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Abstract. We consider a Galton-Watson branching process with neutral mutations (infinite

alleles model), and we decompose the entire population into sub-families of individuals carrying

the same allele. Bertoin[3] has established the description of the asymptotic shape of the process

of the sizes of the allelic sub-families when the initial population is large and the mutation rate

small. The limit in law is a certain continuous state-space branching process (CSBP). Further,

we consider the difference between the rescaled size of sub-families and corresponding number

of mutations. We find out that it converges in law to some normal distribution with mean zero

and whose variance is associated with the CSBP.

Keywords : Branching process, neutral mutations, Lévy-Itô decomposition, weak convergence,

Donsker’s invariance principle.

1. Introduction

We consider a Galton-Watson process([1]), that is, a population model with asexual reproduction

such that at every generation, each individual gives birth to a random number of children according

to a fixed offspring distribution and independently of the other individuals in the population. In

this paper, we are interested in the situation where a child can be either a clone, that is, of the

same genetic type as its parent, or a mutant, that is, of a new genetic type different from its parent.

We stress that each mutant has a distinct allele and in turn gives birth to clones of itself and to

new mutants according to the same statistical law as its parent, even though it bears a different

allele. In other words, we are working with an infinite alleles model where mutations are neutral

for the population dynamics.

To simplify the model, we decompose the entire population into clusters(:sub-families) of indi-

viduals having the same allele. This partition will be referred to as the allelic partition. In the

study of random population models with mutations there are many questions concerning statistics

of this allelic partition: what is the probability of observing allelic clusters of certain sizes? how to

describe the structure of the allelic partition of the entire population? etc. The paper[2] contains
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some answers to these questions. However, our main purpose here is to investigate asymptotical

behaviors in law when the size of the population is large (typically as the number of ancestors

is large) and mutations are rare. As shown in [3], under some conditions, a non-degenerate limit

exists and is conveniently described in terms of a certain continuous state-space branching process

in discrete time(:CSBP[5]).

Let us show a rough idea here. We consider a fixed reproduction law which is critical and has

finite variance, and assume that the Galton-Watson process starts from n ancestors with the same

genetic type. We also suppose that neutral mutations affect each child with probability 1/n. Recall

that such a Galton-Watson process becomes extinct after roughly n generations, and that the total

population is of order n2 . So there are only a few mutations at each generation and thus about

n different alleles; furthermore the largest allelic sub-family is of order n2 and the allelic type of

mutants from this sub-family(:outer degree) is of order n. It is natural to consider the asymptotic

features of the rescaled size of the allelic partition.

We use the universal tree U, which is the set of finite sequences of integers( with ∅ as the root)

to record the genealogy of alleles, and define the tree of alleles as a random process (A, d) on U,

such that each allele represents a vertex of U and that the values at vertices are given by the sizes

of the corresponding allelic sub-families and the outer degrees, with the convention that the sizes

are ranked in the decreasing order for each sibling.

When the size of ancestors is of order n and the rate of mutations is of order 1/n, we denote

by (A(n), d(n)) the corresponding tree of alleles. Then as n goes to infinity, n−2A(n) and n−1d(n)

converge in the sense of finite dimensional distributions towards the same limit (removing a constant

factor). The limit describes the genealogy of a CSBP in discrete time, whose law only depends on

the variance of the offspring distribution of the Galton-Watson process. Then we investigate the

difference between n−2A(n) and n−1d(n) multiplied
√
n, and we show that it converges in law to a

”normal” distribution with mean zero. The variance is given by the CSBP.

The plan of this paper is as follows. In section 2, we present precisely the model and our limit

theorems. In section 3, we construct the probability structure of the tree of alleles from the random

walk. Based on this construction, we describe the ideas to figure out the limit theorems in the

paper[3]. In section 4, we prove one central limit improvement of the limit theorems.

2. The model of the tree of alleles

Our basic data is provided by a pair of non-negative integer-valued random variables

ξ = (ξ(c), ξ(m))

which describes the number of clone-children and the number of mutant-children of a typical indi-

vidual. We are interested in a special situation which appears commonly as a model in population

genetics, namely where mutations affect each child according to a fixed probability and indepen-

dently of the other children (in other words, the conditional distribution of ξ(m) given ξ(c)+ξ(m) = ℓ
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is binomial with parameter (ℓ, p)). We define:

ξ(+) = ξ(c) + ξ(m)

whose law is noted by π(+). We assume that

E[ξ(+)] = 1 and V ar(ξ(+)) = σ2 < ∞.

We further implicitly exclude the degenerate cases when ξ(c) = 0, or ξ(m) = 0. For every integer

a ≥ 1, we denote by Pa the law of a Galton-Watson process with neutral mutations, starting from a

ancestors carrying the same genetic type and with reproduction law given by that of ξ = (ξ(c), ξ(m)).

Moreover, we use the notation P
p
a for the probability measure under which the Galton-Watson

process has a ancestors and the mutation rate is p. L(·,Pp
a) will then refer to the distribution of a

random variable or a process under Pp
a.

We now take into account mutations by assigning marks to the edges between parents and their

mutant children. Since we are interested in the genealogy of alleles, it is convenient to say that an

individual has the k−type if its genotype has been affected by k mutations, that is if its ancestral

line comprises exactly k marks. We denote by Tk the total population of individuals of the k−th

type and by Mk the total number of mutants of k−th type, with the convention that mutants of

the 0−th type are the ancestors, i.e. Pa(M0 = a) = 1.

1st mutation

1st mutation

2nd mutation1st mutation

1,�

10,§4,�2,�

11,§7,ª5,�3,�

12,¨9,ª8,ª6,©

Figure 1. The Galton-Watson process with neutral mutations. The symbols
⊙

,♥,♣,♦,♠ represent the different alleles. At the same time we enumerate all

the vertices.
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In order to describe the genealogy of allelic sub-families as random processes indexed by the

universal tree, we introduce the set of finite sequences of positive integers

U :=
⋃

k∈Z+

N
k.

where N = {1, 2, · · · } and N
0 = {∅}. Let us recall some standard notations in this setting: if

u = (u1, · · · , uk) is a vertex at level k ≥ 0 in U, then the children of u are uj = (u1, · · · , uk, j) for

j ∈ N. We also denote by |u| the level of the vertex u, with the convention that the root has level

0, i.e. |∅| = 0. We now take advantage of the natural tree structure of U to record the genealogy

of allelic sub-families together with their sizes.

In fact, we can construct a process A = (Au;u ∈ U) from the given Galton-Watson process with

neutral mutations.

�,5

©,1§,2ª,3

¨,1

Figure 2. The tree of alleles corresponding to the process in Figure 1. The

number of each vertex represents the total size of the cluster of its allele.

First, A∅ = T0 is the size of the sub-family without mutation. Next, recall that M1 denotes the

number of mutants of the first type. We enumerate the M1 allelic sub-populations of the first type

in the decreasing order of their sizes, with the convention that in the case of ties, sub-populations

of the same size are ranked uniformly at random. We denote by Aj the size of j−th allelic sub-

population of the first type, agreeing that Aj = 0 if j > M1. We then complete the construction

at the next levels by iteration in an obvious way. Specially, if Au = 0 for some u ∈ U, then

Auj = 0 for all j ∈ N. Otherwise, we enumerate in the decreasing order of their sizes the allelic

sub-populations of type |u|+ 1 which descend from the allelic sub-family indexed by the vertex u,
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and then Auj is the size of this j−th sub-family. We call the process A = (Au;u ∈ U). We define

the outer degree of the tree of alleles A at some vertex u ∈ U as

du := max{j ≥ 1 : Auj > 0}.

where we agree that max ∅ = 0. In words, du is the number of allelic sub-populations of type

|u|+ 1 which descend from the allelic sub-family indexed by the vertex u; in particular, d∅ = M1.

We observe that

Tk =
∑

|u|=k

Au and Mk+1 =
∑

|u|=k

du.

We construct a tree-indexed random process in the following definition.

Definition 1. Fix x > 0 and ν a measure on (0,∞) with
∫
(1 ∧ y)ν(dy) < ∞. A tree-indexed

CSBP with reproduction measure ν and initial population of size x is a process (Zu;u ∈ U) with

values in R+ and indexed by the universal tree, whose distribution is characterized by induction on

the levels as follows:

(1) Z∅ = x a.s.;

(2) for every k ∈ Z+, conditionally on (Zv; v ∈ U, |v| ≤ k), the sequences (Zuj)j∈N for the

vertices u ∈ U at generation |u| = k are independent, and each sequence (Zuj)j∈N is

distributed as the family of the atoms of a Poisson random measure on (0,∞) with intensity

Zuν, where atoms are repeated according to their multiplicity, ranked in the decreasing

order, and completed by an infinite sequence of 0 if the Poisson measure is finite.

Further, it follows from the definition that
(
Σ|u|=kZu; k ∈ Z+

)
is a CSBP in discrete time, with

reproduction measure ν and initial population of size x.

In fact, if we define Zk :=
∑

|u|=k Zu, for every k ∈ Z+, then

Z0 = Z∅ = x, a.s.

and for q ≥ 0

E[e−qZ1 |Z0 = x] = E[exp(−q
∑

j

Zj)]

= exp

(
−x

∫

(0,∞)

(1− e−qy)ν(dy)

)

= exp(−xκ(q)),

where

(1) κ(q) :=

∫

(0,∞)

(1− e−qy)ν(dy).
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Moreover, the process (Zk; k ∈ Z+) is a Markov chain with values in R+, starting from x and

whose transition probabilities are characterized as follows:

E[e−qZk+1 |Zk = y] = exp(−yκ(q)).

Proposition 1. If we consider the regime

(2) a(n) ∼ nx and p(n) ∼ cn−1 where c, n are some positive constants,

then,

(3) L
(
{(n−2Tk, n

−1Mk+1); k ∈ Z+},Pp(n)
a(n)

)
=⇒ {(Zk+1, cZk+1); k ∈ Z+}

where (Zk; k ∈ Z+) is a CSBP in discrete time with reproduction measure

ν(dy) =
c√

2πσ2y3
exp

(
− c2y

2σ2

)
dy, y > 0,

and initial population of size x/c.

Theorem 2. In the regime 2, the rescaled tree of alleles (n−2Au, u ∈ U) under P
p(n)
a(n) converges in

the sense of finite dimensional distributions to the tree-indexed CSBP (Zu;u ∈ U) with reproduction

measure ν given in the above proposition and random initial population with inverse Gaussian

distribution:

P(Z∅ ∈ dy)

dy
=

x√
2πσ2y3

exp

(
− (cy − x)2

2σ2y

)
1y>0.

More precisely, if we also take into account the outer degrees (du;u ∈ U), then we have the joint

convergence in the sense of finite dimensional distributions holds

L
(
((n−2Au, n

−1du);u ∈ U),P
p(n)
a(n)

)
=⇒ ((Zu, cZu);u ∈ U).

The two statements are given and proven by Bertoin in[3].

From Theorem 2, it is immediate that cAu

n2 − du

n =⇒ 0 for any vertex u. Then a natural idea is

to study the rate of the convergence.

Theorem 3. We assume that p(n) = c
n + o( 1

n
√
n
) and a(n) ∼ nx, then

L
(
{(n−2Tk,

√
n(

cTk

n2
− Mk+1

n
)); k ∈ Z+},Pp(n)

a(n)

)
=⇒ {Zk+1,N (k+1)

cZk+1
; k ∈ Z+},

where {N (k); k ∈ N} is a sequence of independent standard Brownian motions which is indepen-

dent of {Zk; k ∈ Z+}.
Furthermore, assuming that {γ(u);u ∈ U} is a family of i.i.d. standard BM’s which is indepen-

dent of all random variables mentioned above.
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L
(
(
Au

n2
;
√
n(

cAu

n2
− du

n
));P

p(n)
a(n)

)
=⇒ ((Zu, γ

(u)
cZu

);u ∈ U)

in the sense of finite dimensional distributions. The law of {Zu;u ∈ U} is described in Theorem 2.

For the sake of complements, we shall prove Proposition 1 and Theorem 2 in Section 3, and the

new Theorem 3 in Section 4.

3. The construction from a random walk

We consider a sequence {ξn = (ξ
(c)
n , ξ

(m)
n );n ∈ N} of i.i.d. variables with law π, and then the

random walk starting from a ≥ 1 and with steps ξ(c) − 1,

S
(c)
k := a+ ξ

(c)
1 + · · ·+ ξ

(c)
k − k, k ∈ Z+.

We still use the notation Pa for the law of (S
(c)
k ; k ∈ Z+). We define the first hitting times for

the random walk

ς(j) := inf{k ∈ Z+;S
(c)
k = −j}, j ∈ Z+,

and

Σ(j) :=

ς(j)∑

i=1

ξ
(m)
i .

Notice that

E[ξ(c)] < 1 =⇒ S
(c)
k → −∞ as k → ∞.

Hence ς(j) < ∞ a.s.

Now we introduce the next lemma which can be thought of as an extension of the well-known

result of Otter and Dwass(Section 6.2 in [7]) which associates the distribution of the total population

in a (sub-)critical Galton-Watson process with the first hitting time of zero by a random walk.

Moreover, this idea will play an important role in the following arguments.

Lemma 1. Under Pa,

L(T0,M1) = L(ς(0),Σ(0)).

This conclusion which could be referred to [3] is established by the calculation of the generation

function. More precisely, according to the Lagrange inversion formula(Section 5.1[8]), the two

dimensional distribution can be given in terms of the offspring distribution.

We denote by (G(n);n ∈ N) the natural filtration generated by the sequence (ξn;n ∈ N).

Next, we set T̃0 := ς(0), M̃1 := Σ(0) and define for every k ∈ N by an implicit recurrence

T̃0 + · · ·+ T̃k = ς(M̃1 + · · ·+ M̃k),
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and

M̃1 + · · ·+ M̃k+1 = Σ(M̃1 + · · ·+ M̃k) =

T̃0+···+T̃k∑

i=1

ξ
(m)
i .

Corollary 4. For every a ≥ 1, the chains {(Tk,Mk+1); k ∈ Z+} and {(T̃k, M̃k+1); k ∈ Z+} have

the same distribution under Pa.

More generally, we can apply the sequence (ξn) to construct a random process (A′, d′) indexed

by the universal tree U with the same distribution as the tree of alleles (A, d). To start with,

(A′, d′) fulfills the following requirements. First, if A′
u = 0 for some u ∈ U, then d′u = 0 and

A′
uj = 0 for all j ∈ N. Second, for every vertex u ∈ U such that A′

u > 0,

d′u = #{j ∈ N : A′
u > 0},

which is called the outer degree of A′ at u, is a finite number and A′
uj > 0 if and only if j ≥ d′u.

We set A′
∅ = ς(0) and d′∅ = Σ(0). Next, consider the increments

λ(j) := ς(j)− ς(j − 1) and δ(j) := Σ(j)− Σ(j − 1), j ≥ 1.

For vertices at the first level, {(A′
j , d

′
j) : 1 ≤ j ≤ d′∅} is given by the rearrangement of the

sequence {(λ(j), δ(j)); 1 ≤ j ≤ d′∅} in the decreasing order with respect to the first coordinate λ(j)

with the usual convention in case of ties. We may then continue with vertices of the next levels by

an iteration which should be obvious.

* * * *

̣ H0Ḷ H0L ̣ H1Ḷ H1L ̣ H2Ḷ H2L ̣ H3Ḷ H3L ̣ H4Ḷ H4L

T
�

0T
�

0

T
�

1T
�

1

2 4 6 8 10 12
n

-4

-3

-2

-1

1

2

Sn

Figure 3. The associated random walk with the origin tree shown in Figure 1.
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Based on the construction from a random walk, we give the following explanations to prove

these limit theorems.

Let (ξ
(+)
k ; k ∈ N) be a sequence of i.i.d. copies of ξ(+), then we consider a random walk

(S
(n)
k ; k ∈ Z+) defined by

S
(n)
0 = a(n);

and

S
(n)
k = a(n) + ξ

(+)
1 + · · ·+ ξ

(+)
k − k.

By Donsker’s invariance principle and Skorohod’s representation, we may suppose that with prob-

ability one

lim
n→∞

n−1S
(n)
⌊n2t⌋ = x+ σBt,

where (Bt; t ≥ 0) is a standard Brownian motion and the convergence holds uniformly on every

compact time-interval.

For every fixed n, we now decompose each variable ξ
(+)
i as the sum ξ

(+)
i = ξ

(cn)
i +ξ

(mn)
i by using

a Bernoulli sampling; that is conditionally on ξ
(+)
i = l, ξ

(mn)
i has the binomial distribution with

parameter (l, p(n)). We use independent Bernoulli sampling for the different indices i so that the

pairs (ξ
(cn)
i , ξ

(mn)
i ) are i.i.d. and have the same law as ξ under Pp(n). If we define

S
(mn)
k := ξ

(mn)
1 + · · ·+ ξ

(mn)
k ,

S
(cn)
k := a(n) + ξ

(cn)
1 + · · ·+ ξ

(cn)
k − k = S

(n)
k − S

(mn)
k , k ∈ Z+.

Then 



(clone)
S

(cn)

⌊n2t⌋

n −→ x+ σBt − ct

(mutation)
S

(mn)

⌊n2t⌋

n −→ ct

where the convergences hold a.s., uniformly on every compact time-interval.

Now we introduce

ς(n)(0) := inf{k ∈ Z+;S
(cn)
k = 0} and Σ(n)(0) :=

ς(n)(0)∑

i=1

ξ
(mn)
i .

We denote by τy the hitting times of a Brownian motion with drift

τy := inf{t ≥ 0;σBt − ct < −y}, y ≥ 0.

Then we get that with probability one

lim
n→∞

n−2ς(n)(0) = τx and lim
n→∞

n−1Σ(n)(0) = cτx.

By application of Lemma 1, we point out that

(4) L
(
(n−2T0, n

−1M1),P
p(n)
a(n)

)
=⇒ (τx, cτx).

According to the definition of τ , for all q, t ≥ 0,

E[e−qτt ] = exp

(
−t

√
c2 + 2qσ2 − c

σ2

)
.
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More precisely, the process τ = (τt; t ≥ 0) is a subordinator with no drift and Lévy measure c−1ν,

where ν is given in Proposition 1.

E[e−qτx ] = exp

(
−x

√
c2 + 2qσ2 − c

σ2

)
= exp

(
−x

c
κ(q)

)
,

where

κ(q) =

∫

(0,∞)

(1− e−qy)ν(dy)

=

∫

(0,∞)

(1− e−qy)
c√

2πσ2y3
exp

(
− c2y

2σ2

)
dy.

With the subordinator τ = (τt; t ≥ 0) defined as above, we can define a sequence ζ = (ζk; k ∈ Z+)

by implicit iteration as follows:

ζ0 =
x

c
, ζ1 = τcζ0 , ζ1 + ζ2 = τc(ζ0+ζ1), · · · ,

ζ1 + · · ·+ ζk+1 = τc(ζ0+···+ζk) · · ·

Observe that for any q ≥ 0,

E[e−qζ1 ] = exp
(
−x

c
κ(q)

)
.

By induction, it can be shown that the random times c(ζ0 + ζ1 + · · · + ζk) are stopping times in

the natural filtration of τ . Indeed, first:

{c(ζ0 + ζ1) ≤ t} = {x ≤ t} ∩ {τx ≤ t− x

c
} ∈ σ(τs; s ≤ t) for every t ≥ 0.

Next, assuming that we have proved that c(ζ0 + ζ1 + · · · + ζk) is a stopping time, then for every

t ≥ 0

{c(ζ0 + · · ·+ ζk+1) ≤ t} = {c(ζ0 + · · ·+ ζk) ≤ t} ∩ {τc(ζ0+···+ζk) ≤
t− x

c
}

∈ σ(τs; s ≤ t).

So we can apply the strong Markov property to obtain:

E[e−qζk+1 |ςk = y] = E
[
exp

(
−q(τc(ζ0+···+ζk) − τc(ζ0+···+ζk−1))

)
|ςk = y

]

= E[exp(−qτcy)]

= exp(−yκ(q)).

Obviously, the sequence ζ is a CSBP with reproduction law ν and initial value x/c. In the same

way as above, we can directly show:

L
(
((n−2T̃k, n

−1M̃k+1) : k ∈ Z+),P
p(n)
a(n)

)
=⇒ ((ζk+1, cζk+1) : k ∈ Z+) .
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By application of Corollary 4, we get the conclusions of Proposition 1:

L
(
((n−2Tk, n

−1Mk+1) : k ∈ Z+),P
p(n)
a(n)

)
=⇒ ((ζk+1, cζk+1) : k ∈ Z+) .

The general branching property by iteration for the original Galton-Watson process, now yields

the characterization of the probabilistic structure of the tree of alleles. That is, for every integer

a ≥ 1 and k ≥ 0, under Pa, conditionally on ((Av, dv); |v| ≤ k), the tree of alleles fulfills the

following properties:

<1>: the families of variables

{((Auj , duj); 1 ≤ j ≤ du) : |u| = k such that Au > 0}

are independent;

<2>: for each vertex u satisfying that |u| = k and that Au > 0, the du−tuple ((Auj , duj); 1 ≤
j ≤ du) has the same distribution as L((T0,M1)

(du↓);P1).

Given d∅ = b(n) with any positive constant b > 0, ((Au, du); |u| = 1) is distributed as the law of

the rearrangement of the sequence {(λ(j), δ(j)); 1 ≤ j ≤ b(n)} in the decreasing order with respect

to the first coordinate λ(j) with the usual convention in case of ties.

While n−2
∑b(n)

j=1 λ(j) =⇒ τb+x − τx =d τb. We apply Lévy-Itô decomposition for the subordi-

nator {τs;x ≤ s ≤ x+ b}. In this way, we obtain a Poisson point process on (0,∞) with intensity

bc−1ν. Let (α1(b), α2(b), · · · ) stand for the sequence ranked in the decreasing order of the atoms

of such a Poisson point process. Let us show the convergence of the Laplace’s transforms:

E

[
exp(−q

b(n)∑

j=1

λ(j)

n2
)

]
=

(
1−

∫

(0,∞)

qe−qy
P[λ(j) > n2y]dy

)b(n)

−→ E[exp(−qτb)] = exp(−b

c
κ(q))

= exp(−b

c

∫

(0,∞)

qe−qyν(y)dy).

=⇒

∫

(0,∞)

e−qyb(n)P[λ(1) > n2y]dy −→ b

c

∫

(0,∞)

e−qyν(y)dy for any q > 0.

with ν(y) = ν((y,∞)) for any y > 0. Observe that ν is a continuous decreasing function. The law

of rare events for null arrays(e.g. Theorem 14.18 in [6]) ensures that under Pp(n) and conditionally

on d∅ = b(n) ∼ bn,

(Au

n2
; |u| = 1

)
=⇒ (α1(b), α2(b), · · · )

in the sense of finite dimensional distributions.

Similarly, the joint convergence in the sense of finite dimensional distributions can be obtained,

that is
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(
(
Au

n2
,
du
n
); |u| = 1

)
=⇒ {(α1(b), cα1(b)), (α2(b), cα2(b)), · · · }

Moreover, the properties < 1 > and < 2 > enable us to establish Theorem 2.

4. The rate of convergence

The construction from the random walk is useful to investigate the rate of convergence of

cn−2A− n−1d =⇒ 0.

Proof of Theorem 3: Let us continue with the settings of the random walks. Still , with

probability one,

S
(mn)
⌊n2t⌋
n

−→ ct and
S
(cn)
⌊n2t⌋
n

−→ x+ σBt − ct,

uniformly on every compact time-interval. For simplification, we first discuss cn−2T0 − n−1M1,

which is distributed as c ς
(n)(0)
n2 −

S
(mn)

ς(n)(0)

n with n−2ς(n)(0) → τx.

We note that X
(mn)
t =

√
n

(
c ⌊n

2t⌋
n2 −

S
(mn)

⌊n2t⌋

n

)
and Y

(cn)
t =

S
(mn)

⌊n2t⌋

n for convenience.

We have the following joint convergence:

(5) (X
(mn)
t , Y

(cn)
t )t≥0 =⇒ {βct, x+ σBt − ct; t ≥ 0},

where β and B are two independent BM(0)’s. The proof of (5) will be presented later.

Recall that ς(n)(0) is a hitting time of the random walk S(cn). It is sufficient to prove that

(
√
n(c

T̃0

n2
− M̃1

n
),
T̃0

n2
) = (X

(mn)

ς(n)/n2 , ς
(n)/n2) =⇒ (βcτx , τx) =d (

√
cτxN (1)

1 , τx).

Conditionally on (T̃0, M̃1), precisely given M̃1 = b(n) ∼ bn with b a positive constant, we

consider the random walk with steps ξ(cn) − 1 started from 0 and obtain:

T̃1 = ς(n)(b(n))− ς(n)(0) and M̃2 =

ς(n)(b(n))∑

k=ς(n)(0)+1

ξ
(mn)
k ,

which are independent of G(ς(n)(0)).
(5) ensures that conditionally on M̃1 = b(n),

(
√
n(c

T̃1

n2
− M̃2

n
),
T̃1

n2
) =⇒ (βc(τb+x−τx), τb+x − τx)

=d (
√
c(τb+x − τx)N (2)

1 , τb+x − τx).

In addition, we observe that
√
n(c T̃1

n2 − M̃2

n ) =
∑ς(n)(b(n))

k=ς(n)(0)+1

(
c/n−ξ

(mn)
k√
n

)
is independent of

G(ς(n)(0)). It follows that N (1)
1 and N (2)

1 are independent normal variables and that they are both

independent of the subordinator τ . Finally, by the definition of (T̃k, M̃k+1) and Corollary 4, we

obtain that
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L
(
{(Tk

n2
,
√
n(

cTk

n2
− Mk+1

n
)); k ∈ Z+},Pp(n)

a(n)

)
=⇒ {Zk+1,N (k+1)

cZk+1
; k ∈ Z+},

Notice that

√
n(c

T̃1

n2
− M̃2

n
) =

d′
∅∑

j=1

(
c
A′

j

n2
−

d′j
n

)
,
T1

n2
=

d′
∅∑

j=1

n−2A′
j ;

Here given M̃1 (or d′∅), {A′
j , d

′
j ; 1 ≤ j ≤ M̃1} is given by the rearrangement of the sequence

{λ(j), δ(j); 1 ≤ j ≤ M̃1} in the decreasing order with respect to the first coordinate. Meanwhile,

{√n(cλ(j)n2 − δ(j)
n ), λ(j)

n2 ; 1 ≤ j ≤ M̃1} is actually {X(mn)
tj − X

(mn)
tj−1

, tj − tj−1; t0 ≤ t1 ≤ · · · ≤ td′
∅
}

where {tj = n−2ς(j); 1 ≤ j ≤ d′∅}.
Recall that given n−1d′∅ = b(n) ∼ bn, then n−2ς(d′∅) → τb+x a.s.. Theorem 2 leads to the fact

that the rearrangement of the sequence {tj − tj−1; 1 ≤ j ≤ d′∅} in the decreasing order converges in

law to the rearrangement of the family of jump sizes {(τy − τy−);x ≤ y ≤ x+ b} in the decreasing

order which can be viewed as {α1(b) ≥ α2(b) ≥ · · · }.
Furthermore, the joint convergence (5) tells us that {X(mn)

tj −X
(mn)
tj−1

, tj − tj−1; t0 ≤ t1 ≤ · · · ≤
td′

∅
} is asymptotically corresponding to {βτy − βτy− , τy − τy−;x ≤ y ≤ x + b}. The independence

between β and B ensures that conditionally on {τy − τy−;x ≤ y ≤ x + b}, these βτy − βτy− are

independent central normal variables with variance τy − τy−.

Then the rearrangement of the family {X(mn)
tj − X

(mn)
tj−1

, tj − tj−1; t0 ≤ t1 ≤ · · · ≤ td′
∅
} in the

decreasing order of the second coordinate converges in the sense of finite dimensional distributions

to {β(k)
cαk(b)

, αk(b); k ≥ 1} where (β(k), k ≥ 1) is a sequence of i.i.d BM’s which is independent of

{α1(b), α2(b), · · · }.
Under the probability P

p(n)
a(n), conditionally on d′∅ = b(n) ∼ bn,

{√
n

(
c
A′

j

n2
−

d′j
n

)
,
A′

j

n2
; 1 ≤ j ≤ d′∅

}
=⇒ {β(j)

cαj(b)
, αj(b); j ≥ 1}

in the sense of finite dimensional distributions.

Then the properties < 1 > and < 2 > entail Theorem 3.

Now it remains to prove (5). We take 0 = s0 < s1 < s2 < · · · < sN = 1 and 2N real

values λ1, · · · , λN ;µ1, · · · , µN . When n is large enough, we have: 0 = ⌊n2s0⌋ < ⌊n2s1⌋ < · · · <
⌊n2sN⌋ = n2. Thus, for every integer j ∈ {1, · · · , n2}, there exits kj ∈ {0, · · · , N} such that

⌊n2skj−1⌋ < j ≤ ⌊n2skj
⌋. Let aj = λkj

+ · · · + λN and bj = µkj
+ · · · + µN . Let us compute the

Fourier’s transforms:
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Λ
(n)
N := E

[
exp

(
i

N∑

k=1

λkX
(mn)
sk

+ i

N∑

k=1

µkY
(cn)
sk

)]

= E


exp


−i

n2∑

j=1

aj√
n

(
ξ
(mn)
j − c

n

)
+ i

n2∑

j=1

bj
n2

(
ξ
(cn)
j − 1

)




= exp

(
i

N∑

k=1

µk
a(n)

n

) n2∏

j=1

g

[
exp

( ibj
n

)
, exp

(
− i

aj√
n

)]
exp

{
iaj

c

n
√
n
− ibj

1

n

}
.

It follows that

log(Λ
(n)
N ) ∼

n2∑

j=1

[
log

(
ibj
n

− iaj
n
√
n
−

ibjc+ 1/2b2j + 1/2a2jc+ 1/2b2jσ
2

n2

)

+

(
i
ajc

n
√
n
− i

bj
n

)]
+

(
i

N∑

k=1

µk
a(n)

n

)

Thanks to the independence of the increments of (X(mn), Y (cn)), we only need to check the finite

dimensional convergence for one fixed s1. Actually,

log(Λ
(n)
1 ) ∼ iµ1

a(n)

n
− ic

n2

⌊n2s1⌋∑

j=1

µ1 +
c

2n2

⌊n2s1⌋∑

j=1

λ2
1 +

σ2

2n2

⌊n2s1⌋∑

j=1

µ2
1

−→ iµ1x+
σ2µ2

1s1
2

− icµ1s1 +
cλ2

1s1
2

Hence Λ
(n)
1 −→ exp

(
iµ1x+

σ2µ2
1s1
2 − icµ1s1 +

cλ2
1s1
2

)
, which is exactly

E[exp(iµ1(x+ σBs1 − cs1))]E[exp(iλ1βcs1)].

Now we only have to verify the tightness of (X
(mn)
t , Y

(cn)
t ; 0 ≤ t ≤ 1). We take 0 ≤ s ≤ r ≤ t ≤ 1,

then we estimate

Γ(s, r, t) : = E

[∥∥∥(X(mn)
t , Y

(cn)
t )− (X(mn)

r , Y (cn)
r )

∥∥∥
2
]
E

[∥∥∥(X(mn)
r , Y (cn)

r )− (X(mn)
s , Y (cn)

s )
∥∥∥
2
]
.
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E

[∥∥∥(X(mn)
t , Y

(cn)
t )− (X(mn)

r , Y (cn)
r )

∥∥∥
2
]

= E


 1

n

( ⌊n2t⌋∑

k=⌊n2r⌋+1

(ξ
(mn)
k − c

n
)

)2

+ E


 1

n2

( ⌊n2t⌋∑

k=⌊n2r⌋+1

(ξ
(cn)
k − 1)

)2



=
⌊n2t⌋ − ⌊n2r⌋

n

(
1/2σ2p(n)2 + p(n)(1− p(n))

)
+

(
⌊n2t⌋ − ⌊n2r⌋√

n
(p(n)− c/n)

)2

+
⌊n2t⌋ − ⌊n2r⌋

n2

(
1/2σ2(1− p(n))2 + p(n)(1− p(n))

)
+

(
⌊n2t⌋ − ⌊n2r⌋

n
p(n)

)2

.

If ⌊n2t⌋ − ⌊n2s⌋ ≥ 2, ⌊n2t⌋−⌊n2r⌋
n2 ≤ 2(t − s) and ⌊n2r⌋−⌊n2s⌋

n2 ≤ 2(t − s). If ⌊n2t⌋ − ⌊n2s⌋ ≤ 1,

then ⌊n2t⌋ − ⌊n2r⌋ = 0 or ⌊n2r⌋ − ⌊n2s⌋ = 0. Therefore, we can find out a constant C > 0 such

that

Γ(r, s, t) ≤ C[t− s]2.

By application of Theorem 13.5 in [4], we conclude the convergence (5). �

5. Conclusion and Comments

We might also think of another related model, that is, a spatial population model in which

children either occupy the same location as their parents or migrate to new places and start growing

colonies on their own. If the distances of migrations and the sizes of immigrants are random, it

seems that we need to consider a process indexed by the universal tree such that there is a random

variable for each edge and vertex. We might associate it with a CSBP in continuous time.
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