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We consider the parameter estimation problem for the non-ergodic fractional Ornstein-Uhlenbeck process defined as dXt = θXtdt + dBt, t ≥ 0, with a parameter θ > 0, where B is a fractional Brownian motion of Hurst index H ∈ ( 1 2 , 1). We study the consistency and the asymptotic distributions of the least squares estimator θt of θ based on the observation {Xs, s ∈ [0, t]} as t → ∞.

Introduction

We consider the Ornstein-Uhlenbeck process X = {X t , t ≥ 0} given by the following linear stochastic differential equation

X 0 = 0; dX t = θX t dt + dB t , t ≥ 0, (1) 
where B is a fractional Brownian motion of Hurst index H > 1 2 and θ ∈ (-∞, ∞) is an unknown parameter. An interesting problem is to estimate the parameter θ when one observes the whole trajectory of X. First, let us recall some results in the case when B is a standard Brownian motion. In this special case, the parameter estimation for θ has been well studied by using the classical maximum likelihood method or by using the trajectory fitting method. If θ < 0 (ergodic case), the maximum likelihood estimator (MLE) of θ is asymptotically normal (see Liptser and Shiryaev [9], Kutoyants [START_REF] Yu | Statistical Inference for Ergodic Diffusion Processes[END_REF]). If θ > 0 (non-ergodic case), the MLE of θ is asymptotically Cauchy (see Basawa and Scott [START_REF] Basawa | Asymptotic optimal inference for non-ergodic models[END_REF], Dietz and Kutoyants [START_REF] Dietz | Parameter estimation for some non-recurrent solutions of SDE[END_REF]). Recently, in a more general context, several authors extended this study to some generalizations of Ornstein-Uhlenbeck process driven by Brownian motion (for instance, Barczy and Pap [START_REF] Barczy | Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion processes[END_REF]). Similar properties of the asymptotic behaviour of MLE has also been obtained with respect to the trajectory fitting estimators (see Dietz and Kutoyants [START_REF] Dietz | Parameter estimation for some non-recurrent solutions of SDE[END_REF]).

When B is replaced by an α-stable Lévy motion in the equation (1), Hu and Long [START_REF] Hu | Parameter estimation for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions[END_REF] discussed the parameter estimation of θ in both the ergodic and the non-ergodic cases. They used the trajectory fitting method combined with the weighted least squares technique. Now, let us consider a parameter estimation problem of the parameter θ for the fractional Ornstein-Uhlenbeck process X of (1).

In the case θ < 0 (corresponding to the ergodic case), Hu and Nualart [START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF] studied the parameter estimation for θ by using the least squares estimator (LSE) defined as

θ t = t 0 X s dX s t 0 X 2 s ds , t ≥ 0. ( 2 
)
This LSE is obtained by the least squares technique, that is, θ t (formally) minimizes

θ -→ t 0 Ẋs + θX s 2 ds.
To obtain the consistency of the LSE θ t , the authors of [START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF] are forced to consider t 0 X s dX s as a Skorohod integral rather than Young integral in the definition (2). Assuming t 0 X s dX s is a Skorohod integral and θ < 0, they proved the strong consistence of θ t if H ≥ 1 2 , and that the LSE

θ t of θ is asymptotically normal if H ∈ [ 1 2 , 3 4 
). Their proof of the central limit theorem is based on the fourth moment theorem of Nualart and Peccati [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF].

In this paper, our purpose is to study the non-ergodic case corresponding to θ > 0. More precisely, we shall estimate θ by the LSE θ t defined in [START_REF] Barczy | Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion processes[END_REF], where in our case, the integral t 0 X s dX s is interpreted as a Young integral. Indeed in that case, we have

θ t = X 2 t 2 t 0 X 2
s ds which converges almost surely to θ, as t tends to infinity (see Theorem 1). Moreover, it turned out that the pathwise approach is the preferred way to simulate numerically an estimator θ t . Our technics used in this work are inspired from the recent paper by Es-Sebaiy and Nourdin [START_REF] Es-Sebaiy | Parameter estimation for α-fractional bridges[END_REF].

The organization of our paper is as follows. Section 2 contains the presentation of the basic tools that we will need throughout the paper: fractional Brownian motion, Malliavin derivative, Skorohod integral, Young integral and the link between Young and Skorohod integrals. The aim of Section 3 is twofold. Firstly, we prove when H > 1 2 the strong consistence of the LSE θ t , that is, θ t converges almost surely to θ, as t goes to infinity. Secondly, we investigate the asymptotic distribution of our estimator θ t in the case H > 1 2 . We obtain that (see Theorem 5)

e θt θ t -θ law -→ 2θC(1) as t -→ ∞,
with C(1) the standard Cauchy distribution with the probability density function

1 π(1+x 2 ) ; x ∈ R.

Preliminaries

In this section we describe some basic facts on the stochastic calculus with respect to a fractional Brownian motion. For more complete presentation on the subject, see [START_REF] Nualart | The Malliavin calculus and related topics[END_REF], [START_REF] Alòs | Stochastic integration with respect to the fractional Brownian motion[END_REF] and [START_REF] Nourdin | An invitation to fractional Brownian motion[END_REF].

The fractional Brownian motion (B t , t ≥ 0) with Hurst parameter H ∈ (0, 1), is defined as a centered Gaussian process starting from zero with covariance

R H (t, s) = E(B t B s ) = 1 2 t 2H + s 2H -|t -s| 2H .
We assume that B is defined on a complete probability space (Ω, F, P ) such that F is the sigmafield generated by B. By Kolmogorov's continuity criterion and the fact

E (B t -B s ) 2 = |s -t| 2H ; s, t ≥ 0,
we deduce that B has Hölder continuous paths of order H -ε, for all ε ∈ (0, H). Fix a time interval [0, T ]. We denote by H the canonical Hilbert space associated to the fractional Brownian motion B. That is, H is the closure of the linear span E generated by the indicator functions 1 [0,t] , t ∈ [0, T ] with respect to the scalar product

1 [0,t] , 1 [0,s] = R H (t, s).
The application ϕ ∈ E -→ B(ϕ) is an isometry from E to the Gaussian space generated by B and it can be extended to H. If H > 1 2 the elements of H may be not functions but distributions of negative order (see [START_REF] Pipiras | Integration questions related to fractional Brownian motion Probab[END_REF]). Therefore, it is of interest to know significant subspaces of functions contained in it. Let |H| be the set of measurable functions ϕ on [0, T ] such that

ϕ 2 |H| := H(2H -1) T 0 T 0 |ϕ(u)||ϕ(v)||u -v| 2H-2 dudv < ∞. Note that, if ϕ, ψ ∈ |H|, E(B(ϕ)B(ψ)) = H(2H -1) T 0 T 0 ϕ(u)ψ(v)|u -v| 2H-2 dudv.
It follows actually from [START_REF] Pipiras | Integration questions related to fractional Brownian motion Probab[END_REF] that the space |H| is a Banach space for the norm . |H| and it is included in H. In fact,

L 2 ([0, T ]) ⊂ L 1 H ([0, T ]) ⊂ |H| ⊂ H. Let C ∞ b (R n , R
) be the class of infinitely differentiable functions f : R n -→ R such that f and all its partial derivatives are bounded. We denote by S the class of smooth cylindrical random variables F of the form

F = f (B(ϕ 1 ), ..., B(ϕ n )), (3) 
where

n ≥ 1, f ∈ C ∞ b (R n , R
) and ϕ 1 , ..., ϕ n ∈ H. The derivative operator D of a smooth and cylindrical random variable F of the form (3) is defined as the H-valued random variable

D t F = N i=1 ∂f ∂x i (B(ϕ 1 ), ..., B(ϕ n ))ϕ i (t)
In this way the derivative DF is an element of L 2 (Ω; H). We denote by D 1,2 the closure of S with respect to the norm defined by

F 2 1,2 = E( F 2 ) + E( DF 2 H ).
The divergence operator δ is the adjoint of the derivative operator D. Concretely, a random variable u ∈ L 2 (Ω; H) belongs to the domain of the divergence operator Domδ if

E | DF, u H | ≤ c F L 2 (Ω)
for every F ∈ S. In this case δ(u) is given by the duality relationship

E(F δ(u)) = E DF, u H for any F ∈ D 1,2 .
We will make use of the notation

δ(u) = T 0 u s δB s , u ∈ Dom(δ).
In particular, for h ∈ H,

B(h) = δ(h) = T 0 h s δB s .
For every n ≥ 1, let H n be the nth Wiener chaos of B , that is, the closed linear subspace of L 2 (Ω) generated by the random variables {H n (B(h)), h ∈ H, h H = 1} where H n is the nth Hermite polynomial. The mapping I n (h ⊗n ) = n!H n (B(h)) provides a linear isometry between the symmetric tensor product H n (equipped with the modified norm .

H n = 1 √ n! . H ⊗n ) and H n .
For every f, g ∈ H n the following multiplication formula holds

E (I n (f )I n (g)) = n! f, g H ⊗n .
Finally, It is well-known that L 2 (Ω) can be decomposed into the infinite orthogonal sum of the spaces H n . That is, any square integrable random variable F ∈ L 2 (Ω) admits the following chaotic expansion

F = E(F ) + ∞ n=1 I n (f n ),
where the f n ∈ H n are uniquely determined by F .

Fix T > 0. Let f, g : [0, T ] -→ R are Hölder continuous functions of orders α ∈ (0, 1) and β ∈ (0, 1) with α + β > 1. Young [START_REF] Young | An inequality of the Hölder type connected with Stieltjes integration[END_REF] proved that the Riemann-Stieltjes integral (so-called Young integral)

T 0 f s dg s exists. Moreover, if α = β ∈ ( 1 2 , 1) and φ : R 2 -→ R is a function of class C 1 , the integrals . 0 ∂φ ∂f (f u , g u )df u and
. 0 ∂φ ∂g (f u , g u )dg u exist in the Young sense and the following change of variables formula holds:

φ(f t , g t ) = φ(f 0 , g 0 ) + t 0 ∂φ ∂f (f u , g u )df u + t 0 ∂φ ∂g (f u , g u )dg u , 0 ≤ t ≤ T. ( 4 
)
As a consequence, if H > 1 2 and (u t , t ∈ [0, T ]) be a process with Hölder paths of order α > 1 -H, the integral T 0 u s dB s is well-defined as Young integral. Suppose moreover that for any t ∈ [0, T ], u t ∈ D 1,2 , and

P T 0 T 0 |D s u t ||t -s| 2H-2 dsdt < ∞ = 1.
Then, by [START_REF] Alòs | Stochastic integration with respect to the fractional Brownian motion[END_REF], u ∈ Domδ and for every t ∈ [0, T ],

t 0 u s dB s = t 0 u s δB s + H(2H -1) t 0 t 0 D s u r |s -r| 2H-2 drds.
(

In particular, when ϕ is a non-random Hölder continuous function of order α > 1 -H, we obtain

T 0 ϕ s dB s = T 0 ϕ s δB s = B(ϕ). (6) 
In addition, for all ϕ, ψ ∈ |H|,

E T 0 ϕ s dB s T 0 ψ s dB s = H(2H -1) T 0 T 0 ϕ(u)ψ(v)|u -v| 2H-2 dudv. ( 7 
)
3 Asymptotic behavior of the least squares estimator

Throughout this paper we assume H ∈ ( 1 2 , 1) and θ > 0. Let us consider the equation (1) driven by a fractional Brownian motion B with Hurst parameter H and θ is the unknown parameter to be estimated from the observation X. The linear equation (1) has the following explicit solution:

X t = e θt t 0 e -θs dB s , t ≥ 0, (8) 
where the integral t 0 e -θs dB s is a Young integral. Let us introduce the following process

ξ t := t 0 e -θs dB s , t ≥ 0.
By using the equation ( 1) and ( 8) we can write the LSE θ t defined in (2) as follows

θ t = θ + t 0 X s dB s t 0 X 2 s ds = θ + t 0 e θs ξ s dB s t 0 e 2θs ξ 2 s ds . ( 9 
)

Consistency of the estimator LSE

The following theorem proves the strong consistency of the LSE θ t .

Theorem 1 Assume H ∈ ( 1 2 , 1), then

θ t -→θ almost surely as t -→ ∞.
For the proof of Theorem 1 we need the following two lemmas.

Lemma 2 Suppose that H > 1 2 . Then i) For all ε ∈ (0, H), the process ξ admits a modification with (H -ε)-Hölder continuous paths, still denoted ξ in the sequel.

ii) ξ t -→ ξ ∞ := ∞ 0 e -θr dB r almost surely and in L 2 (Ω) as t -→ ∞.

Lemma 3 Let H > 1 2 . Then, as t → ∞, e -2θt t 0 X 2 s ds = e -2θt t 0 e 2θs ξ 2 s ds -→ ξ 2 ∞ 2θ almost surely.
Proof of Lemma 2. We prove the point i). We have, for every 0 ≤ s < t,

E (ξ t -ξ s ) 2 = E t s e -θr dB r 2 = H(2H -1) t s t s e -θu e -θv |u -v| 2H-2 dudv ≤ H(2H -1) t s t s |u -v| 2H-2 dudv = E (B t -B s ) 2 = |t -s| 2H .
Thus, by applying the Kolmogorov-Centsov theorem to the centered gaussian process ξ we deduce i).

Concerning the second point ii), we first notice that the integral ξ ∞ = ∞ 0 e -θr dB r is well defined.

In fact,

H(2H -1) ∞ 0 ∞ 0 e -θr e -θs |r -s| 2H-2 drds = 2H(2H -1) ∞ 0 dse -θs s 0 dre -θr (s -r) 2H-2 = 2H(2H -1) ∞ 0 dse -2θs s 0 due θu u 2H-2 = 2H(2H -1) ∞ 0 due θu u 2H-2 ∞ u dse -2θs = H(2H -1) θ ∞ 0 e -θu u 2H-2 du = H(2H -1) θ 2H Γ(2H -1) = HΓ(2H) θ 2H < ∞, ( 10 
)
with Γ denotes the classical Gamma function. Moreover, ξ t converges to ξ ∞ in L 2 (Ω). Indeed,

E (ξ t -ξ ∞ ) 2 = H(2H -1) ∞ t ∞ t e -θr e -θs |r -s| 2H-2 drds = 2H(2H -1) ∞ t dse -θs s t dre -θr (s -r) 2H-2 = 2H(2H -1) ∞ t dve -2θs s-t 0 due θu u 2H-2 = 2H(2H -1)e -2θt ∞ 0 dve -2θv v 0 due θu u 2H-2 = 2H(2H -1)e -2θt ∞ 0 due θu u 2H-2 ∞ u dve -2θv = H(2H -1) θ e -2θt ∞ 0 e -θu u 2H-2 du = HΓ(2H) θ 2H e -2θt → 0 as t → ∞.
Now, let us show that ξ t -→ ξ ∞ almost surely as t → ∞. By using Borel-Cantelli lemma, it is sufficient to prove that, for any ε > 0

n≥0 P sup n≤t≤n+1 ∞ t e -θs dB s > ε < ∞. ( 11 
)
For this purpose, let 1 2 < α < H. As in the proof of [Theorem 4, [START_REF] Alòs | Stochastic integration with respect to the fractional Brownian motion[END_REF]], we can write for every t > 0

∞ t e -θs dB s = c -1 α ∞ t dB s e -θs s t dr(s -r) -α (r -t) α-1 , with c α = s t (s -r) -α (r -t) α-1 dr = β(α, 1 -α),
where β is the Beta function. By Fubini's stochastic theorem (see for example [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]), we have

∞ t e -θs dB s = c -1 α ∞ t dr(r -t) α-1 ∞ r dB s e -θs (s -r) -α . Cauchy-Schwarz's inequality implies that ∞ t e -θs dB s 2 ≤ c -2 α ∞ t (r -t) 2(α-1) e -θ(r-t) dr ∞ t dre -θ(r-t) ∞ r dB s e -θs (s -r) -α e θ(r-t) 2 = c -2 α Γ(2α -1) θ 2α-1 e -2θt ∞ t dre -θ(r-t) ∞ r dB s (s -r) -α e -θ(s-r) 2 Thus, sup n≤t≤n+1 ∞ t e -θs dB s 2 ≤ c -2 α Γ(2α -1) θ 2α-1 e -2θn e θ ∞ n dre -θ(r-n) ∞ r dB s (s -r) -α e -θ(s-r) 2
On the other hand,

E ∞ r (s -r) -α e -θ(s-r) dB s 2 = H(2H -1) ∞ r dv(v -r) -α e -θ(v-r) ∞ r du(u -r) -α e -θ(u-r) |u -v| 2H-2 = H(2H -1) ∞ 0 dvv -α e -θv ∞ 0 duu -α e -θu |u -v| 2H-2 = 2H(2H -1) ∞ 0 dvv -α e -θv v 0 duu -α e -θu (v -u) 2H-2 = 2H(2H -1) ∞ 0 dvv -α e -θv v 0 du(v -u) -α e -θ(v-u) u 2H-2 ≤ 2H(2H -1) ∞ 0 dvv -α e -θv v 0 du(v -u) -α u 2H-2 = 2H(2H -1) ∞ 0 dvv 2H-2α-1 e -θv 1 0 duu 2H-2 (1 -u) -α = 2H(2H -1) Γ(2H -2α)β(2H -1, 1 -α) θ 2H-2α := C 1 (α, H, θ) < ∞.
Combining this with the fact that

∞ n e -θ(r-n) dr = 1 θ , we obtain E sup n≤t≤n+1 ∞ t e -θs dB s 2 ≤ C 2 (α, H, θ)e -2θn , with C 2 (α, H, θ) = c -2 α Γ(2α -1)e θ θ 2α C 1 (α, H, θ). Consequently, n≥0 P sup n≤t≤n+1 ∞ t e -θs dB s > ε ≤ ε -2 n≥0 E sup n≤t≤n+1 ∞ t e -θs dB s 2 ≤ ε -2 C 2 (α, H, θ) n≥0 e -2θn < ∞.
This finishes the proof of the claim [START_REF] Nualart | The Malliavin calculus and related topics[END_REF], and thus the proof of Lemma 2.

Proof of Lemma 3. Using (10), we have

E[ξ 2 ∞ ] = HΓ(2H) θ 2H < ∞.
Hence ξ ∞ N (0, HΓ(2H) θ 2H ) and this implies that

P (ξ ∞ = 0) = 0. ( 12 
)
The continuity of ξ entails that, for every t > 0

t 0 e 2θs ξ 2 s ds ≥ t t 2 e 2θs ξ 2 s ds ≥ t 2 e θt inf t 2 ≤s≤t ξ 2 s almost surely. (13) 
Furthermore, the continuity of ξ and the point ii) of Lemma 2 yield

lim t→∞ inf t 2 ≤s≤t ξ 2 s = ξ ∞ almost surely.
Combining this last convergence with ( 13) and ( 12), we deduce that This completes the proof of Lemma 3.

Proof of Theorem 1. Using the change of variable formula (4), we conclude that

1 2 e 2θt ξ 2 t = θ t 0 e 2θs ξ 2 s ds + t 0 e θs ξ s dB s Hence θ t -θ = t 0 e θs ξ s dB s t 0 e 2θs ξ 2 s ds = ξ 2 t 2e -2θt t 0 e 2θs ξ 2 s ds -θ.
Combining this with Lemma 2 and Lemma 3, we deduce that θ t → θ almost surely as t -→ ∞.

Asymptotic distribution of the estimator LSE

This paragraph is devoted to the investigation of asymptotic distribution of the LSE θ t of θ. We start with the following lemma.

Lemma 4 Suppose that H > 1 2 . Then, for every t ≥ 0, we have On the other hand, according to ( 5) and ( 6), In order to prove Theorem 5 we need the following two lemmas.

Lemma 6 Fix H > 

du(v -u) 2H-2 = H(2H -1)e -θt s 0 dve θv s 0 du|u -v| 2H-2 + He -θt t s e θv (v 2H-1 -(v -s) 2H-1 )dv := I t + J t .
It's clear that I t → 0 as t → ∞. Using integration by parts, the therm J t can be written as

J t = He -θt t s e θv (v 2H-1 -(v -s) 2H-1 )dv = He -θt e θt θ [t 2H-1 -(t -s) 2H-1 ] - e θs θ s 2H-1 + 2H -1 θ t s e θv [(v -s) 2H-2 -v 2H-2 ]dv ≤ H θ [t 2H-1 -(t -s) 2H-1 ] + H(2H -1) θ e -θt t s e θv (v -s) 2H-2 dv := J 1 t + J 2 t . Since H < 1, J 1 t = H θ [t 2H-1 -(t -s) 2H-1 ] → 0 as t → ∞. On the other hand, J 2 t = H(2H -1) θ e -θt t s e θv (v -s) 2H-2 dv = H(2H -1)e θs θ e -θt t-s 0 e θu u 2H-2 du ≤ H(2H -1)e θs θ e -θt t 0 e θu u 2H-2 du = H(2H -1)e θs θ t 0 e -θv (t -v) 2H-2 dv = H(2H -1)e θs θ t 2H-1 1 0 e -θtu (1 -u) 2H-2 du Fix u ∈ (0, 1). The function t ∈ [0, ∞) → t 2H-1 e -θtu attains its maximum at t = 2H-1 θu . Then sup t≥0 (t 2H-1 e -θtu ) = ce -2H-1 u u 1-2H ≤ cu 1-2H , with c = 2H-1 θ 2H-1 . In addition, 1 0 u 1-2H (1 -u) 2H-2 du < ∞,
and for any u ∈ (0, 1),

t 2H-1 e -θtu (1 -u) 2H-2 → 0 as t → ∞.
Therefore, using the dominated convergence theorem, we obtain that J 2 t converges to 0 as t → ∞. Thus, we deduce the desired conclusion. Proof of Lemma 7. Let us prove the convergence [START_REF] Young | An inequality of the Hölder type connected with Stieltjes integration[END_REF]. We have N (0, 1) and N ∼ N (0, 1) are independent.

Thus, by Slutsky's theorem, we conclude that

A θ t × B θ t law
-→ 2θC(1) as t -→ ∞.

On the other hand, it follows from Lemma 3 and Lemma 7, that

C θ t prob.
-→ 0 as t -→ ∞, and D θ t -→ 0 almost surely as t -→ ∞.

Finally, by combining the previous convergences, the proof of Theorem 5 is done.

lim t→∞ t 0 e 2θs ξ 2 s

 02 ds = ∞ almost surely. Hence, we can use L'Hôspital's rule and we obtain lim

t 0 dB s e θs s 0 dB r e -θr = t 0 dB s e θs t 0 dB r e -θr - t 0 δB s e -θs s 0 0 dB s e θs s 0 dB r e -θr = t 0 dB s e θs t 0 dB r e -θr - t 0 dB s e -θs s 0

 000000000000 δB r e θr -H(2H -1) t 0 dse -θs s 0 dre θr |s -r| 2H-2 . Proof. Let t ≥ 0. By the change of variable formula (4) t dB r e θr .

dreTheorem 5

 5 θr |s -r| 2H-2 , which completes the proof. Let H > 1 2 be fixed. Then, as t -→ ∞, e θt θ t -θ law -→ 2θC(1), with C(1) the standard Cauchy distribution.

e -θt E t 0 δB s e -θs s 0 δB r e θr 2 = e -θt E t 0 s 0 e 2 = 2 I 2

 0020222 -θ|s-r| δB r δB s e -θt E 1 (e -θ|s-r|

  1 2 . Let F be any σ{B}-measurable random variable such that P (F < ∞) = 1.Proof of Lemma 6. For any d ≥ 1, s 1 . . . s d ∈ [0, ∞), we shall prove that, as t -→ ∞,

	e -θt t 0 e θs dB s as t -→ ∞. We have
		t				2				t	t
	E	e -θt	e θs dB s		= H(2H -1)e -2θt	e θs e θr |s -r| 2H-2 drds
		0								0	0
										t	s
							= 2H(2H -1)e -2θt	dse θs	dre θr |s -r| 2H-2
										0	0
										t	s
							= 2H(2H -1)e -2θt	dse 2θs	dre -θr r 2H-2
										0	0
										t	t
							= 2H(2H -1)e -2θt	dre -θr r 2H-2	dse 2θs
										0	r
							=	H(2H -1) θ	0	t	r 2H-2 e -θr dr -e -2θt	0	t	r 2H-2 e θr dr
							→	HΓ(2H) θ 2H	as t → ∞,
	because e -2θt t 0 r 2H-2 e θr dr ≤ e -θt t 0 r 2H-2 dr = t 2H-1 (2H-1)e θt → 0 as t → ∞.
	Thus,								
					lim t→∞	E			e -θt	0	t	e θs dB s	2	=	HΓ(2H) θ 2H .
	Then, as t -→ ∞,							
					F, e -θt		0	t	e θs dB s	law -→ F,	HΓ(2H) θ H	N ,
	where N ∼ N (0, 1) is independent of B. Indeed, for s < t,
	Lemma 7 Let H > 1 2 . Then, as t → ∞, t E B s × e -θt e θv dB v
	= H(2H -1)e -θt	0	e -θt 2 0 t dve θv t 0	δB s e -θs 0 s du|u -v| 2H-2 s 0 δB r e θr -→ 0 in L 2 (Ω),	(14)
	= H(2H -1)e -θt and		s	dve θv			s	du|u -v| 2H-2 + H(2H -1)e -θt	t	dve θv	s
					2 e -θt 0		t	dse -θs 0	s	dre θr |s -r| 2H-2 -→ 0.	s	0	(15)
							0			0
		B s1 , . . . , B s d , e -θt		0	t	e θs dB s	law -→ B s1 , . . . , B s d ,	HΓ(2H) θ H	N	(16)
	which is enough to lead to the desired conclusion. Because the left-hand side in the previous
	convergence is a Gaussian vector (see proof of [Lemma 7, [5]]), to get (16) it is sufficient to
	check the convergence of its covariance matrix. Let us first compute the limiting variance of

Hence, to finish the proof it remains to check that, for all fixed s ≥ 0,

lim t→∞ E B s × e -θt t 0 e θv dB v = 0.

  1 [0,t] 2 )This finishes the proof. Proof of the theorem 5. By combining[START_REF] Liptser | Statistics of Random Processes: II Applications[END_REF] and Lemma 4, we can write,

		e θt θ t -θ		=	e θt t 0 dB s e θs s 0 dB r e -θr t 0 e 2θs ξ 2 s ds
					=	ξ t ξ ∞ e -2θt t 0 e 2θs ξ 2 s ds	×	e -θt t 0 e θs dB s ξ ∞
						-	e -θt t 0 δB s e -θs s 0 δB r e θr e -2θt t 0 e 2θs ξ 2 s ds
						-H(2H -1)	e -θt t 0 dse -θs s 0 dre θr |s -r| 2H-2 e -2θt t 0 e 2θs ξ 2 s ds
					:= A θ t × B θ t -C θ t -D θ t .
	Using Lemme 2 and Lemma 3, we obtain that
			A θ t -→ 2θ almost surely as t -→ ∞.
	According to Lemma 6, we deduce
				B θ t	law -→	HΓ(2H) θ H	N ξ ∞	as t -→ ∞.
	Moreover,				
						HΓ(2H) θ H	N ξ ∞	law = C(1),
	because θ H ξ∞ √ HΓ(2H)			
						2
	=	H 2 (2H -1) 2 2	e -θt	[0,t] 4
	≤	H 2 (2H -1) 2 2	e -θt	[0,t] 4	|v -u| 2H-2 |s -r| 2H-2 dudvdrds
	=	1 2	[E(B 2 t )] 2 e -θt =	1 2	t 4H e -θt
	→ 0 as t → ∞.		
	For the convergence (15), we have
			H(2H -1)e -θt 2	t	dse -θs	s	dre θr |s -r| 2H-2
						0	0
			≤ H(2H -1)e -θt 2	t	ds	s	dr|s -r| 2H-2
						0	0
			=	t 2H 2	e -θt

e -θ|v-s| e -θ|u-r| |v -u| 2H-2 |s -r| 2H-2 dudvdrds 2 → 0 as t → ∞.
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