh (26)
b(up, ah) + (P, dh) = P(Ch) Y0h € Qn (27)
with

i\ iy~ i1 i
a(Un, V) —/Q £(Up) -%-E(L’h)dQ‘i‘/Q X PTre(uy) Tre(v,)dQ (28)
b(Phoe) = [ X LphTre(u)d02 (29)
1(Vh) :/Q L\lth—F/r !o|-\lhdr‘i‘/Q X'~ paTrg(v,)dQ (30)

. 1 o

C(Ph,Gh) = o /Q h(l—x'*l)p'hqth (31)
b(ch. o) = | X *Tre(u)ande (32)
p(th) = / X' tagndQ (33)

Qn

whereQy, andV;, are the discrete finite dimensions subspacd3 ahdV .
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The discretization of the weak form involves two fields : the displacemantd the Lagrange
multiplier p. The shape functions for the Lagrange multiplier differ from those fordibplace-
ments. Hence, we will use different symbols for the two approximations. cldssical FEM
discretization on an elemef¥, reads

h A
u
Ulo, = Zlﬂi N,

N/

h hnP

Pllo.= > PN (34)
i; N

whereN and N’ is the number of coefficients describing the approximation, ldni the
shape function associated to the coefficientf the use of a Lagrange multiplier field ensures
the respect of the constraint, its discretization involves a major problemedntige interpolation
used has to respect the well-known Ladyzhenskaya-BabuskaiB@npatibility condition [19]
which guarantees the stability of the mixed method.
Denoting

b'(Vh, Gh) = /Q Tre(Vy)ghdQ (35)

This condition reads

. b/(vthh)
inf sup——————=pfh>PB>0 (36)
ged reyn Nalllanlo

Where|| . |1 and|| . ||o designate respectiviely the! andL?(Q) norms, and3 is a positive real
independent of the mesh size.

Among all mixed elements, only a few respect this condition. Moreover, we hsed mixed
elements with discontinuous pressure because we have noticed that thig klechents permits
the stability of the active-set algorithm. These elements can be used bevauke not need
the derivative of the pressure field in the weak formulation. One basiomiscious pressure
element has been selected. The mixed element chosen R2thd1yisc (see Figure 2). This
element is composed of a quadratic displacement enriched by a cubic furdtien and a linear
discontinuous pressure. The upper sctiptesignates the enrichment by the bubble function. The
displacement is enriched with this special function so as to increase treedddhe displacement
interpolation and to ensure the stability of the formulation.

More preciselly, the shape functions for each component of the disptatefield are the
regular second order lagrange shape function (P2), plus a bubiidgdin. The bubble function
that we used is defined in each triangle B&x) = A1(X)A2(x)A3(x) where the\; are the barycentric
coordinates relative to the three nodes of the triangle. The pressuris fielined independently in
each element by a linear combination of the three order one lagrangefsheafien on the triangle.
This finite element formulation therefore give a total number of degreeefiitrmdo f = 2:xnv+
2xne+ (24 3) = nt, wherenv is the number of verticesie is the number of edges amd is the
number of triangle.

4. A new approach

4.1. The strategy

The essential difficulty of the problem described in section 2 is that thenregiere the con-
straint is active is not known a priori. This observation has motivated asirategy of resolution.
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@ displacement

/\ pressure

Figure 2:P2" /P14isc mixed element

We consider here the same dom&irand the same boundary conditions as before. But the strat-
egy proposed here is to split the whole domg&irinto two distinct subdomains separated by

The first domain denoted kY. is the constrained zone or active zone where an equality constraint
is imposed. The second domain denotedhyyis the unconstrained or unactive zone, where no
constraints are imposed.

Q.UQ; = Q (37)
Q.NQ; = 0 (38)
0Q.N0Q; = T (39)

Figure 3: Problem statement 2

On each subdomain, the same linear elastic isotropic homogeneous matenaideoed. But
in the domaim). we impose the following constraint

y(e) =Tre—a=00nQ (40)

The elastic energy in domaii®; andQ. are given by

1 K

We = égzg:ylg@:@D:§D+§a2+|§’(§) (41)
1 K

P = égsg:gzugngDJrE(Trg)z (42)

wherek = A + %u is the bulk modulus, with andu the Lamé coefficients anid(x), is the
characteristic function of O such that

19(x) =

{ 0 ifx=0 (43)

400 otherwise
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The corresponding constitutive laws then read

o, = 2ue” +kal + pl (44)
0, = 24° +KTrel (45)

Note thatp is not the classical pressuré @), it is what is needed foo to be in equilibrium
We can notice that the behaviour in dom&mr andQ. no longer involve inequalities and differ
from the original behaviour (8).

The total potential energyl’(u) of the system reads

M= [ GLER /. Wi(g)do - [ fudo- [ tyuor (46)

The interface between the two domains can be seen as a surface oftidisitprand the
strategy is to propagate correctly the front separating the two elasticgfasmd Q; so as to
find the exact location df. Then, we have replaced the initial problem of a media subjected to a
kinematic inequality constraint by a problem of a media subjected to an equatisyraimt over
an unknown restricted domafp.

The interfacd is a coherent interface, thus the jump of the displacementdibls to vanish
across the interfack, preventing separation, penetration or slipping of the two domains. We do
have the continuity of the normal stress vector.

Let I be fixed for the moment. We are looking for the infimunTtfu)

inf M(v) (47)

veV -

Rewriting (47) as the following saddle point problem

inf supL’(v, q) (48)
VeV geQ

whereL’(v,q) designates the following Lagrangian functional

Uea) = [ [uee) +av@)]dat [ wigda- [ fuio [ (@9

Mt

The stationary condition of the above functional leads to the variatiornal for
Find (u, p) such that:

a(u,v)+b(p,v) =1(v) W €V°

b(u,q) = p(a) Vg € Q (50)
auy) = [ eu):Ciewda (50)
b(p,v) = o, pTrg&)dQ (52)
Wy = [ fvdQ+ | tedr (53)
b(u,q) = /Q CTrg(u)qu (54)
p(@) = /Q Caqu (55)
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The strong formulation associated to this new problem reads:

Qc r Qs
mechanical equilibrium div(g)+f=0 [on]=0 div(g)+f=0
on=ty onoQ:.NIt oan=ty onoQ; NIt
constitutive relation g=Cre+pl o=C:e
Tre—a=0
kinematic conditions u=uyondQ:NMy [ul=0 u=uyondQsNly
e=30W+0W") | e=30W+0W" | =30 +0u)")

Table 2: Thd™ problem

Unlike the previous approach, we obtain a fully linear set of equationdeel, the non-
linearity introduced by the functiog has been removed. The intrinsec non-linearity due to the
presence of the inequality constraint will be solved by changing iterativelyshape of each
phase. Note that this formulation does no involve any parameter since thktygonstraint on
Q. is solved using an ordinary Lagrangian method.

We denote

Pe(ec(x)) if x€ Qe
wie00={ i) xca (56)

Let us consider now the directional derivativel®f(u) for a configurational change of I".
Here,u is the solution of the infimum problem (47) for a given locatiomf the interface. We

could then writd1’(u) = N’(u(l"), ).
Following [20], we get:
D/(u(r).F)e] = [ Dwslelda+ | DuelaQ + [ wiD(aQ)fE]+ | weD(d)[el -
~ [ tyDulgldr - [ Dffel.ude— [ f.Dueldo— [ 1.uD(dQ)[E57)
It Q - Q— Q—
DIV (u(r).F)ie = [ o:e(Pughde+ [ o:e(Due)da- [ tyDuldr - [ f.Dugda+

[ Q™ It

+/Q (Wf—f.u)0.6—0: (Ou.008) —DF[6].udQ +

+/ (We— f.u)0.8—g: (0u.06) — D [6].udQ (58)
Qc

The first four term above in the right hand side cancel out becaueaquilibrium. Then
noting the expression of the Eshelby tensor [21]

(59)

ligs)
I
€
\\c:)/
|
_
=5
[|=—
|
|}
[y
_|
a



we get

DI (u(r).)[6) = | 8.[P].ndr (60)

After calculus (Appendix A), we get

DI (u(T), (6] :/rredr 61)
where
aPE (M2
T=(A+2p) 15: 5 (Tre, —a)? (62)

Remark The termt is the driving force or the configurational force acting on the interface
. One can notice that the configurational force is always positive wiiatbe location of the

interface.
The exact location of the interface is the one that verify the following optimalitgréa.

Qc r Qg
configurational equilibrium divP+0fu=0 1=0 divP+0Ofu=0
optimality conditions pc >0 Tre, —a<0

Table 3: Thd™ optimality

Indeed, if the configurational equilibrium is satsified, theis continous accrodsandp > 0.
Moreover, Tre is also continous accrogsand Tre < a. In this case, the coupleu, p) verify
the equilibrium conditions, the boundary conditions, and the Karush-Rufcker conditions of
optimality (9). Hence(u, p) is the solution of the problem (4). The final algorithm, therefore
will consist in finding the position of such as the configurational equilibrium defined in Table 3
is ensured . Then, we verify the conditions of optimality exposed in Tabler8urfl the points
where these two conditions are violated, a new trial boundary needs tarbéticed . We then
evolve once again the whole new interface so as to verify the configuahgquilibrium.

4.2. Analytical solution on a one-dimensional example

Let us consider the simple one dimensional problem in the small strain elastssttitig with
uniaxial state of strain as shown in Figure 4. We wish to limit the uniaxial stramtoiss by a
valuea under a linear prescribed loddx) = fx.

We split the bar into two domains. The constrained dorfay] and the unconstrained domain

[y, L].

Figure 4: A one-dimensional example
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The exact displacement, strain, and pressure field expression alopay tfee any given loca-
tion y of the interface are given in Appendix B.
We choosex such that the exact location of the interfagés at the middle of the bar.

3f 5
a=———-L
8(A +2u)
Denoting€ = % andd = 77, the exact strain and stress fiefland& are depicted in
Figure 6.
The evolution of the potential energy and the configurational force withaditetion of the
interface are depicted in Figure 5 and the analytical expression areigive@pendix B.

(63)

oy |
P s 0.06 32 2120
-0.06 | 1 0.04 | ]
0.02 | 1
-0.065} .

1 0 !
0 0.5 1 0 0.5 1

& &

Figure 5: Evolution of the potentiel energy (left) and its derivative (righth &

0.5 ——— 0.5 ——— 05—
\§ - \§ - \§ P
o P [o JNE— o
0.4} ] 04L ] 04F ]
R G WWMWMWW
0.3} ] 0.3 03} L
0.2} ] 0.2 021} ]
0.1} ] 0.1 01} ]
0 - 0 - 0 -
0 05 1 0 05 1 0 05 1
X X X
L L L

Figure 6: The strain and stress field for: 1 (left), & = 1 (middle),& > 3 (right)

When the interface is not located at the exact position, the strain field isntiisgous at the
interface. On can notice that the potential energy of the system is statiovizey the interface
is located a€ = 3. It means that at the exact location of the interface, the configuratiorze f
is zero, as one can see in Figure 5. Finally, one can see that the catifigal force is always
positive whatever the location of the interface and is minimum at the exact Incatience, the
total potential energy is always increasing with the location of the inte§addée exact location
makes the potential energy stationary but not minimum as one can see in Figure

12



4.3. Shape sensitivity

The goal of this section is to establish the changguip) as a result of the migration of the
interface. Consider the perturbed constrained Zohand the perturbed unconstrained z@ie
Let us introduce a velocity fielfl responsible for the migration of the interface and the following
transformation:

Qc — Qf
X =X+ T10(X) VX € Q¢
Qf — Q?
Xy = X+ 18(X) VX € Qf
The shape change of each phase is expressed using a sufficientih sreloaity field6 and
a parameter. The trick introduced in [25] is to use the classical continuum terminology and
assimilate the change of shape to a motion of a body. We rewrite the state eqg8jiarith the
parameter.

a(t,u,v) +b(t, p,v) = I(T,v) W € V° (64)
b(t,u,q) = p(t,0) Vg € Q (65)
Taking the derivative of the above equation with respect to

ou op , odl(tv) oda(t,yyv) db(t,u,q) 0
(T, E’y) +b(r’ﬁ’” oot et ot wev
ou . 0p(t,q) ab(t,u,q)
bt 5 D=5 —— 5 V4€Q (66)
Defining ¥ = uand % = p, the above formulation becomes
Find (U, p) such that:
/ £(0) :C e(v)dQ + / pTrewdQ — [ poe’:Ovdo— / p div(®)Tr (Dv)dQ +
- = Qc Qc QC

+ [ tg(—n.08"n+ div(8))vdr +
rr

+/ F(x) div(g).ydcz+/(mfg).yd9+
Q Q -

+ [ T:0vdQ W eV° (67)
L

with T = [C: (Dud8)s+C : Osu8™ —C: Oeu div(6)]

[ Te@ade = [ Tr(OumB)gade - [ T (0w div@)qde+
Qc Qc

C

+ / a div(8)qdQ Vg € Q (68)
Qc

We can notice that the two bilinear forms of (66) are similar to the bilinear forr&X)f Only
the linear forms on the right hand side are different and they imply the kdowlef the fields
(u, p) and the velocity field. This weak form can be discretized as the previous one.

If we use the same approximation for the two couple of fi¢ld®) and(u, p), we will obtain
two linear systems to solve with the same tangent stiffness matrix. From a nulrpeiitaf view,
this remark has a huge importance, since we will not have to compute twice gentanatrix. If
we use a LU solver for the two linear systems, we then make the LU decompgsgtance.
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4.4. Numerical Strategy

The goal of this section is to present the numerical tools and the numermadare to move
the interfacd™ towards its exact location.

4.4.1. Level-set/X-FEM

To represent the surface of discontinuity separating the dof2aiet Qs we used the notion
of level-set [23, 22]. The level-set method permits an implicit representafisarfaces through
a higher dimensional functiog(x).
A level-setis a function that evaluates at each point of the domain the diljgtadce to the surface
of discontinuity. The surfack is then defined by

M= (x| o(x) =0} (69)

By convention, the sign of the level-set is negative if the point is locat€2l.iand positive if
the point is located ;.

P(x) <0if x€ Q¢ (70)
Po(x) > 0if x € Qg (71)

The iso-zero of the level-set locates the true location of the interfaceeVéleset is evaluated
at the nodes of the mesh and we interpolate these values with the classicalrteegaolation
functionsN;.

ox) = Ni(X)@ (72)

Because of the presence of the surface of discontifiuitthe strain tensor field presents a
discontinuity. To avoid poor rates of convergence we enrich the clasgipeoximation through a
partition of unity technique for strain jump [5]. The classical discretizatiar) &comes

N N’
W, = Zlui“NH > NJF(x)b (73)
i= =1

Additional degrees of freedoin have been added at the nodes for which the support is split
by the interface. The enrichment functibnis chosen such that its gradient is discontinuous along
I". Thus, we can represent the discontinuity in strain. The fun&igndefined as [5]:

F(X) =D [aINX) =15 aNi(x)] (74)

The functionF is depicted in Figure 7, for a one dimensional case.

In our case, we enrich the linear part of the approximation. It means mal‘j‘tfunctions are
the classical linear interpolation function even if tigare quadratic. The pressure figlds only
defined over the domaif2.. To take into account the presencd ¢the weak form involvingp is
integrated only orQ.. Thanks to the level-set notion, the interfdcelo not need to be meshed.
We just have to take care of the integration step as desribed in [4].
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Figure 7: The enrichment function

4.4.2. Front evolution

We have shown in section 4.1 that the condition in Table 3 ensuresuhatis the solution
of (4). Numerically, we will first find the location of the interface that ersuthe conditiort = 0.
When this location is found, we verify the two other one.

Thanks to (62), the condition= 0 onT is equivalent to the conditiop = 0 onl". Rewriting
this condition as a variational form, we get

/r pgrdr = 0Vg* € L3(M) (75)

We now take the directional derivative of (75) for a configurationandev, wherev is a
normal velocity responsible for the migration of the interféce

o ([ perar ) i = [ Dpiv + | perarly (76)

Since

whered denotes the curvature of the interface ahg;.v is the surfacic divergence of
We thus get

D (/r p¢dr) V] :/er[y]Q*dH/rﬁpy.nq*dr (78)

The algorithmic scheme is the following. We first initialize= I'g. And then at iteratiork,
we calculate the velocity, using the following Newton-Raphson procedure

[ parar+o ([ perar) ) -0 79)
Mk Mk
/ pqidr + / Dplvardr + / 9py.ng'dr =0 (80)
Mk Mk Mk

If we use a modal representation for the velocity figlénd the test functiong

V=) Rvin (81)

G =R (82)
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The modeds are functions defined over the interfdceTo do so,I" is parametrized using a
curvilinear abscissac [0, 2r]. Two types of modes are here introduced to describe the field.

e COSinus modes

F = coqis) (83)

e sinus modes

R = sin(is) (84)

If we neglect the curvature terifp, 9 py.ndl” that becomes small gstends to zero, we get

/. pewdarar =~ [ paar (85)
Mk Mk

that leads to the following matricial system

SV = [P] (86)

where[S is the matrix containing the sensitivity pfto the migration of the interface for each
modeshin, and[P] is the vector containing the coefficients of the modal projection of the pressu
field p on the interface .

We now present the procedure to calculate the méHixFor example, we want to determine
the sensitivity ofp to the migration of the interface for the modeThis field is denote® p[Fn].
To calculate this field using the formulation developed in section 4.3, we fiest tteextend the
velocity Fn to the whole domaif.

Let us define the extended velocByas

8 = R(s(x) De(x)r (x) (87)

Where the gradient of the level-setp is used to make the velocity hormal to the interface.
Since the level-set function is a signed distance function, it must be of hoifhe last function
r(x) is a function which permits to extend the velodidy This function is only non zero in a thick
band, where its value is 1. This band can be defined as a layer of elemaumsl éhe interface.
The Figure 8 shows the band around a circular interface.

The size of the band determines the size on which the right side of (6768haéed to be
computed. The optimal size of the band with regard to numerical accuracpevtthe subject
of further work. But, in all numerical experiments shown in this study, thedbd@as a thickness
of approximately 4 elements. As defined abaves a curvilinear coordinate along the interface
. This curvilinear coordinate needs to be extende@ifor equation 87 to make sense. One
possibility is to computes at each noder of the mesh by taking the value sfon the closest
node tov on the interface. This algorithm is very similar to some implementation of the velocity
extension algorithm very common in level-set method, where a field only kowthe iso-zero
of the level-set need to be extended every where else [23].

Once the fieldp[6;] is known, we determine the modal projection of this field on the interface
I. The coefficients found constitutes the vegtof the matrix[§.
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Figure 8: The band of elements around the level-set on the left, and timaheelocity on the right

Once the velocity fieldy is found, the final step is to propagate the level-set by solving the
following Hamilton-Jacobi equation. [26] To solve it, we use the triangulagesions of the level-
set methods as presented in [23], more preciselly, the so called explitit@osefficient scheme.

0Q(x,t*)
ot*

+ (Vie-n) [ Do(x,t")[| = 0 (88)

Wheret* designates a fictious time.

Once the level-set is propagated, we have to renormalize the level-sgttnsisame type of
equation.

Convergence criterionAfter each propagation step, and once the level-set is normalized, the
equilibrium (50) is solved. Then, the following criteria is computed

Cp= (/r p2dI'> ’ <e (89)

wheree is a tolerance that can be set arbitrarily.

If the convergence criterion is not verfied, a new interface velocitysprded, and the level-
set is once again propagated.

The whole algorithm, composed of two overlaped loops, is detailed below

4.4.3. Discretization

To enforce the constraint imposed ©q, we have used a Lagrange multiplier approach. We
have to discretize both the displacement and the Lagrange multiplier fieldsxphesred in the
previous part, we have to use specific mixed elements that satisfy the LBBtioon Unfor-
tunately, the ridge function introduced in the X-FEM enrichment modify the fidiiteensions
subspac¥®},. However, it is shown in [28] that the stability of enriched mixed element isqureed
through the numerical inf-sup test. Where the pressure is defined (@épts that have at least
one node insid€¢), the element used is tfR2/Plcon: (Se€ Figure 9). This elementis composed of
a quadratic displacement and a linear continous pressure. Here, thfecoséinuous pressure ele-
ment is possible unlike with the classical approach where this type of elenserstscproblems of
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convergence of the active-set algorithm. Other element are simply clegsadratic lagrange el-
ement for the displacement field. Each component of the displacement fiefthisr enriched, at

all the nodevethat have there support cut by by the functiorF defined previously. This formu-
lation therefore give a total number of degree of freedwo f = 2xnv+ 1x nvp+ 2x ne+2xnve
wherenv s the total number of nodesgthe total number of edgesypthe total number of node
where a pressure is defined, amee the total number of node where the displacement field is
enriched.

@ displacement

/\ pressure

Figure 9:P2/P1¢ont mixed element

5. Numerical examples

5.1. Convergence studies

Two cases will be studied here. A one-dimensional case and a cylinderfaawhich the
analytical solution is known. The analytical solution will be used to determinb-tmvergence
of each method. To compare the exact and the numerical solution, we uké tloem for the
pressure field (90) and the energy norm for the displacement (91).

(Ja(Pn— Pe)?dQ) ?

e = T (90)
(Jq PEAQ)?
(Jalep - £B):C: (68 - eB)aa )
(ereDX : g : sg’de>

Algorithm 2 Algorithm of front evolution
1: Compute(u, p) using (50)
2: while Conditions of optimality in Table 3 are not verified

3: Detect points where these conditions are violated
4: Initialize an interface around these points
5. loop
6: Compute(u, p) using (50)
7: if cp < ethen
8 break
9 end if
10: ComputeDp|q | for each mode
11: Compute the front velocity using (86)
12: Update Level-Set
13:  end loop
14: end while
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5.1.1. One-dimensional case

We apply now the new approach to solve the simple one-dimensional probléra small
strain elastostatic setting with uniaxial state of strain described in section 4 Risleo limit the
uniaxial strain of a truss by an arbitrary valaeinder a prescribed loafdx) = fx. We seto = 8,
A+2n=1,f=1andL=1.

The analytical solution of this problem is given in Appendix B.

1 0.1
CIasNS|caI approacrlsee Classmal approachh+
3 Ew approac
0.1} PP XK 0.OF] approac
/d
— 0.01} ~  0.001F 2
& o)
> > '
S 0.001F c S 0.0001F /
of &
0.0001} & 1e-005} &
1e-005 - - 1e-006 - -
0.001 0.01 0.1 1 0.001 0.01 0.1 1
log(h) log(h)

Figure 10: Convergence of th& norm error on the pressure (left), and the energy norm error (right)

The results of convergence are presented in Figure 10. With the clagsicaach, th&? norm
error on the pressure and the energy norm error on the displacexhdnit®a rate of convergence
in O(hg). The rate of convergence is degrated because of the presendagidilasty in the exact
solution as we can see in Figure 6. With the new approach, thanks to thdeRiichment, we
can catch the singularity and we recover the optimal rate of converge@édi

5.1.2. Two-dimensional case

The second case studied here is an axisymmetric problem. It is presentediie F1. We
consider a cylinder subjected to a volumetric fofce u,, wherey, is the unit radial vector. The
cylinder is held fixed at radius= 0.5 and the external radiuslis= 1. We choos@ =0 andu= %
for the Lamé coefficients. We want to limit the valueTof(e) by a = 0.5. The analytical solution
is given in Appendix C. N

The results of convergence are presented in Figure 12. With the claggicaach, th&? norm
error on the pressure and the energy norm error on the displacexhdrit®a rate of convergence
in O(h%). As in the one-dimensional case, the rate of convergence is degradadde of the

Figure 11: Axisymmetric problem
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Figure 12: Convergence of th& norm error on the pressure (left), and the energy norm error (right)

presence of a low regularity in the exact solution. With the new approaahkshto the X-FEM
enrichment, we can catch the low regularity and we recover the optimal ra&i@neérgence in
O(h?) for the L? norm error on the pressure. Unfortunately, we do not recover ttimaljrate

of convergence ifO(h?) for the energy norm error on the displacement. It comes from the fact
that the interface is discretized with straight edges while the displacemeradsagie. We could
improve the convergence using the method described in [27].

5.2. A more complex case and related numerical experiments.

We want here to apply the new approach to a more complex two-dimensioeaheahown
in Figure 13. The example studied here is a zero centered 2D rectanigiasybjected to a body
force f(x) and held fixed at the bottom. The heidghof the plate is set to 1 and the widths set
to 0.5. We choos@ = 0.9 andu = 0.6 for the Lamé coefficients.

The following body force is chosen :

f(xy.2) =xu +yy, (92)
N\ANNT T T /7
NN\ V1
o
VWA A R NN
a>,//Il\\\
[AYWANWANWANWAAN

Figure 13: A more complex case

This kind of body force permits us to have a nhon homogeneous repartitibneofWithout
any constraint, the equilibrium solution can be computed and in this case theliszs of Trg
are ellipses. With the constraint on, we do not know of an analytical soltdicthis example. It
would be too complex to calculate the exact shap@gfout this example exhibits an interesting
repartition ofTr € such that the numerical research of the shap@dhvolves several modes.
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The starting position of the interfageis chosen circular and zero-centered. The initial radius
of the cylinder is fixed arbitrarily at = 0.1. Only four modes are used to describe the shape
changes. After four iterations, the convergence criteria is reachedhaninterface is close to
an ellipse. It can be compared to the constrained zone as computed bydieatlalgorithm,
by displaying the values gf. On figure 14, left, we therefore show a representatiop, anly
evaluated at gauss point during the computation, as a linear by elementiietdp of this field
we display the iso-zero value of the level-set representing the interfagktained with the new
approach. As can be seen on the figure, both method give similar resultminfteonstrained
zone. The new approach has the advantage of defining the zone in axptiot sense.

The problem we are solving here are for now too small to do a propeerdifccomparaison
of the two methods: the solving time is below one minute on regular desktop fomieitinod.
The new method is probably, for equal meshes, more expensive ateation than the classical
one. Indeed The sensibilities for each velocity mode need to be computetheanan Hamilton
Jacoby equation need to be solved. This last comment can still be huabitethae the pressure
field needed to enforce the equality constrain is only defined inside thraioesl zone, delimited
by the zero value of the level-set, and the Hamilton Jacoby equation coutdveel $n a narrow
band only. Over all, the most expensive computations are the assemblyeafattibrisation of
the linear system needed to solve the elasticity problem. For the mesh we uteslfoesent test
case, this cost is equivalent in both method, since the total number oedefreedom is 11576
for the classical method and reach 10689 at convergence for the rniedne

The advantages of the new method is that it is able to give more precise msaltgven mesh
than the classical one, as shown by the convergence rate in prevaiissét provides a clear
answer to the question of the position of the interface, which enable théeraiitt its enrichment
to better capture the irregularities of the fields and eventually the descrigtioome involved
physics at this interface.

In order to stress the presented algorithm a little bit more, we tried to solvertie@@blem
with different starting position of the interface. Figure 14, middle and ridiwsthe evolution
of the constrained zone during the iterations. The middle picture show ttéatiemowhen the
starting interface is an off center circle. The right picture show the evolwtioen the starting
interface is made of two circles. In both cases the algorithm converge tathe final shape as
the one obtain with the previously defeined starting interface. To obtain thectoesults, more
modes are needed in this two cases than for the first one. In fact this ¢eststed to discovers
that the numbers of mode used are optimally set when it is proportiohahe total lenght of the
interface divided by, a characteristic size of the finite elements. Indeed, when the interfad# leng
is very small, there is no point to compute a large number of modes, since thdes are going
to be very badly represented on the mesh. When the relative lenght ofehfage become larger,
more mode can be used. In the experiment shown here, we used a ndmitmetem such asis
the closest integer t%. Our numerical experiments also shown that, when during the iteration the
local curvature of the interface become to high compared to the elementr@zagorithm may
take a very long time or even fail to converge. The case when we startethwittterface made of
two circle is one such a case. Indeed, when the two circles merge, thepeirst avhere the local
curvature could even become singular. This problem might be due to thtedheve neglicted the
curvature term in equation 80. To avoid computing the curvature, we usdadltbwing fix : as
long as the residual in the newton method is big enough, the level-set fumctaomothed prior
to compute the new advance. We used a very simple smoothing the level-setichatode, the
value of the level-set is replaced by the result of a least-square fit dévbeset values at each
nodes connected to the current nade
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Figure 14: Left : Comparaison between the classical and new the methdaack, x = 1, in greyx = 0, for the
classical method. The interface between constrained and uncondte@ine for the new method is the white line.
Middle and Right : evolution of the interface during iterations for the newaggh. Middle: the starting interface is
one off centered circle. Right: the starting interface is made of two circle.

6. Conclusion

We have presented in this study a new approach to deal with continuum mégtated to an
inequality constraint. The main difficulty of inequality constrained minimization lgrob is that
the shape of the constrained zone is a priori unknown. Hence, theyytratgposed in this paper
is to fix arbitrarily an initial constrained zone and to propagate it correctiy ttne correct shape
is found following a specific criteria.

After a theoretical presentation of the problem and the classical agpreachave developed
an algorithmic scheme that ensures to find the exact location of the inteffaisenew approach,
relies on the notion of level-set , which is a powerful tool to representimgonterfaces in a
domain, coupled with a X-FEM enrichment. Several numerical examplesleem performed
and exhibit a significant gain in convergence compared to the classjpalah. Indeed the exact
representation of the constrained zone avoids the loss of converdeade the lack of regularity
of the exact solution.

It must be made clear that proposed approach has some limitations relatediszth@zation.
If the active zone is too small (or too thin), for the mesh size, it will not beadete The detection
will only be possible if the loading increases and the zone enlarges. Ihthel&dge of the loading
for the active zone initiation is important, adaptivity could be introduced.

Finally, the new use of level sets to handle inequality contraints (or ILS irt &trdnequality
Level Set) introduced in this paper could be applied to other type of camstsich as inextensi-
bility constraints in hyperelastic materials.

Appendix A

In this appendix, we demonstrate the equation (62). We consider the veauitymal to the
interface. If we take into account the continuity of the displacement fielcghandal stress accross
the interfacd” and assume the volumetric forgeto be continous accro$s we get

T=n.[P].n= (Y5 — Wc) — (a.n).((Ou; — Ouy).n) (93)

We will next denote byp. the pressure field on the domdi and byps the pressure field on
the domainQs. We then have
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_ [ pr(x) if xe Qs
p(x)_{ Pe(x) if x€Qc 59

In the same way, we denote bythe strain field on the domaf. and byg the strain field
on the domai2s and we have

e (x) if xe Qg
_ ) =t
_ . . )\ 2 T 2 96
Wi—We = MEE —EE)+5(a"—(Tregy)7) (96)
A
= METE) (g, —8) +5(a+Tre)(a—Tre ) (97)
A
= (Mg te) FH@+Tre ) (g —¢) (98)
o+0
22 Peyy.
= (TC_EI:)'(EC_%) (99)
We thus get
gl +gc
t=n[Pln = (F5=°):(g,~g) — (@n)-(Ou—Ouy).n) (100)
= %(Trgf—a) (101)
2
= (7\+2u)’1% (102)
_ @ +22“) (Tre, - a)? (103)
On the intertface, we have due to the continuity of the normal stress vector
3
p= (l(Jrzlu)(Trgf —a)=A+2u)(Trg, —a) (104)
Appendix B
In this appendix, we detail the analytical solution for the 1D problem
ax if0<x<y
u(x) = o 105
) { 76@12“) (y3 —x3) + 2(A12u) L2(x—y)+ay ifL>x>y (105)
o ifo<x<y
e(X) = e 106
> {M(Lz—xz) ifL>x>y (106)
frr2_y2
[ 523 - (+2ma 0<x<y
P(X) { 0 ifL>x>y (107)

Let us now compute the potential energyin the system for any given locationof the
interface.
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Y (A +2p)a? 5 (L2 —x2)2
dJ_/Oiz dx+/yf )\Zudx/fax

L f f
—/y fx(76()\+2u)(y3_xs)+72()\+2u)l' (x—y) +ay)dx

Denotingg = % and after calculus, we obtain

f2|_5 ES 23 E

1

*® = Arzp'a0 28t 128 1B

Lt(y)

NGRSO
06  (A+2u)'8 16 128
wheret(y) = [P]y is the configurational force at the interfage
Appendix C

In this appendix, we detail the analytical solution for the axisymmetric problem

ifr<re

_J —-r+D
p(r)_{ 0 ifr>re

with

ifr>re
& 0 O
gz 0 €00 0
0O 0 O
9-5 ifr<re
&r =
—2r+$-% ifr>re

ifr<re

899{ C c2
r 1 H
—§+7+r*2 IfrZre

wherer designates the radial coordinate. Abds the a constant defined by
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D——:23r6+C21—cr:§—;+é+re (117)
aa?

c3:—2 (118)

C1 (%+% c+§ﬁ1ag (119)

Co= 242 (120)

ay)=—yt+t—-> -5 -5+ (121)
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