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Statistical practitioners frequently wish to know whether a variable is symmetrically 

distributed. There are a number of different tests available but the most commonly used 

one is perhaps that based on the standardised third central moment, as defined by Pearson 

and Fisher in the early 1900:s. While this traditional skewness measure uniquely 

determines the symmetry of a variable within the Pearson family, it does not uniquely 

determine symmetry for a general distribution. In this paper we propose a modified 

version of the classical skewness test which is easy to conduct and consistent against a 

wide family of asymmetric distributions.  
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1. Introduction 
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Statistical analysis frequently involves assessing the shape of the distribution. In 

particular, it is often of great importance to know if a variable is symmetric about its 

centre or not. Examples include studies conducted of income distributions, stochastic 

variation in quality control and pharmaceutical analyses, which requires appropriate 

statistical methods. According to the literature it appears that in the early 19th century, 

skewness and asymmetry were almost considered as identical concepts (for example, 

Yule, 1917,  Pearson, 1905). Later on the standardised third order central moment came 

to dominate the literature, and it is sometimes considered to be identical to the term 

“skewness statistic”, even though it is formally only one of several possible measures. 

Fisher (1929) derived sampling distributions of the third central moment and therefore, in 

a sense, put this statistic into a context of hypothesis testing. The third central moment is 

well known to uniquely determine the (a)symmetry of distributions within the Pearson 

family (Ord, 1972 ) and is nowadays a standard option in most computer packages. In the 

1940s and later, it was recognised that tests based on this statistic cannot be expected to 

have power against asymmetric distributions with zero third order central moment 

(Churchill, 1946). Hence a number of alternative tests have been developed which all 

have their own pros and cons. To mention some important contributions, Antille et al 

(1982) considered a family of asymmetry tests for unimodal distributions based on 

symmetric differences of gaps, while Doksum et al (1977) proposed plots with 

confidence bounds to assess asymmetry. Csörgö and Heathcote (1987) proposed an 

asymmetry test based on the fact that a random variable is symmetrically distributed 

about its mean if, and only if, its characteristic function is real. In general, no test can be 

said to be uniformly superior; issues of robustness to irrelevant distributional properties, 

levels of complication and size/power properties vary strongly between families of tests. 

In this paper we introduce a modification of the standardized third central moment to test 

whether a random variable is symmetrically distributed. More specifically, the test 

statistic proposed is shown to be a function of the standardized third central moment plus 

a function of the difference between the mean and median. Hence it has the potential to 

detect asymmetric distributions that tests based only on the third central moment cannot. 

Moreover, bootstrap consistency of the test statistic is proved and hence an operational 

Page 2 of 20

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 2 

test is available. A Monte Carlo simulation is included to investigate some size and 

power properties of the proposed test relative to tests based on only the third central 

moment. It is also demonstrated that the bootstrap consistency of the proposed statistic 

allows for graphical investigation of the (a)symmetry of the investigated variable. In the 

following sections we will pay more attention to these matters. 

 

 

2. Testing symmetry versus asymmetry 

 

A random variable X is said to be symmetric if and only if ( ) ( ) 1X XF a x F a x− + + =  for 

all x in � . The definition itself does not lead to a feasible test of symmetry and a number 

of approaches have been proposed in the literature. In this section we will present a 

modified skewness coefficient for testing asymmetry, restricting ourselves to properties 

of purely continuous variables. One of the most commonly applied measures is perhaps 

the classical skewness coefficient defined by  

                                                              3 2

3 2γ µ µ=                                                       (2.1) 

where [ ] r

r
E X E Xµ  = −   is the r:th central moment. The skewness coefficient plays an 

important role as a characteristic of a random variable and is frequently used as a 

measure of shape. The null hypothesis 0H : 0γ =  (or equivalently 0 3H : 0µ = ) may be 

tested by the sample skewness defined by 3 2

3 2
ˆ m mγ = , where ( ) ( )

1
1

jn

j ii
m n X X

=
= −∑ . 

If X  is distributed independently with kurtosis 2

4 2 3β µ µ= =  and skewness 0γ = , then 

we have the well-known result 

                                                            ( )ˆ6 0,1n Nγ→
l

,                                               (2.2) 

 

(e.g. Bowman and Shenton, 1975). Hence the null hypothesis 0H : 0γ =  may be rejected 

when the squared left hand side of (2.2) exceeds a pre-determined percentile of the ( )
2

1
χ  

distribution. In the following we will refer to that test as the Fisher skewness test. An 

alternative test was proposed by Holgersson (2006) who showed that the distribution of 
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3m  may be consistently estimated by bootstrapping, without the assumptions of 

homoscedasticity and a kurtosis of the value 3. This paper is not so much concerned with 

robustness aspects but rather the family of asymmetric distributions that the skewness 

coefficient can detect. For distributions within the Pearson family the γ  coefficient is 

well known to uniquely determining whether a variable is symmetric or not  (Ord, 1972). 

On the other hand, there are asymmetric distributions outside the Pearson family where 

the third central moment vanishes and the test based on (2.2) thus cannot have power 

against these distributions (Churchill, 1946, Stuart and Ord, 1993). We will therefore 

consider a modified version of γ . Let the population mean and variance be defined by 

[ ]E Xµ =  and [ ]22
E Xσ µ= −  respectively and let ψ  be an arbitrary measure of 

centrality of X that coincides with µ  for symmetric distributions. We may then obtain a 

family of skewness measures by [ ]33
E Xθ σ ψ−= − . In order to investigate the relation 

between this statistic and the regular skewness measure we expand it about µ : 

  

                  [ ] [ ] ( )3 33 3 23E X E Xθ σ µ µ ψ σ µ λ λ− −= − + − = − + +                        (2.3) 

   

where ( )λ µ ψ σ= − . The first term of (2.3) is clearly the γ  coefficient. Thus, even 

though θ  cannot be expected to uniquely determine symmetry for all variables, it is 

evidently more general than the traditional γ  skewness measure and has therefore great 

potential for asymmetry testing. The crucial question is then which ψ  to employ. Two 

obvious candidates are the mode ( m ) and median ( M ) respectively, but other 

possibilities include linear functions of order statistics (L-statistics). Ideally, one would 

like to have ψ  far from µ  for asymmetric distributions but there is also a simplicity 

aspect.  Stuart and Ord  (1993) gives a definition of unimodality and argue that 

( ) ( )3m Mµ µ− ≈ −  for unimodal distributions with only moderate asymmetry, while 

Hotelling and Solomons (1932) argue that ( )Mµ σ−  is bounded whereas ( )mµ σ−  is 

not. This speaks in favour of the mode over the median. The mode will not, however, be 

very practical for multimodal distributions as the modes may then be far from the centre 
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of the distribution, even for symmetric distributions. Moreover, using the mode will lead 

to difficulties in finding an operational test statistic. As simplicity is an important issue in 

this paper we will therefore disregard the mode and restrict ourselves to the median, M . 

Hence our proposed measure of asymmetry takes the form [ ]33
E X Mθ σ −= − , i.e., 

 

                            [ ] ( )33 23 +E Xθ σ µ λ λ γ ν−= − + + =                                               (2.4) 

 

( )where Mλ µ σ= − , [ ]33
E Xγ σ µ−= −  and ( )23ν λ λ= + . A sample version of θ  is 

obtained by  

( ) ( )( )( )3
3

1 21

ˆ ˆ1
n

i ni
n X Xθ σ −

+=
= −∑                                   (2.5) 

where ( )( )1 2n
X

+
 is the sample median defined by the ( )1 2 :n th+  ordered value of 

{ }
1

n

i i
X

=
, ( ) ( )22

1
ˆ 1

n

ii
n X Xσ

=
= −∑  and the sample size n  is taken to be odd, i.e.  

( )2 1n +∈ +� . Even sample sizes require a small modification of the sample median (e.g. 

David and Nagaraja, 2003). Note that (2.5) may be expanded in two equivalent forms: 

 

                                                        ˆ ˆ ˆθ γ ν= +                                                                 (2.6)       

and  

        ( )( ) ( )( ) ( )( )( )2 3 3

3 2 11 2 1 2 1 2
ˆ ˆ3 3  

n n n
m m X m X Xθ σ

+ + +
′ ′ ′= − + −                                 (2.7) 

 

where ( )
1

1
n r

r ii
m n X

=
′ = ∑ , ( )

3
3 1

1
ˆ ˆ

n

ii
n X Xγ σ − −

=
= −∑ ,  ( )( )( )1 1 2

ˆ ˆ
n

m Xλ σ
+

′= −  and 

( )2ˆ ˆˆ 3ν λ λ= + . Equation (2.6) is convenient in examining the difference between θ̂  and 

the γ̂  while (2.7) is more convenient when establishing asymptotical properties. In 

particular, if ( )r

r i
E Xµ = < ∞  and 

i
X  is iid distributed with 9

i
E X δ+  < ∞   then  

( ) ( )2 1 2

r r pE m n
δµ ο − ′ − =   1, 2,3r = , for all 0δ > . Furthermore, if 

i
X  is continuous 
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and ( ) ( )0 f M f M< − = + < ∞  (the left and right derivatives of the densities at M are 

equal and finite) we have the well known result 

( )( ){ } ( ) ( )( )1 2 2

1 2
0, 1 4

n
n X M N f M

+
− →

l

 (e.g. Serfling 1980). Hence it follows that 

( )( )( ) ( )
2

1 2

1 2 pn
E X M n

δο −
+

 − =  
 and so 

. .
ˆ

m s

θ θ→  and 
. .

ˆ
m s

λ λ→ . In other words, the point 

estimates of θ  and λ  are consistent and have limiting distributions. We will now 

establish bootstrap consistencies of the test statistic. 

 

Theorem 1: Let 
i

X  be a strictly continuous iid random variable such that 

( ) ( )0 f M f M< − = + < ∞  and [ ]9i
E X

δ+
< ∞ , 0δ > . Also, let [ ]3E X Mφ = − , 

( ) ( ) ( )( )( )( )
3

1 21

ˆ 1
n

i ni
n X M M Xφ

+=
= − + −∑  and *φ̂  be the bootstrap version of φ̂ . 

 Then ( )( ) ( )( )( )*

*
ˆ ˆ ˆ 0

p

P n x P n xρ φ φ φ φ∞ − ≤ − − ≤ → , where ρ∞  is the sup-norm 

distance and *P  denotes bootstrap probability. 

 

Proof:  

Note that ( ) ( ) ( )( )( )( )
3

1 21

ˆ 1
n

i ni
n X M M Xφ

+=
= − + −∑ 2 3

3 2 13 3µ δµ δ µ δ= − + −% % %% % %  where 

( ) ( )
1

1
n k

k ii
n X Mµ

=
= −∑%  and ( )( )( )1 2n

X Mδ
+

= −% . The finite ninth order moment is 

sufficient for ( )( ) ( )( )( ) . .
*

* 0
a s

k k k kP n x P n xρ µ µ µ µ∞ − ≤ − − ≤ →% % % , 1,2,3k = , (see 

Holgersson, 2006) while the smoothness of f  is sufficient for  

( )( ) ( )( )( )( ) ( )( )( )( )( ) . .
*

* 1 2 1 2 1 2
0

a s

n n n
P n X X x P n X M xρ∞ + + +

− ≤ − − ≤ →  (Shao and Tu 

1995). Finally, since φ̂  is a measurable function of 
k

µ%  and kδ%  ( 1,2,3k = ) it follows that 

*φ̂  converges in bootstrap probability to φ̂ . 
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Corollary 1: Let 3:θ φ σ= , 3ˆ ˆ ˆ:θ φ σ=  and * * 3*ˆ ˆ ˆ:θ φ σ=  be the bootstrapped version of 

θ̂ . Then ( )( ) ( )( )( )*

*
ˆ ˆ ˆ 0

p

P n x P n xρ θ θ θ θ∞ − ≤ − − ≤ → . This follows from Theorem 1 

since ( )( ) ( )( )( ) . .
2* 2 2 2

*
ˆ ˆ ˆ 0

a s

P n x P n xρ σ σ σ σ∞ − ≤ − − ≤ →  (Shao and Tu 1995) and θ̂  

is a smooth, measurable function of φ̂  and 2σ̂ . 

 

 

Corollary 2:  

Let { }2: 3ν λ λ= + , { }2ˆ ˆˆ : 3ν λ λ= + , ( )( ) 2

2
ˆ ˆ

n
X Xλ σ= −  and let { }* * *2ˆ ˆˆ : 3ν λ λ= +  be the 

bootstrapped version of ν̂ . Also, let 3

3γ µ σ=  where  3

3
ˆ ˆmγ σ=  where  

( ) ( )
3

3 1
1

n

ii
m n X X

=
= −∑ and let * * 3*

3
ˆ ˆmγ σ=  be the bootstrapped version of γ̂ . Then  

( ) ( )( ) ( ) ( )( )( )* *

*
ˆ ˆ ˆ ˆ ˆ ˆ,  ,  0

p

P n x n y P n x n yρ γ γ ν ν γ γ ν ν∞ − ≤ − ≤ − − ≤ − ≤ → , 

that is, *γ̂  and  *ν̂  converge jointly in 2
� . This follows since *ν̂  converges according to 

Theorem 1 and Corollary 1. The convergence of *γ̂   is established in Holgersson (2006). 

Finally, when ( )* *ˆ ˆ,γ ν  are obtained jointly from the same resample, the joint distribution 

follows. 

 

Hence, according to Corollary 1 the proposed test statistic θ̂  may be consistently 

bootstrapped and the hypothesis 0 0:H θ θ=  against 0:
A

H θ θ≠ , where 0 0θ = , may be 

tested on the α -level by rejecting 0H  when ( )( )
2

0
ˆn θ θ−  exceeds the ( )1 :B thα−  

ordered value from ( )( ){ }2
*

1

ˆ ˆ
B

b

b

n θ θ
=

− .  

 

Before the properties of the proposed test is examined further some things should be 

noted. Firstly, the proposed statistic θ   is here mainly used to provide a simple and (in 

some sense) useful test of symmetry versus asymmetry. In case the analysis primarily 
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involves the problem of comparing skewness between two distributions, e.g. 

( ) ( ) vs. G x F x , then other measures may be more adequate. For example, just because 

( )G x  is more skewed than ( )F x  with respect to γ , it does not imply that the same 

skewness ordering is preserved with respect to θ . More specifically, the λ  statistic (and 

hence the θ  statistic) does not preserve the skewness ordering in the sense of van Zwet 

(1964). An in-depth discussion of orderings of various skewness/asymmetry measures, 

including γ  and λ , is given in MacGillivray (1986). Secondly, apart from the power to 

detect “unexpected” asymmetric distributions (e.g. with zero third central moment) there 

is also an issue of the power to detect “expected” deviations from asymmetry. In 

particular, since the γ  coefficient does uniquely determine (a)symmetry of Pearson 

distributions, and such distributions arise naturally within many sciences, it is tractable to 

have a test with high power to detect these distributions. Since the γ  coefficient is an 

ingredient within the proposed measure it, the test based on it may indeed be expected to 

have relatively high power against such distributions. Thirdly, as there are two terms of 

the θ  statistic there is a possibility that they are of opposite sign and hence cancel out 

each other. Specifically, since ( )23 0λ+ >  and 0σ > , the sign of λ  will play an 

important role in the comparison of θ  and γ . Sufficient conditions for determining the 

sign of ( ) Mµ −  are given in van Zweet (1979) and Groenveld and Meeden (1984). A 

particularly important contribution is that if x  is unimodal and ( ) ( )f x f xµ µ+ − −  

change sign once in x, then  λ  and γ  will bear the same sign (MacGillivray, 1981) so 

that the proposed test should have relatively high power against these distributions. 

However, there does exist distributions such that γ  and ν  will have opposite signs, even 

though the set of such distributions seem rather small (empirically). Fortunately this 

problem need not be that serious. According to Corollary 2, there is an option of 

analysing the distribution of γ̂  and ν̂  separately or even jointly. For example, bootstrap 

histograms of *γ̂  and *ν̂  will be helpful to empirically assess their individual signs. 

Cases when one of them is significantly smaller than zero and the other significantly 

larger than zero would indicate a peculiar distribution of X, and further investigation such 
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as plots of ordered observations (e.g. Doksum, 1977, Wilk and Gnanadesikan, 1968) 

should be conducted. In the next section we will investigate some basic properties of the 

proposed test, including the option of separate analysis of γ  and ν .  

 

 

3. Empirical investigation 

 

In this section we will investigate some of the properties of the proposed test and also 

compare it with the bootstrapped γ  coefficient and the traditional Fisher skewness test 

based on the asymptotic ( )
2

1
χ  distribution. We will investigate the size and power 

properties by calculating the rejection frequencies of r = 10 000 replications of different 

symmetric and asymmetric distributions respectively, using 99B =  bootstrap resamples 

in each replicate. The distributions used in the simulation are specified in Table 1 below. 

Details of the distributions may be found in e.g. Johnson et al, (1995) and Ramberg et. al 

(1979). Moreover, to demonstrate the possibility of investigating the signs of γ  vs. ν  , 

bootstrap histograms of { }*

1
ˆ

B

b b
γ

=
and { }*

1
ˆ

B

b b
ν

=
 respectively have been obtained for a single 

drawing of sample size 10000n =  using 399B =  bootstrap resamples (Fig. 1-3).  

 

 

Insert Table 1 about here 

 

Power simulations are usually conducted by letting the parameter of relevance increase 

away from the null hypothesis while keeping the sample size fixed. This is not quite 

appropriate when investigating tests for distributional properties as there is no unique 

way to quantify asymmetry. We will instead investigate the proposed test for a fixed 

distribution and let the sample size increase from 30 pseudo observations up to 10 000. 

All simulations involve testing at the nominal level of 5%. In Table 2 below we display 

the rejection frequencies of the three tests when operating on the normal distribution and 

t(4) distribution respectively. All tests are seen to behave well for the normal distribution. 

For the t(4) distribution the tests of the bootstrapped γ  and θ  statistic over reject with up 
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to 14%, which may seem high. It should, however, be remembered that the null 

distribution of these tests assumes all first nine moments to be finite, while the t(4) 

distribution lacks moments above order four. Thus it is curious to see that the bootstrap 

tests actually do limit their nominal levels asymptotically even though higher order 

moments do not exist. The null distribution of the Fisher test requires the kurtosis 

coefficient to be 3, and it is clearly seen that it diverges for the t(4) distribution. We 

therefore present it in brackets in cases when it is not valid (i.e. for all distributions but 

the normal distribution). As regards the other two symmetric distributions in Table 3, the 

proposed test is seen to behave well and rapidly limits its nominal size, as does the test 

based on the bootstrapped γ  skewness coefficient. The Fisher test is again seen to behave 

peculiarly. In Table 4 some multimodal distributions are investigated. The trimodal 

distribution is symmetric and the rejection frequencies stays fairly close to the nominal 

size for this distribution though both the bootstrapped γ  test and the proposed test over 

rejects, but it is revealing that multimodality does not impose any serious distortions. 

Also, both bootstrapped tests detect the bimodal asymmetric t-distribution but the 

rejection frequencies does not quite limit 100% within the investigated sample sizes. The 

bootstrap histograms of the separate components of the proposed statistic ( )ˆ ˆ and γ ν  is 

presented in Figure 1 where it is seen that they have the same sign although the ν̂  

statistic has a higher absolute value and also a smaller sampling variation. In Table 5 

some power properties of unimodal distributions are investigated. The gamma 

distribution with shape parameter equal to 500 yields a distribution that is very close to 

the normal distribution though not exactly symmetric. The proposed test is clearly 

consistent against this distribution though slightly inferior to that of the bootstrapped γ  

coefficient. The power properties against the exponential distribution are clearly higher 

than those of the near-normal distribution, and again the bootstrapped skewness 

coefficient is slightly better than the proposed test.  The rejection frequencies for the 

asymmetric distributions with zero third order central moment are shown in Table 6. 

Indeed, the power of the bootstrapped γ  coefficient limits the nominal size (0.05) for the 

centred gamma distribution while the proposed test is consistent as expected, in the sense 

that the rejection frequency increases monotonically with the sample size. Moreover, 
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even though the Fisher test simultaneously tests against the kurtosis and skewness, the 

power of the proposed test is nevertheless of the same magnitude as that of the Fisher 

test. The same pattern is seen from the Tukey´s lambda distribution where the rejection 

frequencies of the bootstrapped γ  coefficient again limits 0.05 while the proposed test 

fairly quickly limits a rejection frequency of 100%. Moreover, the sampling distributions 

of the separate components of the proposed statistic are displayed in Figures 2 and 3, and 

clearly reveal that γ̂  is centered about zero while ν̂  has no overlap at zero. These figures 

hence gives some insight to the very different behavior of the rejection frequencies of 

Table 6, and also demonstrates the use of separate analyses of the two components of the 

proposed statistic. Finally, it should be stressed that even though the power of the 

proposed test may seem rather low against some of the distributions, the level of 

asymmetry (whatever the criteria) vary largely among the distributions which must be 

taken into consideration. To sum up the discussion, the size properties of the proposed 

test are more or less the same as those of the test of the bootstrapped γ  skewness 

coefficient but it does have additional power against asymmetric distributions which tests 

based on γ  cannot detect. Hence the proposed test should be a useful supplement to other 

tests for asymmetry versus symmetry.  

 

Insert Table 2 about here 

Insert Table 3 about here 

Insert Table 4 about here 

Insert Table 5 about here 

Insert Figure 1 about here 

Insert Figure 2 about here 

Insert Figure 3 about here 
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4. Conclusive summary 

 

In this paper we propose a modification of the traditional skewness coefficient (defined 

by the standardized third central moment) to test for symmetry versus (a)symmetry. 

Instead of the third moment being centred about its mean value it is centred about the 

median. This adjusted measure is shown to be a function of the traditional skewness 

coefficient plus a function of the difference between the mean and median. While the 

proposed measure might not be optimal for the problem of ordering the amount of 

skewness between two distributions, it is argued that it is more useful than the traditional 

skewness test for the problem of discriminating between symmetric and asymmetric 

distributions, specifically for distributions with zero third order central moment. 

Bootstrap consistency is proved for the sample version of the proposed measure and so an 

operational test procedure is available. Moreover, a Monte Carlo simulation was 

conducted to investigate some size and power properties of the proposed test versus two 

tests based on the third central moment, and it is demonstrated that the new test is indeed 

consistent against asymmetric distributions which tests based on the classical skewness 

measure cannot detect. The test only relies on some moment restrictions and that the 

distribution being analysed is smooth at the median. In particular, it is demonstrated that 

multimodality imposes no distortions to the test. It is also shown that the two terms 

within the proposed test statistic may be investigated separately by bootstrap histograms. 

This graphical option will provide some additional insight into the (a)symmetry of the 

variable being investigated. Generally, the proposed test is not meant to replace other 

methods, such as graphical tools, but rather it is seen as a supplementary test. In 

particular, the proposed test along with separate analysis of the two components of the 

proposed measure and plots of ordered observations should provide a powerful tool set 

for investigating whether a variable is symmetrically distributed.  

 

 

 

 

 

Page 12 of 20

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 12 

References 

 

Antille A et al. (1982). Testing symmetry. JASA 77:639-646.  

 

Bowman, K. O. and L. A. Shenton (1975). Omnibus test contours for departures from 

normality based on 1 2 and b b . Biometrika, 62(2):243-250.  

 

Churchill, E. (1946). Information given by odd moments. Ann. Math. Statist. 17:244-256. 

 

Csörgö S, Heathcote C R (1987). Testing for symmetry. Biometrika 74(1):177-184.  

 

David, H. A. and H. N. Nagaraja (2003). Order statistics. Third ed. Wiley. 

 

Doksum K A et al.(1977). Plots and tests for symmetry. Biometrika 64(3):473-487. 

 

Fisher, R. A. (1929). Moments and product moments of sampling distributions. 

Proceedings of the London mathematical society, 199-238. 

 

Groenveld, R. A. and Meeden, G.  (1977). The Mode, median and mean inequality. Am. 

Stat. 31(3):120-121.  

 

Holgersson,  H. E. T. (2006). Robust testing for skewness. Communications in Statistics-

Theory and Methods 36(3):485-498.  

 

Hotelling H. and Solomons L. M.  (1932). The limits of a measure of skewness. Ann. 

Math. Statist. 3, 141.  

 

Johnson,  N. L.,  Kotz S. and Balakrishnan, N.  (1995). Continuous Univariate 

Distributions, Vol 1-Vol2. Second ed. Wiley. 

 

Page 13 of 20

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 13 

MacGillivray, H. L.  (1981). The mean, median, mode inequality and skewness for a 

class of densities. Austral. J. Statist. 23(2):247-250. 

 

MacGillivray, H. L.  (1986). Skewness and assymmetry: Measures and orderings, Ann. 

Stat. 14(3):994-1011.  

 

Ord, J. K. (1972). Families of frequency distributions. Griffin´s statistical monographs & 

courses. 

 

Pearson, K. (1905). Das fehlergesetz und seine verallgemeinerungen durch Fechner und 

Pearson“. A rejoinder. Biometrika. 4(1/2):169-212. 

 

Ramberg, J. S. et. al. (1979). A probability distribution and its uses in fitting data. 

Technometrics. 21(2):201-214.  

 

Stuart, A. and  Ord J. K.  (1993). Kendall´s Advanced Theory of Statistics. Vol 1. Arnold, 

London.  

 

Serfling, R. J. (1980). Approximation theorems of mathematical statistics. Wiley, New 

York. 

 

Shao, J. and Tu D. (1995). The Jacknife and Bootstrap. Springer, New York Berlin 

Heidelberg. 

 

Yule, G. U. (1917). An introduction to the theory of statistics. C. Griffen and company. 

 

Van Zwet, W. R. (1964). Convex transformations: A new approach to skewness and 

kurtosis. Statistika Neerlandica, 18:433-441. 

 

van Zwet, W. R. (1979). Mean, median, mode II. Statistica Neerlandica, 33:1-5. 

 

Page 14 of 20

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 14 

 

Wilk, M. B. and Gnanadesikan R. (1968). Probability plotting methods for analysis of 

data. Biometrika. 55:1-17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 15 of 20

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Figure 1. Bootstrap histogram of the bimodal t(4) distribution 

 

 

Figure 2. Bootstrap histogram of centred gamma distribution 

 

 

Figure 3. Bootstrap histogram of the Tukey´s lambda distribution 

Page 16 of 20

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

Page 17 of 20

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

 

 

Table 1. Variates used in the simulation 
 

                    Distribution 

 

                   Parameter values 

    

     Shape 

Skewness 

coefficient 

Standard normal ( )0,1N  Bell-shaped 0 

Students t-distribution 
( )4t  Bell-shaped 0 

Beta  ( )0.5, 0.5B  U-shaped 0 

Uniform ( )0,1U  Box-shaped 0 

*Gamma ( )1, 500G rate shape= =  Asymmetric 0.004 

Exponential ( )1Exp  Asymmetric 2 

**
Bimodal t(4) 

( )( ) ( )( )4 4
0.3 1 0.7 4t t− + + +  Bimodal 

asymmetric 

-0.540 

**
Trimodal normal 

( ) ( ) ( )
1 1 1

10, 2 0, 4 10, 2
3 3 3
N N N− + +  

Trimodal 

symmetric 

0 

* [ ]( ) [ ]( )
2 2 2 2
Y E Y X E X− − −  ( )

( )( )
2

1 3

2

~ 1, 0.125

~ 4 , 0.5

Y G rate shape

X G rate shape

= =

= =
 

Asymmetric 0 

Tukey´s lambda distribution  
3 4

35.498,  2.297λ λ= =  Asymmetric 0 

*The gamma distribution is defined inconsistently in the literature. Here we define the gamma distribution 

to be a variable X with characteristic function ( )( )shapeitx
E e rate rate it= +   . 

**The addition here refers to “mixing”, with the respective probabilities adding up to one. 
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Table 2.   Standard normal distribution                                                         t(4) 
   Nobs       γ            θ  Fisher  γ         θ       Fisher 

    30 0.048 0.039 0.033  0.113 0.084 (0.297) 

    50 0.049 0.049 0.043  0.132 0.103 (0.385) 

    100 0.049 0.047 0.043  0.137 0.112 (0.501) 

    300 0.051 0.050 0.053  0.119 0.108 (0.644) 

    500 0.050 0.051 0.048  0.108 0.100 (0.682) 

   2000 0.049 0.046 0.051  0.075 0.072 (0.790) 

   5000 0.052 0.052 0.052  0.061 0.062 (0.846) 

 10000 0.049 0.051 0.050  0.054 0.054 (0.871)         

 

 

Table 3.               Beta                                                                                Uniform 
   Nobs       γ            θ  Fisher  γ         θ       Fisher 

    30 0.038 0.053 (0.005)  0.034 0.039 (0.002) 

    50 0.047 0.055 (0.004)  0.046 0.040 (0.001) 

    100 0.044 0.050 (0.003)  0.051 0.044 (0.001) 

    300 0.050 0.054 (0.002)  0.048 0.047 (0.001) 

    500 0.049 0.051 (0.003)  0.048 0.048 (0.001) 

   2000 0.049 0.051 (0.003)  0.050 0.052 (0.001) 

   5000 0.050 0.049 (0.004)  0.053 0.054 (0.001) 

 10000 0.051 0.050 (0.003)  0.051 0.049 (0.001)         

 

 

Table 4.        Trimodal normal                                                              Bimodal t(4) 
   Nobs       γ            θ  Fisher  γ  θ  Fisher 

    30 0.089 0.046 (0.047)  0.495 0.496 (0.209) 

    50 0.085 0.038 (0.043)  0.626 0.741 (0.354) 

    100 0.073 0.031 (0.035)  0.778 0.930 (0.642) 

    300 0.065 0.045 (0.044)  0.883 0.974 (0.938) 

    500 0.065 0.051 (0.052)  0.901 0.976 (0.966) 

   2000 0.061 0.056 (0.064)  0.946 0.990 (0.994) 

   5000 0.066 0.059 (0.065)  0.960 0.992 1 

 10000 0.064 0.059 (0.071)  0.970 0.993 1         

 

 

Table 5.          Gamma                                                                              Exponential                                 
   Nobs       γ            θ  Fisher  γ         θ       Fisher 

    30 0.063 0.022 (.039)  0.779 0.437 (0.867) 

    50 0.073 0.036 (.053)  0.832 0.673 (0.987) 

    100 0.083 0.054 (.068)  0.884 0.873 (1) 

    300 0.137 0.101 (.126)  0.968 0.980 (1) 

    500 0.189 0.145 (.178)  0.991 0.996 (1) 

   2000 0.574 0.473 (.559)  1 1 (1) 

   5000 0.915 0.840 (.911)  1 1 (1) 

 10000 0.997 0.986 (.997)  1 1 (1)         
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Table 6.      Centred Gamma                                             Tukey´s lambda 
   Nobs       γ            θ  Fisher  γ  θ  Fisher 

    30 0.210 0.129 (0.617)  0.239 0.179 (0.102) 

    50 0.171 0.152 (0.680)  0.224 0.237 (0.121) 

    100 0.137 0.179 (0.744)  0.184 0.343 (0.077) 

    300 0.109 0.215 (0.796)  0.102 0.635 (0.092) 

    500 0.099 0.230 (0.805)  0.086 0.821 (0.164) 

   2000 0.084 0.322 (0.827)  0.069 1 (0.081) 

   5000 0.083 0.454 (0.846)  0.068 1 (0.105) 

 10000 0.075 0.618 (0.843)  0.062 1 (0.158)         
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