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Abstract13

We present measurements performed in a spherical shell filled with liquid sodium, where a 74 mm-14

radius inner sphere is rotated while a 210 mm-radius outer sphere is at rest. The inner sphere holds15

a dipolar magnetic field and acts as a magnetic propeller when rotated. In this experimental set-up16

called DTS, direct measurements of the velocity are performed by ultrasonic Doppler velocimetry.17

Differences in electric potential and the induced magnetic field are also measured to characterize18

the magnetohydrodynamic flow. Rotation frequencies of the inner sphere are varied between -19

30 Hz and +30 Hz, the magnetic Reynolds number based on measured sodium velocities and on20

the shell radius reaching to about 33. We have investigated the mean axisymmetric part of the21

flow, which consists in differential rotation. Strong super-rotation of the fluid with respect to the22

rotating inner sphere is directly measured. It is found that the organization of the mean flow23

does not change much throughout the entire range of parameters covered by our experiment. The24

direct measurements of zonal velocity give a nice illustration of Ferraro’s law of isorotation in the25

vicinity of the inner sphere where magnetic forces dominate inertial ones. The transition from a26

Ferraro regime in the interior to a geostrophic regime, where inertial forces predominate, in the27

outer regions has been well documented. It takes place where the local Elsasser number is about28

1. A quantitative agreement with non-linear numerical simulations is obtained when keeping the29

same Elsasser number. The experiments also reveal a region that violates Ferraro’s law just above30

the inner sphere.31
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I. INTRODUCTION32

The Earth’s fluid core below the solid mantle consists of a 3480 km-radius spherical cavity33

filled with a liquid iron alloy. A 1220 km-radius solid inner core sits in its center. It has34

been accepted since the 1940’s [1, 2] that the flows stirring the electrically conducting liquid35

iron in the outer core produce the Earth’s magnetic field by dynamo action. The fluid36

motion is thought to originate from the cooling of the Earth’s core, which results both in37

crystallization of the inner core and in convection in the liquid outer core [3].38

The last decade has seen enormous progress in the numerical computation of the geo-39

dynamo problem after the first simulation of a dynamo powered by convection [4–7]. It40

is however still unclear why many characteristics of the Earth’s magnetic field are so-well41

retrieved with simulations [8] since the latter are performed with values of important di-42

mensionless parameters that differ much from the appropriate values for the Earth’s core.43

The main numerical difficulty is the simultaneous computation of the velocity, the magnetic44

and the temperature fields with realistic diffusivities, respectively the fluid viscosity, the45

magnetic and the thermal diffusivities. Those differ indeed by six orders of magnitude in46

the outer core [9]; such a wide range is at present out of reach numerically, the simulations47

being performed at best with two orders of magnitude difference between the values of the48

diffusivities. An experimental approach of the geodynamo is, in that respect, promising since49

the fluid metals used in experiments have physical properties, specifically diffusivities, very50

close to the properties of the liquid iron alloy in the Earth’s outer core. Moreover, experi-51

ments and simulations are complementary since they span different ranges of dimensionless52

parameters.53

Magnetohydrodynamics experiments devoted to the dynamo study have started some 5054

years ago (see the chapter authored by Cardin and Brito in [10] for a review). To possibly55

induce magnetic fields, the working fluid must be liquid sodium in such experiments. Sodium56

is indeed the fluid that best conducts electricity in laboratory conditions. A breakthrough57

in these dynamo experiments occurred at the end of 1999 when amplification and saturation58

of an imposed magnetic field were measured for the first time in two experiments, in Riga59

[11] and in Karlsruhe [12]. The commun property of those set-ups was to have the sodium60

motion very much constrained spatially, in order to closely follow fluid flows well known61

analytically to lead to a kinematic dynamo, respectively the Ponomarenko flow [13] and the62

3



G.O. Robert flow [14]. More recently, the first experimental dynamo in a fully turbulent63

flow was obtained in a configuration where two crenelated ferromagnetic rotating discs drive64

a von Kàrmàn swirling flow in a cylinder [15] . Earth’s like magnetic field reversals were65

also obtained in this experimental dynamo [16]. Other similar experiments have been run66

where sodium flows are driven by propellers in a spherical geometry [17, 18]. In order to67

emphasize the specificity of the experimental study presented in the present paper, it is68

worth mentioning two common features of the previously mentioned sodium experiments:69

the forcing of the sodium motion is always purely mechanical and the magnetic field is weak70

in the sense that Lorentz forces are small compared to the non-linear velocity terms in the71

equation of motion [19].72

The experiment called DTS for ”Derviche Tourneur Sodium” has been designed to in-73

vestigate a supposedly relevant regime for the Earth’s core, the magnetostrophic regime74

[20–22] where the ratio of Coriolis to Lorentz forces is of the order one. The container made75

of weakly conducting stainless steel is spherical and can rotate about a vertical axis. An76

inner sphere consisting of a copper envelope enclosing permanent magnets is placed at the77

center of the outer sphere; the force free magnetic field produced by those magnets enables78

to explore dynamical regimes where Coriolis and Lorentz forces are comparable. The sodium79

motion in the spherical gap is driven by the differential rotation between the inner sphere80

and the outer sphere, unlike in the Earth’s core where the iron motion is predominantly81

driven by convection [23] and maybe minorly by differential rotation of the inner core [24].82

The DTS experiment has not been designed to run in a dynamo regime. It has instead83

been conceived as a small prototype of a possible future large sodium spherical dynamo84

experiment which would benefit from its results. Note than meanwhile Daniel Lathrop and85

collaborators have built a 3m-diameter sodium spherical experiment with an inner sphere86

differentially rotating with respect to the outer sphere, like in DTS. Schaeffer, Cardin and87

Guervilly [25, 26] have shown numerically that a dynamo could occur in a spherical Couette88

flow at large Rm in a low magnetic Prandtl number fluid such as sodium (Pm= ν/λ (see89

TABLE I)).90

Numerical simulations in a DTS-type configuration [27–29] of Couette spherical flows91

with an imposed magnetic field all show azimuthal flows stabilized by magnetic and rotation92

forces. Using electric potential measurements along a meridian of the outer sphere boundary,93

we concluded in our first report of DTS experimental results [30] that the amplitude of the94
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azimuthal flow may exceed the velocity of sodium in solid body rotation with the inner95

sphere, as predicted theoretically in the linear regime [31].96

The DTS experiment offers a tool to investigate non uniform rotation of an electrically97

conducting fluid in the presence of rotation and magnetic forces. The differential rotation98

of a body permeated by a strong magnetic field and the waves driven by the non uniform99

rotation have received considerable attention since the work of Ferraro [32, 33]. Indeed,100

the absence of solid envelopes makes non uniform rotation possible in stars, where it plays101

an important role in the mixing of chemical elements [34], in contrast with the case of102

planetary fluid cores. Ferraro found that the angular rotation in an electrically conducting103

body permeated by a steady magnetic field symmetric about the axis of rotation tends to104

be constant along magnetic lines of force. MacGregor and Charbonneau [35] illustrated105

this result and showed, in a weakly rotating case, that Ferraro’s theorem holds for Ha ≫ 1106

(Ha, the Hartmann number, measures the magnetic strength (see TABLE II). An intense107

magnetic field, probably of primordial origin, is the key actor in the transfer of angular108

momentum from the solar radiative interior to the convection zone [36, 37]. Finally, in109

a geophysical context, Aubert recently found, investigating zonal flows in spherical shell110

dynamos, that Ferraro’s law of isorotation gives a good description of the geometry of the111

zonal flows of thermal origin [38].112

In the second study of the DTS experiment [39], we investigated azimuthal flows when113

both the inner boundary and the outer boundary are rotating but at different speeds, using114

Doppler velocimetry and electric potential measurements. Specifically, we discussed the115

transition between the outer geostrophic region and the inner region where magnetic forces116

dominate. Extending the asymptotic model of Kleeorin et al [40], we could explain the117

shape of the measured azimuthal velocity profiles. We had to use a specific electric potential118

difference as a proxy of the differential rotation between the two spheres as, unfortunately,119

the electrical coupling between the liquid sodium and the copper casing of the interior120

magnets was apparently both imperfect and unreliable. Finally, we reported in on our third121

article [41] about the DTS experiment the presence of azimuthally traveling hydromagnetic122

waves that we inferred mainly from electric potential measurements along parallels.123

We investigate here again the main flows when the outer sphere is at rest. Our new study124

benefits from a comparison with our earlier work [39] for a rotating outer sphere. There is no125

need any more to use an indirect measure of the global rotation of the fluid as the electrical126
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coupling between liquid sodium and copper has become unimpaired. Furthermore, the DTS127

experiment has been equipped with a host of new measurement tools. The flow amplitude128

is measured along 7 different beams using Doppler velocimetry. Assuming axisymmetry, we129

have thus been able to map the azimuthal flow in most of the fluid. It turns out that the130

electric potential differences evolve monotonically with the inner core rotation but cannot131

be interpreted directly as a measure of the velocity below the outer viscous boundary layer.132

We have also entered a probe inside the cavity to measure the induced magnetic field in133

the interior. The dense measurements in the DTS experiment give a nice illustration of134

the Ferraro law of isoration [32] in the inner region where magnetic forces dominate. In the135

outer region, we retrieve axially invariant azimuthal flow as the Proudman-Taylor theorem136

holds there. The variation of the geostrophic velocity with the distance to the axis differs137

nevertheless from the case of a rotating outer sphere as recirculation in the outer Ekman138

layer plays an important role in the latter case.139

The organisation of the paper is as follows. In section II, we describe the experimental set-140

up and the techniques that we use to measure the magnetic, electric and velocity fields; we141

illustrate them with a discussion of a typical experimental run. In section III, we present the142

governing equations and the relevant dimensionless numbers of the experiment. We devote143

one section of the article to the observation of differential rotation and another one to the144

meridional circulation. Then, the experimental measurements are compared to numerical145

simulations of DTS. We summarize and discuss the results of our study in section VII.146
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II. THE DTS EXPERIMENT147

A. The experimental set-up148

The DTS experimental set-up [30, 39, 41] is shown in FIG. 1. It has been installed in a149

small building purpose-designed for sodium experiments.150

FIG. 1. Diagram and picture of the experimental set–up. A: moveable sodium reservoir, B:

shielded electric slip-ring, C: electromagnetic valve, D: outer sphere, E: magnetized rotating inner

sphere, F: spherical shell containing liquid sodium, G: magnetic coupling entraining the inner

sphere shaft, H: crenelated belt, I: brushless electric motor driving the inner sphere, J: expansion

tank for sodium, K: thermostated chamber. The total height of the set-up is 3.9 m.

As shown in FIG. 1, liquid sodium is contained in a spherical shell between an outer151

sphere and an inner sphere. The radius of the outer sphere is a = 210 mm and that of the152
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inner sphere b = 74 mm. The outer sphere is made of stainless steel and is 5 mm thick.153

The copper inner sphere (FIG. 2 and FIG. 3) contains magnetized Rare-Earth cobalt bricks154

assembled such that the resulting permanent magnetic field is very close to an axial dipole155

of moment intensity |M| = 700 Am2, with its axis of symmetry aligned with the axis of156

rotation. The magnetic field points downward along the rotation axis and its magnitude157

ranges from 345 mT at the poles of the inner sphere down to 8 mT at the equator of the158

outer sphere.159

Sodium is kept most of the time in the reservoir at the bottom of the set-up. When160

needed to run an experiment, liquid sodium is melted and pushed up from that reservoir161

into the spherical shell by imposing an overpressure of Argon in the reservoir. When liquid162

sodium reaches the expansion tank at the top of the spherical shell, an electromagnetic163

valve located just below the sphere (see FIG. 1) is locked such that sodium is kept in the164

upper part during experiments. In case of emergency, the valve is opened and sodium pours165

directly into the reservoir.166

a) b)

FIG. 2. a) Picture of one hemisphere of the inner sphere. Different pieces of magnets in gray

are assembled in the bulk of the inner sphere. b) View from the side of the inner sphere and its

rotating shaft. Note that the wheels at the top and bottom (only one is shown in the picture) of

the rotating shaft are attached to the outer sphere.

The central part of the experiment is air-conditioned in a chamber maintained at around167

130℃ during experiments: four 1 kW infrared radiants disposed around the outer sphere168

heat the chamber, whereas cold air pumped from outside cools the set-up when necessary.169

Liquid sodium is therefore usually kept some 30℃ above its melting temperature during170

experiments. Some physical properties of sodium relevant to our study are listed in TABLE I.171

The whole volume containing sodium, from the reservoir tank up to the expansion tank is172
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TABLE I. Physical properties of pure liquid sodium at 130℃ (Documents from CEA, Commissariat

 l’énergie atomique et aux énergies alternatives). *The sound velocity in sodium has been precisely

measured in the present study using the UDV apparatus.

ρ density 9.3 102 kg m−3

σ electric conductivity 9 106 Ω−1 m−1

ν kinematic viscosity 6.5 10−7 m2s−1

η magnetic diffusivity 8.7 10−2 m2s−1

c sound velocity* 2.45 103 m s−1

kept under Argon pressure at all times in order to limit oxidization of sodium.173

The rotation of the inner sphere, between f = −30 Hz and f = 30 Hz, is driven by174

a crenelated belt attached to a 11 kW brushless motor (SGMH-1ADCA61 from Yaskawa175

Electric Corporation, Tokyo, Japan). The belt entrains a home-made magnetic coupler176

located around the inner sphere shaft as seen in FIG. 1. The coupler is composed of an177

array of magnets located outside the sodium container, another array of magnets inside the178

container being immersed in liquid sodium. The inner magnets are anchored to the rotating179

shaft of the inner sphere such that when the belt is rotated outside, the inner sphere is180

rotated as well. Such a coupler has the advantage of not requiring any rotating seal in liquid181

sodium. Torque values up to about 70 Nm have been efficiently transmitted through this182

coupler in the experiment.183
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B. Measurements184

1. Ultrasonic Doppler velocimetry185

We use UDV ultrasonic Doppler velocimetry [42] in order to measure liquid sodium ve-186

locities in the spherical shell. This non intrusive technique has been intensively used in our187

group for the last decade, in particular in rotating experiments performed either in water or188

in liquid metals [43–46]. The technique consists in the emission from a piezoelectric trans-189

ducer of a succession of bursts of ultrasonic waves that propagate in the fluid. When the190

wave encounters a particle with a different acoustic impedance, part of the ultrasonic wave191

is backscattered towards the transducer. The time elapsed between the emitted and the192

reflected wave and the change in that time respectively give the position of the particle with193

respect to the transducer and the fluid velocity along the beam direction. Data process-194

ing is internal to the DOP2000 apparatus (http://www.signal-processing.com, Signal195

Processing company, Lausanne, Switzerland).196

The ultrasonic probes are held in circular stainless steel caps attached to the outer sphere,197

as shown in FIG. 3a). There are six locations with interchangeable caps on the outer sphere198

such that fluid velocities can be measured from any of these different positions. The thickness199

of the stainless steel wall between the probes and liquid sodium has been very precisely200

machined to 1.4 mm in order to insure the best transmission of energy from the probe to the201

fluid [47]. Small sodium oxides and/or gas bubbles are present and backscatter ultrasonic202

waves as in gallium experiments [46]. We keep the surface of the caps in contact with sodium203

as clean as possible to perform UDV measurements.204

We use high temperature 4 MHz ultrasonic transducers (TR0405AH from Signal Pro-205

cessing) 10 mm long and 8 or 12 mm in diameter (piezoelectric diameter 5 or 7 mm). The206

measurements shown throughout the paper were performed with pulse repetition frequency207

(prf) varying from 3 kHz to 12 kHz and with a number of prf per profile varying from 8 to208

128. A present limitation of this UDV technique is that the maximum measurable veloc-209

ity obeys the following function umax = c2/4fePmax where c is the ultrasonic velocity of the210

medium, fe is the emitting frequency, and Pmax is the maximum measurable depth along211

the velocity profile. Applying this relationship to the parameters used in DTS, Pmax ≃ 200212

mm (approximative length of the first half of the beam in Figure 3) and fe = 4 Mhz, the213
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a) b)

FIG. 3. a) 3D perspective view of the outer sphere and its interior. Caps at various latitudes

hold ultrasonic velocity probes to perform UDV. The divergent ultrasonic beams emitted from

each cap are shown in perspective with different colors. The five superimposed horizontal slices

of magnets are assembled in the heart of the inner sphere. Differences in electric potential are

measured between points from latitude +45◦ to latitude -45◦, with steps of 10◦ (holes along a

meridian at the right of the Figure). b) Meridional view of the normalized coordinates (s/a, z/a)

covered by the ultrasonic trajectories numbered from 1 to 7. Some of the corresponding rays are

plotted in Figure a) with the same color code. The distance d from the outer sphere along the

ultrasonic beam is marked by small dots drawn every 20 mm. The dipolar magnetic field lines are

drawn from L=1.4 to 9.6 (L is defined in section IV A) . The first line attached to the inner sphere

equator in red is L=1.4 and then L increases as the lines emerge closer to the the poles.

maximum measurable velocity is of the order 2.2 m/s. In particular cases, it is possible to214

overcome this limitation by using aliased profiles of velocity [43] as shown later in the paper.215

The spatial resolution of the velocity profiles is about 1 mm, and the velocity resolution is216

about 0.5%, or better for the aliased profiles.217

We have measured both the radial and oblique components of velocity in the bulk of the218

spherical shell. The radial measurements were performed from the latitudes +10◦, -20◦ and219
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-40◦. The oblique measurements were performed from different locations and in different220

planes, along rays that all deviate from the radial direction by the same angle (24◦). Thus,221

they all have the same length in the fluid cavity. At the point of closest approach, the rays222

are 11 mm away from the inner sphere. The seven oblique beams used in DTS are sketched223

in FIG. 3b). The way to retrieve the meridional and azimuthal components of the velocity224

field along the ultrasonic beam is detailed in the Appendix.225

We use UDV measurements to confirm the strong magnetic coupling between the inner226

rotating sphere and sodium. In a smaller version of DTS performed in water, maximum227

angular velocities (normalized by that of the inner sphere) of the order 0.16 are obtained228

for a hydrodynamic Reynolds number of 105 in the vicinity of the equatorial plane, close229

to the rotating inner sphere [26]. For similar Re in DTS, sodium is in super-rotation close230

to the inner rotating sphere and maximum measured velocities are instead around 1.2 (see231

FIG. 11b) for example).232

2. Magnetic field inside the sphere233

The measurement technique described so far does not requires probes that protrude inside234

the sphere. In order to measure the magnetic field inside the sphere, in the liquid, we have235

installed magnetometers inside a sleeve, which enters deep into the liquid. The external236

dimensions of the sleeve are 114 mm (length inside the sphere) and 16 mm (diameter). It237

contains a board equipped with high-temperature Hall magnetometers (model A1384LUA-T238

of Allegro Microsystems Inc). We measure the radial component of the magnetic field at239

radii (normalized by a the inner radius of the outer sphere) 0.93 and 0.74. The orthoradial240

component is measured at 0.97 and 0.78, and the azimuthal component at 0.99, 0.89, 0.79,241

0.69, 0.60 and 0.50. The sleeve is mounted in place of a removable port (at a latitude of242

either 40◦, 10◦ or −20◦). A top view of the sleeve is shown in FIG. 6. The measured voltage243

is sampled at 2000 samples/second with a 16-bit 250 kHz PXI-6229 National Instruments244

acquisition card. The precision of the measurements (estimated from actual measurements245

when f = 0) is about 140µT, and corresponds to about 20 bits of the A/D converter.246

Magnetic fields up to 60mT have been measured.247
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3. Differences in electric potentials on the outer sphere248

Differences in electric potentials are measured along several meridians and along one249

parallel of the outer sphere [30, 39, 41]). In the present study, we are interested in the250

measurements performed along meridians since they are linked to the azimuthal flow velocity251

uϕ (we denote (r, θ, ϕ) the spherical coordinates). The measurements are performed between252

successive electrodes located from -45o to +45o in latitude, with electrodes 10o apart as253

sketched in FIG. 3a). We note ∆V40 = V45−V35 the difference between the electric potential254

at latitudes 45◦ and 35◦. Electric potentials are measured by electrodes soldered to brass255

bolts 3 mm long, those being screwed into 1 mm-diameter, 4 mm-deep blind holes drilled in256

the stainless steel wall of the outer sphere. The measured voltage is filtered by an RC anti-257

aliasing 215 Hz low-pass filter and then sampled at 1000 samples/second with a 16-bit 250258

kHz PXI-6229 National Instruments acquisition card. The precision of the measurements259

(estimated from actual measurements at f = 0) is about 80µV, and corresponds to about260

10 bits of the A/D converter. Electric potential differences up to 7mV have been measured.261

Denoting E the electric field, we introduce the electric potential V through E = −∇V ,262

which is valid in a steady state. Then, the electric potential measurements are analysed using263

Ohm’s law for a moving conductor, j = σ (u×B+ E) where σ is the electric conductivity,264

j the electric current density vector, u the velocity field and B the magnetic field. If the265

meridional electric currents jθ are small compared to σuϕBr in the fluid interior and away266

from the equatorial plane where Br = 0, and if the viscous boundary layer adjacent to the267

outer sphere is thin, which ensures the continuity of Eθ through the layer, then the measured268

differences in electric potential depend on the product of the local radial magnetic field Br269

by uϕ, the azimuthal fluid velocity:270

∆V

a∆θ
= uϕBr , (1)

where ∆θ = 10◦ is the angle between two electrodes. However, we shall question below the271

assumption on the smallness of jθ, referred to as the frozen flux hypothesis.272

4. Velocity and torque measured from the motor driving the inner sphere273

The electronic drive of the motor entraining the inner sphere delivers an analog signal274

for its angular velocity and its torque. We checked and improved the velocity measurement275
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by calibrating it using a rotation counter, which consists of a small magnet glued on the276

entrainment pellet and passing once per turn in front of a magnetometer. The torque signal277

is used to infer the power consumption in section IID.278

C. A typical experiment : a complete set of measurements279

A complete set of measurements performed during a typical experiment is analyzed below.280

The run was chosen to illustrate the various measurements but also to depict how the281

different observables evolve with f . During that run of 600 seconds, the inner sphere was282

first accelerated from 0 to f = 30 Hz in around 120 seconds, then decelerated back to 0 during283

120 seconds. The inner sphere was then kept at rest for about 100 seconds and accelerated284

in the opposite direction to f = −30 Hz in 120 seconds. It returned to zero rotation in 120285

seconds again. That cycle of rotation is shown in FIG. 4. The torque delivered by the inner286

sphere motor is also shown and evolves clearly non-linearly during those cycles.287

FIG. 4 shows electric potential records (see part IIB 3) obtained during that experiment288

and time averaged over 0.1 s windows. The differences of potential vary in sync with the inner289

sphere rotation frequency as expected if the various ∆V measure the differential rotation290

between the liquid sodium and the outer sphere to which the electrodes are affixed (IIB 3).291

However, it is also apparent that the fluid rotation as measured from the ∆V s does not292

increase linearly with the inner sphere frequency. We interpret it as an indication that293

braking at the outer boundary, which opposes the entrainment by the inner core rotation,294

varies non linearly with the differential rotation. As expected, records from electrodes pairs295

are anti-symmetrical with respect to the equator, since the forcing is symmetrical while the296

radial component of the imposed magnetic field changes sign across the equator.297

FIG. 5 shows the fluid velocity u(d) measured by UDV during the first half of the exper-298

iment along the ray 6 as a function of time and distance. Velocity profiles were recorded299

along a total distance d ≃ 90 mm. As demonstrated in FIG. 5b), the velocity is aliased300

since the maximum measurable velocity, for the ultrasonic frequency used during the exper-301

iment, is exceeded. Since the azimuthal velocity profiles are quite simple in shape, it has302

been straightforward to unfold those profiles and retrieve the correct amplitudes as shown in303

FIG. 5c). The evolution with f is similar to that of the electrodes, but indicates a stronger304

leveling-off as f increases.305
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FIG. 4. Records of the inner core rotation frequency f , torque C and differences in electric potential

∆V40, ∆V30, ∆V20, ∆V10, ∆V−20, ∆V−30, ∆V−40 as a function of time. The subscript denotes the

latitude (in degrees) of the electric potential difference.

FIG. 6 shows the magnetic field induced inside the fluid during the typical experiment.306

The measurements are taken in the sleeve placed at 40◦ latitude. The induced azimuthal field307

(FIG. 6 a)) is measured at 6 different radii (given in section IIB 2). Its intensity reaches308

60 mT near the inner sphere and gets larger than the imposed dipole in some locations.309

Note the simple evolution with f , which contrasts with that of the electric potentials and310

velocities in that it increases with an exponent larger than 1. The induced meridional field311

(FIG. 6) is more than 10 times weaker. It is dominated by fluctuations, and does not change312

sign when f does. Note that the evolution with f is not monotonic. Similar behaviors are313

observed at latitudes 10◦ and −20◦.314
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a) b)

c)

FIG. 5. UDV measurements performed along the ray number 6 (see FIG. 3) during the second half

of the typical experiment when the inner sphere was rotated from rest to -30 Hz and then back to

rest. a) Spatio-temporal representation of the measured velocity, given by the color scale (in m/s).

b) Velocity at three distances from the probe as a function of time, extracted from the spatio-

temporal Figure a). The velocity profiles are clearly aliased since the profiles are discontinuous.

c) After applying a median time-filtering window of 0.2 s and unfolding the profiles, the correct

velocities are retrieved as a continuous function of time.
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a) b)

FIG. 6. a) Azimuthal bϕ, b) radial br and orthoradial bθ induced magnetic field at a latitude of

40◦ in the sleeve at different radial positions recorded during the two triangles sequence of FIG. 4.

A top view of the sleeve at the bottom of Figure a) gives the radial position and the orientation of

the various Hall magnetometers. The intensity of the induced azimuthal field reaches 60 mT near

the inner sphere and has the sign of −f (because the imposed dipolar field has its south pole in the

northern hemisphere). The fluctuations reach about 10% of the mean. The meridional components

of the induced magnetic field are much weaker and dominated by fluctuations, which have been

filtered out here (0.2 Hz low-pass filter).
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D. Power scaling315

The power dissipated by the flow is shown in FIG. 7 as a function of the rotation frequency316

f . It is computed from the product Γ × 2πf , where Γ is the torque retrieved from the motor317

drive. We subtracted the power measured with an empty shell (dash-dot curve) to eliminate318

power dissipation in the mechanical set-up. The dissipation in the fluid reaches almost 8 kW319

for the highest rotation frequency of the inner sphere (f = ±30 Hz). The small spread of320

the data dots indicates that power fluctuations are small. The continuous line is the record321

of power versus f when the inner sphere is ramped from 0 to −30 Hz as in FIG. 4. The322

corresponding increase in kinetic energy only slightly augments power dissipation.323

Power dissipation is found to scale as f 2.4, and indicates weak turbulence. An exponent324

3 is expected for fully turbulent flows with mechanical forcing [48].325
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FIG. 7. Power dissipated by the flow in DTS. The data dots are from measurements of the motor

torque for plateaus at given f . The dissipation in the mechanical set-up has been removed. It is

obtained by rotating the inner sphere before filling the shell with sodium. It is drawn here upside-

down in the lower panel (empty symbols) and can be fit by Pempty(W) = 4× |2πf | + 0.03 × (2πf)2

(dash-dot curve). Dissipation in the flow scales as f2.4, and is here compared with f2 (dotted line)

and f3 (dashed line).
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III. GOVERNING EQUATIONS326

A spherical shell of inner radius b and outer radius a is immersed in an axisymmetric

dipolar magnetic field Bd:

Bd(r, θ, ϕ) = −B0

(

b

r

)3

[2 cos θer + sin θeθ] ,

where (r, θ, ϕ) are spherical coordinates. The outer boundary is kept at rest and the inner327

sphere rotates with the constant angular velocity Ω = 2πf along the same axis as the dipole328

field that it carries. We assume that the electrically conducting fluid filling the cavity is329

homogeneous, incompressible and isothermal. We further assume that the flow inside the330

cavity is steady.331

The inner body consists of a magnetized innermost core enclosed in an electrically con-332

ducting spherical solid envelope of finite thickness db. We choose b as unit length, bΩ as unit333

velocity, ρb2Ω2 as unit pressure, and b2ΩB0/η = RmB0 as unit of induced magnetic field b334

(B = Bd+Rmb). Then, the equations governing the flow u and the induced magnetic field335

are:336

∇ · u = 0 (2)

∇ · b = 0 (3)

(u · ∇)u = −∇p+ Λ ((Bd · ∇)b+ (b · ∇)Bd) + Re−1∇2u (4)

∇2b = −∇× (u×B), (5)

where p is a modified pressure. The notation Λ refers to the Elsasser number, classically337

used for rotating flows in the presence of a magnetic field. That number Λ compares the338

magnetic and inertial forces in the vicinity of the magnetized inner sphere. In the shell339

interior, the two forces are better compared by a ”local” Elsasser number: Λl = (b/r)6Λ340

(with (b/a)6 ≃ 1.83 10−3). Finally, it is of interest to introduce the Hartmann number341

Ha that compares the magnetic and viscous forces. We have Ha = (ΛRe)1/2. In the shell342

interior, the number (b/r)3Ha is more appropriate to compare the two forces. Typical values343

of these dimensionless numbers can be found in TABLE II.344

The set of equations (2-5), where the non linear terms are neglected, was the subject of the345

analytical study of Dormy et al. [31] that described how the differential rotation between the346
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TABLE II. Typical values of the dimensionless numbers in the DTS experiment, computed for

f = Ω/2π = 25 Hz.

Re b2Ω/ν 1.3 106

Rm b2Ω/η 10

Λ σB2
0/ρΩ 1.9

Ha (ReΛ)1/2 1.6 103

fluid interior and the outer sphere drives an influx of electrical currents from the mainstream347

into the outer viscous Hartmann boundary layer. Electrical currents flow along the viscous348

boundary layer and return to the conducting inner body along a free shear layer located on349

the magnetic field line tangent to the outer boundary at the equator. As these electrical350

currents cannot flow exactly parallel to the magnetic field line, they produce a Lorentz force,351

which sustains ”super-rotation” of the fluid. Recent studies have extended the analysis to352

the case of a finitely conducting outer sphere [49, 50]. On increasing the conductance of the353

container, more and more electrical currents leak into the solid boundary and the super-354

rotation rate gets as large as O(Ha1/2). Though the analytical results have set the stage for355

the interpretation of the experimental results, the neglected non linear effects are crucial in356

the DTS experiment, even for the smallest rate of rotation of the solid inner body.357

Upon reversal of Ω, uϕ and bϕ change into −uϕ and −bϕ whilst the other components of358

u and b are kept unchanged.359

IV. DIFFERENTIAL ROTATION360

A. Transition between the Ferraro and geostrophic regimes361

In that section, we use the UDV records to delve into the geometry of isorotation surfaces.362

The L number associated to each dipolar magnetic field line enters the equation of the363

surfaces spanned by dipolar lines of force:364

r = L sin2 θ . (6)

FIG. 8 shows that, for L≤ 2.7, the angular velocity measured along rays 2 and 3, which365

are the most appropriate to map the azimuthal velocity field, is, to a large extent, a function366
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of L only. Thus, the angular velocity does not vary along magnetic field lines near the inner367

sphere, where the magnetic field is the strongest. We interpret this result as a consequence368

of Ferraro’s theorem of isorotation. The latter is written:369

Bd · ∇
(

uϕ

s

)

= 0. (7)

It is obtained from the ϕ component of the induction equation for steady fields, ignoring370

magnetic diffusion. Although often invoked in the framework of ideal MHD (where magnetic371

diffusion is negligible), Ferraro’s law does not require a large Rm [51]. It implies that there372

is no induced magnetic field and that, as a consequence, the magnetic force is exactly zero.373

More precisely, deviations from this law lead to the induction of a magnetic field, which374

produces a magnetic force that tends to oppose this induction process. Writing u = u0+u1,375

where u0 obeys the equation (7), we obtain b ≈ u1 from (5). Then, the momentum equation376

(4) yields u1 ≈ (ReΛ)−1u0 = Ha−1u0 (as numerically verified in [35]) when the inertial term,377

on the left hand side, can be neglected. Ferraro’s law of isorotation, though, is not the only378

way to cancel the magnetic force. In the presence of electric currents parallel to the magnetic379

field, the magnetic force remains zero and the equation (7) can be violated [50, 51]. For the380

geometry of the DTS experiment, it cannot happen along the innermost dipolar field lines381

that connect one parallel of the inner body surface in one hemisphere to its mirror image in382

the other hemisphere, without reaching the outer sphere. Indeed, symmetry with respect to383

the equatorial plane E implies that the currents do not cross E.384

Thus, the observation of a velocity field obeying Ferraro’s law is a symptom that magnetic385

forces predominate in that region. Note that the fact that the two legs of the profile along386

ray 2 show similar velocities even for large L only probes the symmetry of the flow with387

respect to the equatorial plane.388

Now, FIG. 9 shows that for s ≥ 0.6 the azimuthal velocity is largely a function of s389

only. There, the Proudman-Taylor theorem holds and azimuthal flows are geostrophic as390

the inertial forces predominate. In contrast with the case of a rotating outer sphere (see391

figure 7 in [39]), there is no region of uniform rotation: zonal velocities are z-independent392

but vary with the distance to the z axis.393

The transition between the Ferraro and geostrophic regimes (FIG. 10) occurs at smaller394

distances from the axis as the rotation frequency of the inner core increases. It takes place395

where the local Elsasser number Λl, which compares the magnetic and inertial forces, is of396
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FIG. 8. Rotation frequency of the fluid sodium over the inner sphere rotation frequency as a

function of the magnetic field lines L for four ultrasonic velocity profiles (trajectories 1, 2, 3 and

6, with the same color code as in FIG 3) and four inner sphere rotation frequencies (f = -1.5, -3,

-6 and -10 Hz). The dashed line is a straight line to help the eye.

order 1.397

In the geostrophic region, magnetic stress integrated on the geostrophic cylinders remains398

strong enough to overcome the viscous friction at the outer boundary and to impart a rapid399

rotation to the fluid but becomes weaker than the Reynolds stress (which can be represented400

as a Coriolis force). As a result, the fluid angular velocity is still of the order of the angular401

velocity of the inner sphere and the velocities are predominantly geostrophic.402
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FIG. 9. Rotation frequency of the fluid sodium normalized by the inner sphere rotation frequency

as a function of s, for various ultrasonic velocity profiles and four inner sphere rotation frequencies

(f = -1.5, -3, -6 and -10 Hz). The colors of the profiles follow the conventions laid out in FIG. 3.
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FIG. 10. Normalized cylindrical radius s/a along the UDV trajectories number 1 (blue), 2 (red)

and 3 (black) where ffluid = f (i.e. f∗ = 1) as a function of the inner sphere rotation frequency.

Pale line : Λl = 0.5, Dark line : Λl = 2.5.
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B. Inversion of velocity profiles403

Flow velocity is constrained by its projection on the several ultrasonic rays that we404

shoot. We invert the Doppler velocity profiles for the large scale mean flow, assuming that405

the steady part of the flow is symmetric about the axis of rotation and with respect to the406

equatorial plane. A poloidal/toroidal decomposition,407

u = uϕeϕ +∇× (upeϕ) , (8)

is employed. We first consider the azimuthal velocity uϕ, which is expanded in associated408

Legendre functions with odd degree and order 1, i.e.409

uϕ(r, θ) =
lmax
∑

l=0

ul
ϕ(r)P

1

2l+1(cos θ) . (9)

The functions ul
ϕ(r) are decomposed into a sum from k = 0 to kmax of Chebyshev poly-410

nomials of the second kind on the interval [0, 1] mapped onto the interval [b/a, 1], i.e. the411

fluid domain. The azimuthal velocity is not constrained to vanish at the inner and outer412

boundaries, in order to account for the presence of thin unresolved boundary layers.413

Azimuthal velocities are more than 10 times larger than the poloidal (i.e. meridional)414

velocities. Nevertheless, the latter projects onto the ultrasound rays. We take the difference415

of the profiles acquired for f and −f in order to eliminate this small contribution (the416

meridional circulation does not change sign while the azimuthal velocity does).417

FIG. 11 shows the isovalues of angular frequency f ∗ inverted for f = ±3 Hz, with418

lmax = 3 and kmax = 7. A crescent of super-rotation is present near the inner sphere.419

There, isorotation contours roughly follow magnetic field lines, in agreement with Ferraro’s420

theorem, as anticipated above. At larger cylindrical distance from the inner sphere, the421

flow becomes geostrophic: the contour lines are vertical. We note that angular velocities422

just above the north pole of the inner sphere do not comply with Ferraro’s law. Instead,423

velocities decrease to quite low values inside the cylinder tangent to the inner sphere. Such424

violations have been shown to occur when the electric conductivity of boundaries is high [51]425

[50]. We speculate that we might be in this situation inside the tangent cylinder because the426

opening of the sphere at the top and bottom (see FIG. 3) replaces the poorly conducting427

stainless steel wall by sodium.428

FIG. 11 compares the synthetic angular velocity profiles to the observed Doppler velocity429

profiles along the various rays. Note that super-rotation is clearly visible in the raw profiles.430
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The drop in velocity just above the inner sphere is constrained by profiles 4 (green) and 6431

(cyan), but its vertical extent is not.432

a) b)

FIG. 11. a) Reconstructed isovalue map of fluid angular frequency f∗ (the fluid angular frequency

normalized by f) at f = ±3 Hz in a meridional plane, assuming axisymmetry and symmetry with

respect to the equator. Super-rotation (f∗ ¿ 1) is clearly visible near the inner sphere, where

the Ferraro law of isorotation applies. Contours become vertical further away, where geostrophy

dominates. The fluid frequency is higher than 0.4 everywhere except in thin unresolved boundary

layers. The color lines are the projection in the upper half (s, z) plane of the ultrasonic rays used

in the inversion (see FIG. 3). b) Comparison between the measured ultrasonic Doppler f∗ (shown

by their error bars) and the synthetic profiles (solid lines) computed from the angular frequency

map of Figure a) for f = ±3 Hz. The x-axis gives the distance along the ray (in a units). The

corresponding rays are plotted in Figure a) with the same color code.

C. ffluid deduced from differences in electric potential and from UDV433

As in the previous study of DTS with rotating outer sphere [39], we observe that the434

amplitudes of the differences in electric potential ∆V ’s vary linearly with ∆V40, the pro-435

portionality factor increasing from the equator toward the poles due in particular to the436

increase of Br in formula (1). We show however in the present study that measuring the437

electric potential does not yield a reliable indicator of the angular velocity f ∗ using formula438

(1). In FIG. 12, we compare the normalized fluid angular velocity f ∗ retrieved from the439

∆V ’s, for four different latitudes, to f ∗ obtained directly by UDV at the nearest measured440
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point, around d/a = 0.1. The frequencies f ∗ obtained from ∆V and from UDV in FIG. 12,441

would be similar if both measurement techniques were only sensitive to uϕ in the interior442

below the outer viscous boundary layer. The strong discrepancy between these two sets of443

frequencies reveals instead that the outer boundary layer in DTS cannot simply be reduced444

to a Hartmann layer, outside of which the meridional currents jθ can be neglected. We445

further discuss this point in the numerical part VI.446

FIG. 12. f∗ deduced from the measurements of ∆V shown in a), using formula (1). Dashed

blue line : f∗ value obtained with UDV measurements on the trajectory number 1 at the distance

d/a = 0.1. Dashed red line : f∗ value obtained with UDV measurements on the trajectory number

2 for d/a = 0.1.
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V. MERIDIONAL CIRCULATION447

The meridional circulation is constrained from Doppler velocity profiles of the radial ve-448

locity (shot along the radial direction), from profiles shot in a meridional plane, and from the449

projection of the meridional velocity on ”azimuthal” shots. The latter is obtained by taking450

the sum of the profiles acquired for f and −f , in order to eliminate the azimuthal contribu-451

tion. The same is done for the radial and meridional profiles to remove any contamination452

from azimuthal velocities.453

The poloidal velocity scalar uP of equation (8) is expanded in associated Legendre func-454

tions with even degree and order 1, i.e.455

uP (r, θ) =
lmax
∑

l=0

ul
P (r)P

1

2l(cos θ) . (10)

The radial ur and orthoradial uθ components of velocity are then obtained as:456

ur(r, θ) =
lmax
∑

l=0

ul
P (r)

r

1

sin θ

d

dθ

(

sin θ P 1

2l(cos θ)
)

. (11)

457

uθ(r, θ) = −
lmax
∑

l=0

(

ul
P (r)

r
+

dul
P (r)

dr

)

P 1

2l(cos θ). (12)

The functions ul
P (r) are decomposed into a sum of sin (kπ(r − b/a)/(1− b/a)) from k = 0458

to kmax. The radial velocity is thus constrained to vanish at the inner and outer (rigid)459

boundaries, but the orthoradial velocity is not, in order to account for the presence of thin460

unresolved boundary layers. FIG. 13 shows the streamlines of the meridional circulation461

inverted for f = ±3 Hz, with lmax = 4 and kmax = 8. The fluid is centrifuged from the462

inner sphere in the equatorial plane and moves north in a narrow sheet beneath the outer463

boundary. It loops back to the inner sphere in a more diffuse manner. Meridional velocities464

are more than ten times weaker than azimuthal velocities.465

FIG. 14 compares the synthetic radial and meridional profiles to the observed Doppler466

velocity profiles along the various rays. Velocities are normalized by 2πfa.467

Over a decade (from f = 1.5 Hz to = 15 Hz), radial velocities are consistently centrifugal468

at 10◦ latitude and centripetal at 40◦, and are roughly proportional to f . The radial profiles469

at 20◦ are more complex and evolve with f , indicating a non-monotonic evolution of the470

meridional circulation, also evidenced by the records of the r and θ components of the471

induced magnetic field inside the fluid (see FIG. 6).472
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FIG. 13. Reconstructed stream lines of the meridional circulation at f = ±3 Hz in a meridional

plane, assuming axisymmetry and symmetry with respect to the equator. The interval between

lines is 1.6×10−3. The fluid is centrifuged away from the inner sphere in the equatorial region and

moves up to the pole along the outer boundary. The color lines are the projection in the upper

half (s, z) plane of the ultrasonic rays used in the inversion.
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a)

b)

FIG. 14. Comparison between the measured ultrasonic Doppler velocity profiles (shown by their

error bars) and the synthetic profiles (solid lines) computed from the meridional circulation map of

FIG. 13 for f = ±3 Hz. Radial profiles a), meridional and ”azimuthal” profiles b). The contribution

from the azimuthal flow has been removed by taking the sum of profiles acquired for f and −f .

The x-axis gives the distance along the ray (in a units) and the y-axis is the velocity measured

along the ray, adimensionalized by 2πfa. The corresponding rays are plotted in FIG. 13 with the

same color code.

31



VI. COMPARISON WITH NUMERICAL SIMULATIONS473

Two previous numerical studies are particularly relevant to our work. Hollerbach et al.474

studied exactly the DTS configuration but for values of Λ much larger than its value in the475

experiment [29]. They focus their study on the modification of the linear solution by inertial476

effects, stressing that the magnetic field line tangent to the outer sphere at the equator loses477

its significance in the non linear regime. As a result of the relatively large value of Λ, the478

inertial effects remain too weak -when the outer sphere is at rest- to make a geostrophic479

region arise at large distances from the axis. The solutions of Garaud [52] (see the figures480

7 and 11) for a slightly different problem do show the transition between a Ferraro and a481

geostrophic regions. In her model, which pertains to the formation of the solar tachocline,482

a dipolar magnetic field permeates a thick spherical shell as in DTS, the rotation of the483

outer boundary is imposed and the rotation of the inner boundary is a free parameter: a484

condition of zero torque is imposed on that boundary. Numerical models [29, 39] of the485

DTS experiment when the outer sphere is rotating also clearly show a Ferraro region near486

the inner sphere where the magnetic field is strong and a geostrophic region in the vicinity487

of the equator of the outer sphere. We argue below that all these results obtained for a488

rotating outer sphere provide us with a useful guide to interpret the numerical solutions489

when the outer sphere is at rest.490

A. The numerical model491

The model consists of four nested spherical layers (see FIG. 15). The fluid layer is enclosed492

between a weakly conducting outer container and a central solid sphere comprised of an inner493

insulating core and of a strongly conducting outer envelope.494

The velocity field is decomposed as stated in the definitions (8) and (9). The variables495

ul
ϕ(r) and ul

p(r) are then discretized in radius. Analogous decompositions of variables de-496

noted blϕ(r) and blp(r) are employed to represent the induced magnetic field. The truncation497

level lmax (see (9)) is 120 and at least 450 unevenly spaced points are used in the radial498

direction.499

The equations (4) and (5), modified to include all the non linearities and the time deriva-500

tives of u and b, are transformed into equations for ul
ϕ, u

l
p, b

l
ϕ and blp.501
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FIG. 15. Geometry of the numerical model. The relative conductance of the solid outer shell

is σbδ/σa = 1/336, with σb and δ respectively the conductivity and the thickness of the outer

sphere. It reproduces the experimental value with σb chosen as the conductivity of stainless steel

at 140◦C. The conductivity ratio between the layers 2 and 3 reproduces the ratio (4.2) between

the conductivity of copper and sodium.

The dimensionless numbers Re and Λ are chosen so that steady solutions exist and are502

stable, with Pm ≪ 1 (Pm enters the definition of the unit induced field). Solutions are503

obtained after time-stepping the equations until a stationary state is reached. They have504

been successfully compared to solutions obtained with another numerical code PARODY,505
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which is not restricted to axisymmetric variables [53] [26].506

It is not possible to simulate the Reynolds number of the experiment, which is about 106.507

For the experimental range of Λ, steady solutions are obtained with Re ∼ 103.508

B. Steady axisymmetric solutions509

FIG. 16 displays a typical solution for the angular and meridional velocities that illustrates510

well the experimental results. The fluid rotates faster than the magnetized inner body in its511

vicinity. There, the angular velocity is constant along magnetic field lines of force. Further512

away of the inner core, the zonal shear becomes almost geostrophic. In addition to these513

features that we have retrieved from the experimental results, the numerical solution displays514

recirculation in the outer boundary layer at high latitude. There, the interior flow largely515

consists in rigid rotation and the boundary layer has the characteristics of a Bödewadt layer516

with a region of enhanced angular rotation.517

For large enough Re (e.g.(a/b)2Re = 104 with (b/a)2Ha = 20), circular waves are present518

in the Bödewadt layer, above 60◦ of latitude. They propagate towards the axis. Similar waves519

had been reported before in simulations of the flow between a rotating and a stationary disk520

in the absence of a magnetic field [54]. There, they eventually die out. Thus, the persistence521

of propagation of circular waves in the boundary layer attached to the sphere at rest may522

be attributed to the presence of a magnetic field. On the other hand, these waves arise for523

larger Re as Ha is augmented. Their emergence delimits the domain of steady solutions.524

We have checked that the thickness of the outer boundary layer in the numerical solution525

scales as Ω−1/2. Note that it corresponds to 3 mm for Ω = 1.5 s−1 and the viscosity of526

liquid sodium. The fluid rotation is driven by the electromagnetic torque acting at the inner527

boundary against the viscous torque at the outer boundary. We have found that both the528

viscous torque on the inner surface and the electromagnetic torque on the outer surface are529

negligible. Comparing different simulations, we have also checked that the main viscous530

torque scales as ∼ Ω3/2, as expected from the thickness of the Bödewadt layer. Thus, the531

power required to drive the fluid rotation scales as Ω5/2, as does the experimentally measured532

power (see section IID).533

The angular rotation just below the outer viscous layer scaled by the inner core angular534

rotation decreases with Re in agreement with the experimental results. On the other hand,535
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a) b) c)

FIG. 16. a) Angular and b) meridional velocity in a meridional plane for Re = 9.5 102, Ha = 163,

and Pm = 10−3. c) angular velocity estimated from V , using (1). Two dipolar field lines (thick

and white) are superimposed in the angular velocity maps, and the thick contour line is where the

angular velocity is unity.
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the angular rotation that would be inferred from the electric potential differences calculated536

at the outer surface using expression (1) increases with Re. FIG. 16c displays the angular537

velocity as estimated from the electric potential, according to equation (1). It can be com-538

pared to FIG. 16a. The actual shear is well retrieved where the magnetic force predominates,539

in the region where Ferraro’s law of isorotation holds. There, the electric current density j is540

limited by the strength of the magnetic force, which needs to be balanced by another force.541

That restriction makes it possible to neglect j in Ohm’s law. Then, predictions made from542

(1) are correct. On the other hand, the actual shear is not well recovered in the geostrophic543

region where the electric current density is not limited by the strength of the magnetic field.544

There, the frozen-flux relation (1) can be violated. We thus explain why the electric poten-545

tial measurements at the surface of the DTS experiment do not yield a good prediction of546

the angular velocity immediately below the outer viscous boundary layer.547

Our first discussion [30] of the electric potential measurements was based on a numerical548

model calculated for the experimental values of Ha and thus for too large values of Λ. As a549

result, the magnetic force, in the numerical model, was dominant in the entire fluid layer and550

the frozen-flux relationship (1) was verified, at least away from the equator where Br = 0.551

However, equation (1), becomes less and less valid as Re is increased and Λ decreased, in552

agreement with the divergence that has been experimentally observed (see the FIG. 12)553

between the angular velocity calculated from (1) and the actual velocity.554

Incidently, cranking up the rotation of the magnetized inner sphere stabilizes the fluid555

circulation, at least within a certain parameter range. We have calculated the time-averaged556

solution (not shown) for the same parameters as the steady solution illustrated by FIG. 16,557

but for a lower Re. Both the flow and the induced magnetic field are periodic for this set of558

parameters. A second meridional roll, which is centripetal in the equatorial plane, turns up559

in the outer region. There, it creates a disk-shaped region where the rotation is slow and560

the solution is strikingly different from the almost geostrophic solution (FIG. 16) obtained561

for a slightly larger value of Re.562

C. Comparison between numerical simulations and experimental results563

We find that reproducing the Elsasser number Λ, rather than a combination of Λ and Re564

such as the Hartmann number Ha = (ReΛ)1/2, is the key factor to recover the experimental565
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results. The parameters for the solution displayed in FIG. 16 correspond to Λ = 28, which566

is the appropriate value for experiments with Ω = 1.5 s−1. With Pm = 10−3, the value of567

the magnetic Reynolds number is about right. It remains too small for the poloidal field to568

be much different from the imposed dipole field (again for the parameters of FIG. 16).569

FIG. 17 shows that numerical solutions are able to satisfactorily reproduce the ultrasonic570

measurements of angular velocity, obtained for the same values of Λ, as expected from the571

similitude of the angular velocity maps 16 and 11. The simulated velocities have weaker572

amplitude than the measured ones in much of the fluid though. We have checked that573

increasing Re, whilst keeping Λ constant, favours enhanced corotation between the fluid574

and the inner core. As our calculations are for much smaller Re than the values realized in575

the experiment, that result may explain the remaining discrepancy between measured and576

simulated velocities.577

VII. DISCUSSION AND CONCLUSION578

In the presence of an imposed magnetic field, which favors solid body rotation, the inertial579

forces largely reduce to a Coriolis force, even for large Reynolds numbers. Experimental580

results can thus be interpreted using a single dimensionless number, the Elsasser number.581

In that respect, experimental results obtained with global rotation [39] provide a better582

guide to interpreting the present results than the linear situation studied by Dormy et al.583

[28, 31]. We estimate that, in DTS, the rotation frequency f should be less than 0.1 Hz for584

the latter to be approached.585

Experiments have been conducted with the inner sphere rotating in the range -30 Hz586

≤ f ≤ 30 Hz. We have been able to map extensively the shear in the fluid cavity from587

Ultrasonic Doppler velocimetry for |f | ≤ 10 Hz. Our observations provide a very clear588

experimental illustration of Ferraro’s law of isorotation, demonstrating the predominance589

of magnetic forces near the inner sphere. They also exhibit a strong super-rotation: in the590

region where magnetic forces dominate, the fluid angular velocity gets 30% larger than that591

of the inner sphere. This contrasts with the results obtained by Dormy et al [28] when global592

rotation is present, which indicate that the phenomenon of super-rotation is hindered by the593

Coriolis force. The experimental results obtained in our previous study with global rotation594

[39] could not address this issue and we plan to run additional experiments for that purpose.595
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FIG. 17. Angular velocity along the ultrasonic rays as a function of the distance from the probe:

measured (solid lines, 3 Hz, Λ = 16) and retrieved from a time-averaged numerical solution (dashed

lines, Re = 1.5 103, Ha = 163, Pm = 10−3, Λ = 18). The error bars of the experimental data are

shown in FIG. 11.

The experiments also display a clear violation to Ferraro’s law: quite low angular velocities596

are observed just above the inner sphere, where the magnetic field is strongest (see FIG. 11).597

We suspect that this is due to the presence of sodium at rest at the top and bottom of the598

cylinder tangent to the inner sphere. Indeed, such violations have been shown to occur when599

the electric conductivity of boundaries is high [51] [50].600

We could follow the evolution of induced magnetic field, electric potentials and power601

across the full range of forcing. In a first approximation, all observables associated with the602

azimuthal flow (which dominates) can be described by a universal solution, both velocities603

and induced magnetic field scaling with f . In a second approximation, the increase of the604

dimensional fluid velocity with f thins the viscous boundary layer at the outer sphere and605

38



increases friction accordingly, thus reducing the adimensional velocity of the fluid inside606

the sphere. At the same time, the effective Coriolis force that results from the non-linear607

(u · ∇)u term increases with respect to the (linear) Lorentz force: the geostrophic region608

extends further towards the inner sphere. This explains that the fluid velocity increases with609

f less rapidly than f (FIG. 5) at large f whilst the torque instead increases more rapidly610

than f (FIG. 4) (the electric potentials follow an intermediate trend). The outer friction611

torque is balanced by the magnetic torque at the inner boundary. This is consistent with612

an increase of the induced magnetic field, near the solid inner body, that is steeper than f613

(see FIG. 6). On the other hand, the description of Nataf and Gagnière [55] pertains to the614

region where the shear is geostrophic. There, the increased torque at the outer boundary is615

balanced by the magnetic torque on the geostrophic cylinders in the interior, which results616

from the shearing of the imposed dipolar field. The direct measurement of the velocity (up to617

10 Hz, see FIG. 9) shows that the adimensionalized shear does not change significantly with618

f even though the velocity itself decreases. In addition, the induced azimuthal magnetic619

field that we measure inside the sphere (FIG. 6), for the whole range of f , increases more620

rapidly than f . At large f , we observe that bϕ gets larger than the imposed dipolar field in621

much of the fluid layer. Eventually, this induced field is large enough to modify the overall622

magnetic field, and the resulting flow.623

This last regime, only achieved because the magnetic Reynolds number is large enough,624

is probably the most interesting one. Unfortunately, we cannot directly measure the flow625

velocities with the ultrasound technique at these very large f . Less direct techniques are626

now required to investigate the zonal shear for f > 10 Hz. Inertial waves modified in the627

presence of the dipolar and the induced magnetic fields have been inferred from records of628

the electric potential along parallels at the surface [41] and of the magnetic field along a629

meridian. Both their period and their wavenumber vary with the geometry of the differential630

rotation in the cavity. Hopefully, it will be possible to invert the zonal shear from the records631

of magneto-inertial waves.632

Guided by the numerical model, we find that electric field measurements are difficult to633

interpret, particularly in the equatorial region where the radial magnetic field Br vanishes.634

The frozen-flux approximation (1) holds when there is a mechanism that keeps under control635

the strength of the electrical currents [56]. This is the reason why the magnetic Reynolds636

number Rm is not relevant to discuss the validity of the frozen-flux approximation in our637
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quasi-steady experiment. That approximation has predictive power, instead, in regions638

where the magnetic force is dominating. In the DTS experiment, it corresponds to the639

inner region close to the magnet where Λ ≥ 1.640

In a geophysical context, a similar approach is routinely used [57] to invert the velocity641

field at the Earth’s core surface from models of the time changes of the geomagnetic field,642

the so-called secular variation. Taking the example of a quasi steady state, this geophysical643

application has been criticized from a strictly kinematic standpoint [58]. We reckon in-644

stead that it is necessary to consider the balance of forces to decide whether the frozen-flux645

hypothesis holds, at least for a quasi steady state as illustrated by the DTS experiment.646

Features of the experiment that only depend upon dimensionless numbers that do not647

involve diffusivities have been simulated numerically. An analogous explanation has been648

put forward to explain the intriguing successes of geodynamo simulations [5].649
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Appendix: Angular and meridional velocity along the ultrasonic oblique rays657

The seven oblique ultrasonic rays shot in DTS are sketched in FIG. 3. We define the658

declination D as the angle between the beam and the meridional plane (D counted positively659

eastwards), the inclination I as the angle between the projected beam in the meridional plane660

and the radial direction (I counted positively upwards) and λ as the latitude of the ultrasonic661

probe. Using those definitions, TABLE III give the characteristics of the beams.662

TABLE III. Latitude λ, inclination I, and declination D (in degrees) at the origin of the shots

(on the outer sphere) of the oblique ultrasonic beams in DTS.

Trajectory number and color λ I D

1, blue 40 21.1 11.7

2, red 10 2.2 23.9

3, black 10 12.5 -20.6

4, green -20 20 -13.5

5, yellow -20 21.1 -11.7

6, cyan -40 21.1 11.7

7, magenta -40 -24 0

1. Angular velocity663

Along these oblique beams, the projection u(d) (d is the distance from the probe) of the664

velocity is a combination of the components ur, uθ and uϕ of the total velocity field. Velocity665

u(d) is counted positive in the shooting direction. We assume that the mean fluid flow is666

axisymmetric, and also (ur,uθ) ≪ uϕ, the meridional velocities amplitude in DTS being less667

than 10 % the amplitude of the azimuthal velocities. Using projections along the beam, we668

retrieve the angular velocity ω(d) along trajectories 1 to 6 using the following relationship669

ω(d) = − u(d)

a cos λ sinD
. (A.1)
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2. Meridional velocity670

We have also exploited the observation that the meridional velocity does not change sign671

when the rotation of the inner sphere is reversed - it remains centrifugal in the equatorial672

plane - whereas the angular velocity does change sign. Thus, combining measurements673

obtained with two opposite rotation rates of the inner core, we can separate azimuthal and674

meridional velocities.675

Assuming now that the mean meridional velocity is axisymmetric and using projections,676

we can retrieve the radial velocity677

ur(d) =
u(d)r(d)

d− a cosD cos I
, (A.2)

and the orthoradial velocity678

uθ(d) =
u(d)r(d)s(d)

a[a cosD cos λ sin I − d cos2D cos(λ+ I) sin I + d sin2D sinλ]
, (A.3)

where r(d) =
√
x2 + y2 + z2 is the spherical radius and s(d) =

√
x2 + y2 is the cylindrical679

radius at the measurement point. They (x, y, z) coordinates of the measurement point are680

given by:681

x(d) = a cosλ− d cosD cos(λ+ I) (A.4)

y(d) = −d sinD (A.5)

z(d) = a sinλ− d cosD sin(λ+ I) (A.6)
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