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GLOBAL STABILITY FOR THE MULTI-CHANNEL GEL'FAND-CALDER ÓN INVERSE PROBLEM IN TWO DIMENSIONS

We prove a global logarithmic stability estimate for the multi-channel Gel'fand-Calderón inverse problem on a two-dimensional bounded domain, i.e. the inverse boundary value problem for the equation -∆ψ + v ψ = 0 on D, where v is a smooth matrix-valued potential defined on a bounded planar domain D.

Introduction

The Schrödinger equation at zero energy (1.1) -∆ψ + v(x)ψ = 0 on D ⊂ R 2 arises in quantum mechanics, acoustics and electrodynamics. The reconstruction of the complex-valued potential v in equation (1.1) through the Dirichlet-to-Neumann operator is one of the most studied inverse problems (see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF], [START_REF] Mandache | Exponential instability in an inverse problem of the Schrödinger equation[END_REF], [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF] and references therein).

In this article we consider the multi-channel two-dimensional Schrödinger equation, i.e. equation (1.1) with matrix-valued potentials and solutions; this case was already studied in [START_REF] Xiaosheng | Inverse scattering problem for the Schrödinger operator with external Yang-Mills potentials in two dimensions at fixed energy[END_REF][START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF]. One of the motivations for studying the multi-channel equation is that it comes up as a 2D-approximation for the 3D equation (see [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF]Sec. 2]).

This paper is devoted to give a global stability estimate for this inverse problem in the multi-channel case, which is highly related to the reconstruction method of [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF]. The following inverse boundary value problem arises from this construction: given Φ, find v. This problem can be considered as the Gel'fand inverse boundary value problem for the multi-channel Schrödinger equation at zero energy (see [START_REF] Gel'fand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]) and can also be seen as a generalization of the Calderón problem for the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF]). Note also that we can think of this problem as a model for the monochromatic ocean tomography (e.g. see [START_REF] Baykov | Mode Tomography of Moving Ocean[END_REF] for similar problems arising in this tomography).

In the case of complex-valued potentials the global injectivity of the map v → Φ was firstly proved in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] for D ⊂ R d with d ≥ 3 and in [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] for d = 2 with v ∈ L p : in particular, these results were obtained by the use of global reconstructions developed in the same papers. The first global uniqueness result (along with an exact reconstruction method) for matrix-valued potentials was given in [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF], which deals with C 1 matrix-valued potentials defined on a domain in R 2 . A global stability estimate for the Gel'fand-Calderón problem for d ≥ 3 was found for the first time by Alessandrini in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]; this result was recently improved in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF]. In the two-dimensional case the first global stability estimate was given in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF].

In this paper we extend the results of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF] to the matrix-valued case; we do not discuss global results for special real-valued potentials arising from conductivities: for this case the reader is referred to the references given in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF], [START_REF] Mandache | Exponential instability in an inverse problem of the Schrödinger equation[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF].

Our main result is the following:

Theorem 1.1. Let D ⊂ R 2 be an open bounded domain with C 2 bound- ary, let v 1 , v 2 ∈ C 2 ( D, M n (C
)) be two matrix-valued potentials which satisfy (1.4), with v j C 2 ( D) ≤ N for j = 1, 2, and Φ 1 , Φ 2 the corresponding Dirichlet-to-Neumann operators. For simplicity we assume also that v j | ∂D = 0 and ∂ ∂ν v j | ∂D = 0 for j = 1, 2. Then there exists a constant

C = C(D, N, n) such that (1.5) v 2 -v 1 L ∞ (D) ≤ C log(3 + Φ 2 -Φ 1 -1 ) -3 4 log(3 log(3 + Φ 2 -Φ 1 -1 )) 2 ,
where A denotes the norm of an operator A :

L ∞ (∂D, M n (C)) → L ∞ (∂D, M n (C)) and v L ∞ (D) = max 1≤i,j≤n v i,j L ∞ (D) (likewise for v C 2 ( D) ) for a matrix- valued potential v.
This is the first global stability result for the multi-channel (n ≥ 2) Gel'fand-Calderón inverse problem in two dimension. In addition, Theorem 1.1 is new also for the scalar case, as the estimate obtained in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF] is weaker.

Instability estimates complementing the stability estimates of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF], [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF] and of the present work are given in [START_REF] Mandache | Exponential instability in an inverse problem of the Schrödinger equation[END_REF], [START_REF] Isaev | Exponential instability in the Gel'fand inverse problem on the energy intervals[END_REF].

The proof of Theorem 1.1 is based on results obtained in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF], which takes inspiration mostly from [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] and [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]. In particular, for z 0 ∈ D we use the existence and uniqueness of a family of solution ψ z 0 (z, λ) of equation (1.1) where in particular ψ z 0 → e λ(z-z 0 ) 2 I, for λ → ∞ (where I is the identity matrix). Then, using an appropriate matrix-valued version of Alessandrini's identity along with stationary phase techniques, we obtain the result. Note that this matrix-valued identity is one of the new results of this paper.

A generalization of Theorem 1.1 in the case where we do not assume that v j | ∂D = 0 and ∂ ∂ν v j | ∂D = 0 for j = 1, 2, is given in section 5.

This work was fulfilled in the framework of researches under the direction of R. G. Novikov.

Preliminaries

In this section we introduce and give details about the above-mentioned family of solutions of equation (1.1), which will be used throughout all the paper.

We identify R 2 with C and use the coordinates

z = x 1 + ix 2 , z = x 1 -ix 2 where (x 1 , x 2 ) ∈ R 2 . Let us define the function spaces C 1 z ( D) = {u : u, ∂u ∂ z ∈ C( D, M n (C))} with the norm u C 1 z ( D) = max( u C( D) , ∂u ∂ z C( D) ), where u C( D) = sup z∈ D |u| and |u| = max 1≤i,j≤n |u i,j |; we define also C 1 z ( D) = {u : u, ∂u ∂z ∈ C( D, M n (C))
} with an analogous norm. Following [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF], we consider the functions:

G z 0 (z, ζ, λ) = e λ(z-z 0 ) 2 g z 0 (z, ζ, λ)e -λ(ζ-z 0 ) 2 , (2.1)
g z 0 (z, ζ, λ) = e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 4π 2 D e -λ(η-z 0 ) 2 + λ(η-z 0 ) 2 (z -η)(η -ζ) dReη dImη, (2.2)
ψ z 0 (z, λ) = e λ(z-z 0 ) 2 µ z 0 (z, λ), (2.3) µ z 0 (z, λ) = I + D g z 0 (z, ζ, λ)v(ζ)µ z 0 (ζ, λ)dReζ dImζ, (2.4) h z 0 (λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v(z)µ z 0 (z, λ)dRez dImz, (2.5)
where z, z 0 , ζ ∈ D and λ ∈ C and I is the identity matrix. In addition, equation (2.4) at fixed z 0 and λ, is considered as a linear integral equation for

µ z 0 (•, λ) ∈ C 1 z ( D). The functions G z 0 (z, ζ, λ), g z 0 (z, ζ, λ), ψ z 0 (z, λ
), µ z 0 (z, λ) defined above, satisfy the following equations (see [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF], [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF]):

4 ∂ 2 ∂z∂ z G z 0 (z, ζ, λ) = δ(z -ζ), (2.6) 4 ∂ 2 ∂ζ∂ ζ G z 0 (z, ζ, λ) = δ(ζ -z), (2.7) 4 ∂ ∂z + 2λ(z -z 0 ) ∂ ∂ z g z 0 (z, ζ, λ) = δ(z -ζ), (2.8) 4 ∂ ∂ ζ ∂ ∂ζ -2λ(ζ -z 0 ) g z 0 (z, ζ, λ) = δ(ζ -z), (2.9) -4 ∂ 2 ∂z∂ z ψ z 0 (z, λ) + v(z)ψ z 0 (z, λ) = 0, (2.10) -4 ∂ ∂z + 2λ(z -z 0 ) ∂ ∂ z µ z 0 (z, λ) + v(z)µ z 0 (z, λ) = 0, (2.11)
where z, z 0 , ζ ∈ D, λ ∈ C, δ is the Dirac's delta. (In addition, it is assumed that (2.4) is uniquely solvable for µ z 0 (•, λ) ∈ C 1 z ( D) at fixed z 0 and λ.) We say that the functions G z 0 , g z 0 , ψ z 0 , µ z 0 , h z 0 are the Bukhgeim-type analogues of the Faddeev functions (see [START_REF] Novikov | Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions[END_REF]). Now we state some fundamental lemmata. Let (2.12)

g z 0 ,λ u(z) = D g z 0 (z, ζ, λ)u(ζ)dReζ dImζ, z ∈ D, z 0 , λ ∈ C, where g z 0 (z, ζ, λ) is defined by (2.
2) and u is a test function.

Lemma 2.1 ([11]

). Let g z 0 ,λ u be defined by (2.12). Then, for z 0 , λ ∈ C, the following estimates hold:

g z 0 ,λ u ∈ C 1 z ( D), for u ∈ C( D), (2.13) g z 0 ,λ u C 1 ( D) ≤ c 1 (D, λ) u C( D) , for u ∈ C( D), (2.14) g z 0 ,λ u C 1 z ( D) ≤ c 2 (D) |λ| 1 2 u C 1 z ( D) , for u ∈ C 1 z ( D), |λ| ≥ 1. (2.15) Given a potential v ∈ C 1 z ( D) we define the operator g z 0 ,λ v simply as (g z 0 ,λ v)u(z) = g z 0 ,λ w(z), w = vu, for a test function u. If u ∈ C 1 z ( D), by Lemma 2.1 we have that g z 0 ,λ v : C 1 z ( D) → C 1 z ( D), (2.16) g z 0 ,λ v op C 1 z ( D) ≤ 2n g z 0 ,λ op C 1 z ( D) v C 1 z ( D) ,
where (2.16) and Lemma 2.1 imply existence and uniqueness of µ z 0 (z, λ) (and thus also [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]). For v ∈ C 1 z ( D) such that v| ∂D = 0 the following formula holds:

• op C 1 z ( D) denotes the operator norm in C 1 z ( D), z 0 , λ ∈ C. In addition, g z 0 ,λ op C 1 z ( D) is estimated in Lemma 2.1. Inequality
ψ z 0 (z, λ)) for |λ| > ρ(D, K, n), where v C 1 z ( D) < K. Let µ (k) z 0 (z, λ) = k j=0 (g z 0 ,λ v) j I, h (k) z 0 (λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v(z)µ (k) z 0 (z, λ)dRez dImz, where z, z 0 ∈ D, λ ∈ C, k ∈ N ∪ {0}. Lemma 2.2 ([
(2.17) v(z 0 ) = 2 π lim λ→∞ |λ|h (0) z 0 (λ), z 0 ∈ D. In addition, if v ∈ C 2 ( D), v| ∂D = 0 and ∂v ∂ν | ∂D = 0 then (2.18) v(z 0 ) - 2 π |λ|h (0) z 0 (λ) ≤ c 3 (D, n) log(3|λ|) |λ| v C 2 ( D) , for z 0 ∈ D, λ ∈ C, |λ| ≥ 1.
Let

W z 0 (λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 w(z)dRe zdIm z,
where z 0 ∈ D, λ ∈ C and w is some M n (C)-valued function on D. (One can see that [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]). For w ∈ C 1 z ( D) the following estimate holds:

W z 0 = h (0) z 0 for w = v.) Lemma 2.3 ([
|W z 0 (λ)| ≤ c 4 (D) log (3|λ|) |λ| w C 1 z ( D) , z 0 ∈ D, |λ| ≥ 1. (2.19) Lemma 2.4 ([12]). For v ∈ C 1 z ( D) and for g z 0 ,λ v op C 1 z ( D) ≤ δ < 1 we have that µ z 0 (•, λ) -µ (k) z 0 (•, λ) C 1 z ( D) ≤ δ k+1 1 -δ , (2.20) |h z 0 (λ) -h (k) z 0 (λ)| ≤ c 5 (D, n) log(3|λ|) |λ| δ k+1 1 -δ v C 1 z ( D) , (2.21) where z 0 ∈ D, λ ∈ C, |λ| ≥ 1, k ∈ N ∪ {0}.
The proofs of Lemmata 2.1-2.4 can be found in the references given. We will also need the following two new lemmata. Lemma 2.5. Let g z 0 ,λ u be defined by (2.12), where u ∈ C 1 z ( D), z 0 , λ ∈ C. Then the following estimate holds:

g z 0 ,λ u C( D) ≤ c 6 (D) log(3|λ|) |λ| u C 1 z ( D) , |λ| ≥ 1. (2.22) Lemma 2.6. The expression (2.23) W (u, v)(λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 u(z)(g z 0 ,λ v)(z)dRez dImz, defined for u, v ∈ C 1 z ( D) with u C 1 z ( D) , v C 1 z ( D) ≤ N 1 , λ ∈ C, z 0 ∈ D, satisfies the estimate |W (u, v)(λ)| ≤ c 7 (D, N 1 , n) (log(3|λ|)) 2 |λ| 1+3/4 , |λ| ≥ 1. (2.24)
The proofs of Lemmata 2.5, 2.6 are given in section 4.

Proof of Theorem 1.1

We begin with a technical lemma, which will be useful to generalise Alessandrini's identity.

Lemma 3.1. Let v ∈ C 1 ( D, M n (C))
be a matrix-valued potential which satisfies condition (1.4) (i.e. 0 is not a Dirichlet eigeinvalue for the operator -∆ + v in D). Then t v, the transpose of v, also satisfies condition (1.4).

The proof of Lemma 3.1 is given in section 4. We can now state and prove a matrix-valued version of Alessandrini's identity (see [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] for the scalar case). 

(-∆ + v 1 )u 1 = 0, (-∆ + t v 2 )u 2 = 0 on D,
where t A stand for the transpose of A. Then we have the identity

(3.1) ∂D t u 2 (z)(Φ 2 -Φ 1 )u 1 (z)|dz| = D t u 2 (z)(v 2 (z) -v 1 (z))u 1 (z)dRez dImz. Proof. If v ∈ C 1 ( D, M n (C)) is any matrix-valued potential (which satisfies (1.4)) and f 1 , f 2 ∈ C 1 (∂D, M n (C)) then we have (3.2) ∂D t f 2 Φf 1 |dz| = ∂D t t f 1 Φ * f 2 |dz|,
where Φ and Φ * are the Dirichlet-to-Neumann operators associated to v and t v, respectively (these operators are well-defined thanks to Lemma 3.1). Indeed, it is sufficient to extend f 1 and f 2 in D as the solutions of the Dirichlet problems (-∆ + v) f1 = 0, (-∆ + t v) f2 = 0 on D and fj | ∂D = f j , for j = 1, 2, so that one obtains

∂D t f 2 Φf 1 -t t f 1 Φ * f 2 |dz| = ∂D t f 2 ∂ f1 ∂ν -t ∂ f2 ∂ν f 1 |dz| = D t f2 ∆ f1 -t ∆ f2 f1 dRez dImz = D t f2 v f1 -t t v f2 f1 dRez dImz = 0,
where for the second equality we used the following matrix-valued version of the classical scalar Green's formula:

(3.3) ∂D t ∂f ∂ν g -t f ∂g ∂ν |dz| = D t (∆f ) g -t f ∆g dRez dImz, for any f, g ∈ C 2 (D, M n (C)) ∩ C 1 ( D, M n (C)). Identities (3.2) and (3.3) imply ∂D t u 2 (z)(Φ 2 -Φ 1 )u 1 (z)|dz| = ∂D t t u 1 (z)Φ * 2 u 2 (z) -t u 2 (z)Φ 1 u 1 (z) |dz| = ∂D t ∂u 2 (z) ∂ν u 1 (z) -t u 2 (z) ∂u 1 (z) ∂ν |dz| = D t (∆u 2 (z)) u 1 (z) -t u 2 (z)∆u 1 (z) dRez dImz = D t t v 2 (z) u 2 (z) u 1 (z) -t u 2 (z) v 1 (z) u 1 (z) dRez dImz = D t u 2 (z)(v 2 (z) -v 1 (z))u 1 (z)dRez dImz.
Now let μz 0 denote the complex conjugated of µ z 0 (the solution of (2.4)) for a M n (R)-valued potential v and, more generally, the solution of (2.4) with g z 0 (z, ζ, λ) replaced by g z 0 (z, ζ, λ) for a M n (C)-valued potential v. In order to make use of (3.1) we define

u 1 (z) = ψ 1,z 0 (z, λ) = e λ(z-z 0 ) 2 µ 1 (z, λ), u 2 (z) = ψ 2,z 0 (z, -λ) = e -λ(z-z 0 ) 2 μ2 (z, -λ),
for z 0 ∈ D, λ ∈ C, |λ| > ρ (ρ is mentioned in section 2), where we called for simplicity µ 1 = µ 1,z 0 , µ 2 = µ 2,z 0 and µ 1,z 0 , µ 2,z 0 are the solutions of (2.4) with v replaced by v 1 , t v 2 , respectively. Equation (3.1), with the above-defined u 1 , u 2 , now reads

∂D ∂D e -λ(z-z 0 ) 2 t μ2 (z, -λ)(Φ 2 -Φ 1 )(z, ζ)e λ(ζ-z 0 ) 2 µ 1 (ζ, λ)|dζ||dz| (3.4) = D e λ,z 0 (z) t μ2 (z, -λ)(v 2 -v 1 )(z)µ 1 (z, λ)dRez dImz. with e λ,z 0 (z) = e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 and (Φ 2 -Φ 1 )(z, ζ) is the Schwartz kernel of the operator Φ 2 -Φ 1 .
The right side I(λ) of (3.4) can be written as the sum of four integrals, namely

I 1 (λ) = D e λ,z 0 (z)(v 2 -v 1 )(z)dRez dImz, I 2 (λ) = D e λ,z 0 (z) t (μ 2 -I)(v 2 -v 1 )(z)(µ 1 -I)dRez dImz, I 3 (λ) = D e λ,z 0 (z) t (μ 2 -I)(v 2 -v 1 )(z) dRez dImz, I 4 (λ) = D e λ,z 0 (z) (v 2 -v 1 )(z)(µ 1 -I)dRez dImz, for z 0 ∈ D.
The first term, I 1 , can be estimated using Lemma 2.2 as follows:

2 π |λ|I 1 -(v 2 (z 0 ) -v 1 (z 0 )) ≤ c 3 (D, n) log(3|λ|) |λ| v 2 -v 1 C 2 ( D) , (3.5)
for |λ| ≥ 1. The other terms, I 2 , I 3 , I 4 , satisfy, by Lemmata 2.1 and 2.4,

|I 2 | ≤ D e λ,z 0 (z) t (g z 0 ,λ t v 2 )(v 2 -v 1 )(z)(g z 0 ,λ v 1 )dRez dImz (3.6) + O log(3|λ|) |λ| 2 c 8 (D, N, n), |I 3 | ≤ D e λ,z 0 (z) t (g z 0 ,λ t v 2 )(v 2 -v 1 )(z)dRez dImz (3.7) + O log(3|λ|) |λ| 2 c 9 (D, N, n), |I 4 | ≤ D e λ,z 0 (z) (v 2 -v 1 )(z)(g z 0 ,λ v 1 )dRez dImz (3.8) + O log(3|λ|) |λ| 2 c 10 (D, N, n),
where N is the costant in the statement of Theorem 

|I 2 | ≤ c 11 (D, N, n) (log(3|λ|)) 2 |λ| 2 , (3.10) |I 3 | ≤ c 12 (D, N, n) (log(3|λ|)) 2 |λ| 1+3/4 , (3.11) |I 4 | ≤ c 13 (D, N, n) (log(3|λ|)) 2 |λ| 1+3/4 . (3.12)
The left side J(λ) of (3.4) can be estimated as follows:

|λ||J(λ)| ≤ c 14 (D, n)e (2L 2 +1)|λ| Φ 2 -Φ 1 , (3.13)
for λ which satisfies (3.9), and L = max z∈∂D, z 0 ∈D |zz 0 |.

Putting together estimates (3.5)-(3.13) we obtain

|v 2 (z 0 ) -v 1 (z 0 )| ≤ c 15 (D, N, n) (log(3|λ|)) 2 |λ| 3/4 + 2 π c 14 (D, n)e (2L 2 +1)|λ| Φ 2 -Φ 1 (3.14)
for any z 0 ∈ D. We call ε = Φ 2 -Φ 1 and impose |λ| = γ log(3 + ε -1 ), where 0 < γ < (2L 2 + 1) -1 so that (3.14) reads

|v 2 (z 0 ) -v 1 (z 0 )| ≤ c 15 (D, N, n)(γ log(3 + ε -1 )) -3 4 log(3γ log(3 + ε -1 )) 2 (3.15) + 2 π c 14 (D, n)(3 + ε -1 ) (2L 2 +1)γ ε, for every z 0 ∈ D, with (3.16) 0 < ε ≤ ε 1 (D, N, γ, n),
where ε 1 is sufficiently small or, more precisely, where (3.16) implies that |λ| = γ log(3 + ε -1 ) satisfies (3.9). As (3 + ε -1 ) (2L 2 +1)γ ε → 0 for ε → 0 more rapidly then the other term, we obtain that

v 2 -v 1 L ∞ (D) ≤ c 16 (D, N, γ, n) log(3 log(3 + Φ 2 -Φ 1 -1 )) 2 (log(3 + Φ 2 -Φ 1 -1 )) 3 4 
(3.17)

for any ε = Φ 2 -Φ 1 ≤ ε 1 (D, N, γ, n).
Estimate (3.17) for general ε (with modified c 16 ) follows from (3.17) for ε ≤ ε 1 (D, N, γ, n) and the assumption that v j L ∞ (D) ≤ N, j = 1, 2. This completes the proof of Theorem 1.1.

4.

Proofs of Lemmata 2.5, 2.6, 3.1.

Proof of Lemma 2.5. We decompose the operator g z 0 ,λ , defined in (2.12), as the product 1 4 T z 0 ,λ Tz 0 ,λ , where

T z 0 ,λ u(z) = 1 π D e -λ(ζ-z 0 ) 2 + λ( ζ-z 0 ) 2 z -ζ u(ζ)dReζ dImζ, (4.1) Tz 0 ,λ u(z) = 1 π D e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 z - ζ u(ζ)dReζ dImζ, (4.2) 
for z 0 , λ ∈ C. From the proof of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]Lemma 3.1] we have the estimate

Tz 0 ,λ u C( D) ≤ η 1 (D) |λ| 1/2 u C( D) + η 2 (D) log(3|λ|) |λ| ∂u ∂ z C( D) , (4.3) for u ∈ C 1 z ( D), z 0 ∈ D, |λ| ≥ 1.
As the kernel of T z 0 ,λ and Tz 0 ,λ are conjugated each other we deduce immediately

T z 0 ,λ u C( D) ≤ η 1 (D) |λ| 1/2 u C( D) + η 2 (D) log(3|λ|) |λ| ∂u ∂z C( D) , |λ| ≥ 1, (4.4) for u ∈ C 1 z ( D).
Combining the two estimates we obtain

g λ,z 0 u C( D) = 1 4 T z 0 ,λ Tz 0 ,λ u C( D) ≤ 1 4 η 1 (D) Tz 0 ,λ u C( D) |λ| 1/2 + η 2 (D) log(3|λ|) |λ| ∂ ∂z Tz 0 ,λ u C( D) ≤ η 3 (D) u C( D) |λ| + log(3|λ|) |λ| 3/2 ∂u ∂ z C( D) + log(3|λ|) |λ| u C( D) ≤ η 4 (D) log(3|λ|) |λ| u C 1 z ( D) , |λ| ≥ 1,
where we used the fact that

∂ ∂z Tz 0 ,λ u C(D) = u C(D) .
Proof of Lemma 2.6. For 0

< ε ≤ 1, z 0 ∈ D, let B z 0 ,ε = {z ∈ C : |z -z 0 | ≤ ε}. We write W (u, v)(λ) = W 1 (λ) + W 2 (λ),
where

W 1 (λ) = D∩Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 u(z)g z 0 ,λ v(z)dRez dImz, W 2 (λ) = D\Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 u(z)g z 0 ,λ v(z)dRez dImz.
The first term, W 1 , can be estimated as follows:

|W 1 (λ)| ≤ σ 1 (D, n) u C( D) v C 1 z ( D) ε 2 log(3|λ|) |λ| , |λ| ≥ 1, (4.5) 
where we used estimates (2.16) and (2.22).

For the second term, W 2 , we proceed using integration by parts, in order to obtain

W 2 (λ) = 1 4i λ ∂(D\Bz 0 ,ε) e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 u(z)g z 0 ,λ v(z) z -z0 dz - 1 2 λ D\Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 ∂ ∂ z u(z)g z 0 ,λ v(z) z -z0 dRez dImz.
This imply

|W 2 (λ)| ≤ 1 4|λ| ∂(D\Bz 0 ,ε) u(z)g z 0 ,λ v(z) C( D) |z -z0 | |dz| (4.6) + 1 2|λ| D\Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 ∂ ∂ z u(z)g z 0 ,λ v(z) z -z0 dRez dImz ,
for λ = 0. Again by estimates (2.16) and (2.22) we obtain

|W 2 (λ)| ≤ σ 2 (D, n) u C 1 z ( D) v C 1 z ( D) log(3ε -1 ) log(3|λ|) |λ| 2 (4.7) + 1 8|λ| D\Bz 0 ,ε u(z) Tz 0 ,λ v(z) z -z0 dRez dImz , |λ| ≥ 1,
where we used the fact that ∂ ∂ z g z 0 ,λ v(z) = 1 4 e -λ(z-z 0 ) 2 + λ(z-z 0 ) 2 Tz 0 ,λ v(z), with Tz 0 ,λ defined in (4.2).

The last term in (4.7) can be estimated independently on ε by (4.8)

σ 3 (D, n) u C( D) v C 1 z ( D) log(3|λ|) |λ| 1+3/4 .
This is a consequence of (4.3) and of the estimate (4.9)

| Tz 0 ,λ u(z)| ≤ log(3|λ|)(1 + |z -z 0 |)τ 1 (D) |λ||z -z 0 | 2 u C 1 z ( D) , |λ| ≥ 1,
for u ∈ C 1 z ( D), z, z 0 ∈ D (a proof of (4.9) can be found in the proof of [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]Lemma 3.1]). Indeed, for 0 < δ ≤ 1 2 we have

D u(z) Tz 0 ,λ v(z) z -z0 dRez dImz ≤ B z 0 ,δ ∩D |u(z)| | Tz 0 ,λ v(z)| |z -z 0 | dRez dImz + D\B z 0 ,δ |u(z)| | Tz 0 ,λ v(z)| |z -z 0 | dRez dImz ≤ u C( D) v C 1 z ( D) τ 2 (D, n) |λ| 1/2 B z 0 ,δ ∩D dRez dImz |z -z 0 | + u C( D) v C 1 z ( D) log(3|λ|) |λ| τ 3 (D, n) D\B z 0 ,δ dRez dImz |z -z 0 | 3 ≤ 2π u C( D) v C 1 z ( D) τ 2 (D, n) δ |λ| 1 2 + u C( D) v C 1 z ( D) τ 4 (D, n) log(3|λ|) |λ|δ ,
for |λ| ≥ 1. Putting δ = 1 2 |λ| -1/4 in the last inequality gives (4.8). Finally, defining ε = |λ| -1/2 in (4.7), (4.5) and using (4.8), we obtain the main estimate (2.24), which thus finishes the proof of Lemma 2.6.

Proof of Lemma 3.1. Take u ∈ H 1 (D, M n (C)) such that (-∆ + t v)u = 0 on D and u| ∂D = 0. We want to prove that u ≡ 0 on D.

By our hypothesis, for any f ∈ C 1 (∂D, M n (C)) there exists a unique f ∈ H 1 (D, M n (C)) such that (-∆ + v) f = 0 on D and f | ∂D = f . Thus we have, using Green's formula (3.3)

, ∂D t ∂u ∂ν f |dz| = D t (∆u) f -t u∆ f dRez dImz = D t t v u f -t u v f dRez dImz = 0
which yields ∂u ∂ν | ∂D = 0. Now consider the following straightforward generalization of Green's formula (3.3) 

, ∂D t ∂f ∂ν g -t f ∂g ∂ν |dz| = D t (∆ -t v)f g -t f ((∆ -v)g) dRez dImz, (4.10 

An extension of Theorem 1.1

As an extension of Theorem 1.1 for the case when we do not assume that v j | ∂D ≡ 0, ∂ ∂ν v j | ∂D ≡ 0, j = 1, 2, we give the following result. 

(5.1) v 2 -v 1 L ∞ (D) ≤ C log(3 + Φ 2 -Φ 1 - 1 
1 ) -α ,
where A 1 is the norm for an operator A :

L ∞ (∂D, M n (C)) → L ∞ (∂D, M n (C)), with kernel A(x, y), defined as A 1 = sup x,y∈∂D |A(x, y)|(log(3+|x-y| -1 )) -1 and |A(x, y)| = max 1≤i,j≤n |A i,j (x, y)|.
The only properties of 1 we will use are the following:

i) A L ∞ (∂D)→L ∞ (∂D) ≤ const(D, n) A 1 ;
ii) In a similar way as in formula (4.9) of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ + (v(x) -Eu(x))ψ = 0, Funkt[END_REF] one can deduce

v L ∞ (∂D) ≤ const(n) Φ v -Φ 0 1 ,
for a matrix-valued potential v, Φ v its associated Dirichlet-to-Neumann operator and Φ 0 the Dirichlet-to-Neumann operator of the 0 potential.

We recall a lemma from [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF], which generalize Lemma 2.2 to the case of potentials without boundary conditions. We define (∂D) δ = {z ∈ C : dist(z, ∂D) < δ}. The proof of Lemma 5.2 for the scalar case can be found in [START_REF] Novikov | A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions[END_REF]: the generalization to the matrix-valued case is straightforward.

Proof of Proposition 5.1. Fix 0 < α < 1 5 and 0 < δ < 1. We have the following chain of inequalities

v 2 -v 1 L ∞ (D) = max( v 2 -v 1 L ∞ (D∩(∂D) δ ) , v 2 -v 1 L ∞ (D\(∂D) δ ) ) ≤ C 1 max 2N δ + Φ 2 -Φ 1 1 , log(3 log(3 + Φ 2 -Φ 1 - 1 
))

δ 4 log(3 + Φ 2 -Φ 1 -1 ) + log(3 + 1 δ ) Φ 2 -Φ 1 1 + log(3 log(3 + Φ 2 -Φ 1 -1 )) 2 (log(3 + Φ 2 -Φ 1 -1 )) 3 4 ≤ C 2 max 2N δ + Φ 2 -Φ 1 1 , 1 δ 4 log(3 + Φ 2 -Φ 1 - 1 1 ) 
-5α

+ log(3 + 1 δ ) Φ 2 -Φ 1 1 + log(3 log(3 + Φ 2 -Φ 1 -1 1 
))

2 (log(3 + Φ 2 -Φ 1 -1 1 )) 3 4 
, where we followed the scheme of the proof of Theorem 1.1 with the following modifications: we made use of Lemma 5.2 instead of Lemma 2.2 and we also used i)-ii); note that C 1 = C 1 (D, N, n) and C 2 = C 2 (D, N, n, α).

Putting δ = log(3 + Φ 2 -Φ 1 - 1 
1 ) -α we obtain the desired inequality

v 2 -v 1 L ∞ (D) ≤ C 3 log(3 + Φ 2 -Φ 1 -1 1 ) -α , (5.3) 
with C 3 = C 3 (D, N, n, α), Φ 2 -Φ 1 1 = ε ≤ ε 1 (D, N, n, α) with ε 1 sufficiently small or, more precisely when δ 1 = log(3 + ε -1 1 ) -α satisfies:

δ 1 < 1, ε 1 ≤ 2N δ 1 , log(3 + 1 δ 1 )ε 1 ≤ δ 1 .
Estimate (5.3) for general ε (with modified C 3 ) follows from (5.3) for ε ≤ ε 1 (D, N, n, α) and the assumption that v j L ∞ ( D) ≤ N for j = 1, 2. This completes the proof of Proposition 5.1.

Let

  D be an open bounded domain in R 2 with C 2 boundary and v ∈ C 1 ( D, M n (C)), where M n (C) is the set of the n × n complex-valued matrices. The Dirichlet-to-Neumann map associated to v is the operator Φ : C 1 (∂D, M n (C)) → L p (∂D, M n (C)), p < ∞ defined by: (1.2) Φ(f ) = ∂ψ ∂ν ∂D where f ∈ C 1 (∂D, M n (C)), ν is the outer normal of ∂D and ψ is the H 1 ( D, M n (C))-solution of the Dirichlet problem (1.3) -∆ψ + v(x)ψ = 0 on D, ψ| ∂D = f ; here we assume that (1.4) 0 is not a Dirichlet eigenvalue for the operator -∆ + v in D.

Lemma 3 . 2 .

 32 Let v 1 , v 2 ∈ C 1 ( D, M n (C)) be two matrix-valued potentials which satisfy (1.4), Φ 1 , Φ 2 their associated Dirichlet-to-Neumann operators, respectively, and u 1 , u 2 ∈ C 2 ( D, M n (C)) matrix-valued functions such that

  ) which holds (weakly) for any f, g ∈ H 1 (D, M n (C)). If we put f = u we obtain (4.11) D t u (-∆ + v)g dRez dImz = 0 for any g ∈ H 1 (D, M n (C)). By Fredholm alternative (see [5, Sec. 6.2]), for each h ∈ L 2 (D, M n (C)) there exists a unique g ∈ H 1 0 (D, M n (C)) = {g ∈ H 1 (D, M n (C)) : g| ∂D = 0} such that (-∆ + v)g = h: this yields u ≡ 0 on D. Thus Lemma 3.1 is proved.

Proposition 5 . 1 .

 51 Let D ⊂ R 2 be an open bounded domain with C 2 boundary, let v 1 , v 2 ∈ C 2 ( D, M n (C)) be two matrix-valued potentials which satisfy (1.4), with v j C 2 ( D) ≤ N for j = 1, 2, and Φ 1 , Φ 2 the corresponding Dirichlet-to-Neumann operators. Then, for any 0 < α < 1 5 , there exists a constant C = C(D, N, n, α) such that

Lemma 5 . 2 .

 52 For v ∈ C 2 ( D) we have that v(z 0 ) -2 π |λ|h (0) z 0 (λ) ≤ κ 1 (D, n)δ -4 log(3|λ|) |λ| v C 2 ( D) (5.2) + κ 2 (D, n) log(3 + δ -1 ) v C(∂D) , for z 0 ∈ D \ (∂D) δ , 0 < δ < 1, λ ∈ C, |λ| ≥ 1.