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In this paper we prove central limit theorems for bias reduced estimators of the structure function of several multifractal processes, namely mutiplicative cascades, multifractal random measures, multifractal random walk and multifractal fractional random walk as defined by Ludena (2008).

Previous estimators of the structure functions considered in the literature were severely biased with a logarithmic rate of convergence, whereas the estimators considered here have a polynomial rate of convergence.

Introduction

A random process X = {X(s), s ∈ [0, T ]} (T > 0) with stationary increments will be called multifractal if its scaling behaviour is characterized by a strictly concave function ζ, called the scaling function, such that for a certain range of real numbers q E[|X(t) -X(s)| q ] = c(q)|t -s| ζ(q) .

If the function ζ is linear, then the process is said to be monofractal, as is the case for instance for the fractional Brownian motion (FBM) B H , 0 < H < 1, which is defined as a 1 continuous centered Gaussian process such that B H (0) = 0 and for all s, t ≥ 0, var(B H (t) -B H (s)) = |t -s| 2H .

Then, for all q > -1, E[|B H (t) -B H (s)| q ] = c(q)|t -s| qH , with c(q

) = E[|B H (1)| q ].
Several truly multifractal processes with stationary increments have been defined. The earliest one is the multiplicative cascade introduced by [START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire[END_REF] and rigorously studied by [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF]. These processes were generalized by [START_REF] Barral | Multifractal products of cylindrical pulses[END_REF], [START_REF] Muzy | Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws[END_REF] and [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]. The latter authors introduced multifractal random measures (MRM) and multifractal random walks (MRW) as time changed Brownian motion. [START_REF] Ludeña | L p -variations for multifractal fractional random walks[END_REF] and [START_REF] Abry | Multifractal random walks as fractional Wiener integrals[END_REF] introduced multifractal (fractional) random walks which are conditionally fractional Gaussian processes.

For these processes, multifractality results from a distributional scaling property which can be written as

{X(λt), 0 ≤ t ≤ T } law = {U λ X(t), 0 ≤ t ≤ T } ,
for 0 < λ < 1, U λ is a positive random variable independent of the process X such that E[U q λ ] = λ ζ(q) for q < q max a certain parameter depending on the process under consideration (and with certain additional restrictions on the values of λ for which this identiy holds in the case of multifractal cascades, see Section 2). For the models we will formally introduce in the sequel, it is defined as

q max = sup{q : ζ(q) ≥ 1} .
It is also important to note that the fixed time horizon T beyond which this scaling property need not be true is finite, except for monofractal processes such as the FBM.

Given a multifractal process observed discretely on [0, T ], it is of obvious interest to be able to identify the scaling function ζ.

Let t 1 , . . . , t N , with t it i-1 = ∆ = T /N be a regular partition of [0, T ] (typically on a dyadic scale). Typically, for q < q max , ζ(q) is estimated by calculating logarithms of the empirical structure function S N (X, q) :=

N -1 j=0 |∆X j | q ,
where ∆X j = X((j + 1)∆) -X(j∆). Estimators of ζ can then be defined by ζN (q) := 1 + log 2 (S N (X, q)) log 2 (∆) , ζN (q) := 1 + log 2 S N (X, q) S 2N (X, q) .

These estimators have been thoroughly dealt with for multiplicative cascades in [START_REF] Ossiander | Statistical estimation for multiplicative cascades[END_REF]. The authors show that ζN (q) and ζN (q) are consistent estimators of ζ(q) for q < q 0 , where q 0 < q max is the largest value of q such that ζ(q)qζ ′ (q) < 1 .

For q > q 0 , ζN (q) is seen to converge almost surely to a linear function of q. Moreover, conditional central limit theorems (where the limiting distribution is a mixture of normal laws) are seen to hold for suitably normalized versions of both estimators if 2q < q 0 . However, as shown in [START_REF] Ossiander | Statistical estimation for multiplicative cascades[END_REF], the convergence rates for these estimators are very different. The rate of convergence of ζN (q) is of order log 2 (N) because of the existence of a bias term, whereas we will show that that of ζN (q) is a power of N which depends on ζ.

In order to enlarge the domain of consistency of the estimators and obtain unconditional central limit theorems, the so-called mixed asymptotic framework has been introduced by allowing the number L of basic observations intervals to increase with N. In the case of multiplicative cascades and MRM, the processes over different intervals are independent.

The observations are X((jL + k)∆), 0 ≤ j ≤ L -1, 0 ≤ k ≤ N -1, and the estimators are now modified as follows ζL,N (X, q) := 1 + log 2 (S L,N (X, q)) log 2 (∆) , ζL,N (X, q) := 1 + log 2 S L,N (X, q) S L,2N (X, q) , with S N,L (X, q) :=

L-1 j=0 N -1 k=0 |∆X jL+k | q .
The mixed asymptotic framework for multiplicative cascades has been recently developed in [START_REF] Bacry | Multifractal analysis in a mixed asymptotic framework[END_REF]. The authors show that if L = [N χ ], where [x] stands for the greatest integer m ≤ x with χ > 0, then ζN,L (X, q) is consistent for q < q χ where q χ is the largest value of q such that ζ(q)qζ ′ (q) < χ + 1 .

Note that as χ tends to infinity, q χ might become greater than q max , so we will only consider values of χ such that q χ < q max . However, once again, there exists a bias term b N := E[M q 1 ]/ log 2 (N), which entails slow convergence of the estimator. In analogy to the non-mixed asymptotic framework it is reasonable to consider ratio based estimators such as ζN,L (X, q) in order to improve convergence rates. It turns out, as follows quite straightforwardly from the results of [START_REF] Bacry | Multifractal analysis in a mixed asymptotic framework[END_REF], that ζN,L (X, q) → ζ(q), a.s., for a dyadic partition, but the authors failed to prove a central limit theorem, although they hint at it at the end of their section 3. Almost sure convergence for dyadic partitions, or in probability for general partitions, of ζN,L (X, q) has also been recently considered by [START_REF] Duvernet | Convergence of the structure function of a multifractal random walk in a mixed asymptotic setting[END_REF] for χ ≥ 0 and X a Brownian MRW or a MRM. However, the author does not prove central limit theorems nor establish convergence rates in either case. An interesting application for testing whether a process is a semimartigale or a multifractal process is developed in [START_REF] Duvernet | Testing the type of a semi-martingale: Itô against multifractal Electron[END_REF] which is based on the limiting behaviour of variation ratios, but the authors restrict their attention to log-normal multifractal random walks and q = 2.

The main goal of this paper is to obtain central limit theorems for the estimator ζN,L in the mixed asymptotic setting, for multiplicative cascades, multifractal random measures (MRM) and multifractal random walks (MRW) that are either a time changed Brownian motion or a more general process related to a fractional Brownian motion with Hurst index H > 1/2. Our main results in all these cases state unconditional central limit theorems with polynomial rates of convergence, contrary to ζL,N which can only achieve logarithmic rates of convergence, and to the case L = 1 where only conditional central limit theorems can be obtained.

For multiplicative cascades, [START_REF] Ossiander | Statistical estimation for multiplicative cascades[END_REF] also considered negative values of q such that E[M q ([0, 1])] < ∞ and 0 > q > inf h≤0 {hψ ′ (h)ψ(h) < 1}. However, we cannot extend such a result in full generality in the present context, since for certain MRM which are considered here, E[M q ([0, 1])] = ∞ for all q < 0. Moreover, negative moments of the Gaussian law are infinite for q ≤ -1, thus even if the MRM considered has finite negative moments, that might not be the case for the MRW. For these reasons, and not to increase the length of the paper, we do not consider the case q < 0.

The rest of the paper is organized as follows. We will consider multiplicative cascades in Section 2, MRM in Section 3, and MRW in Section 4. Section 5 contains the main ideas of the proofs and technical lemmas are relegated to the appendix. To the best of our knowledge our results are the first to deal with the MRW in the case H > 1/2.

Multiplicative cascades

In this section we give a precise formulation of consistency results for ζ(q), whenever q < q χ , and a central limit theorem whenever 2q < q χ , in the case of multiplicative cascades. The results are a straightforward application of previous results of [START_REF] Bacry | Multifractal analysis in a mixed asymptotic framework[END_REF] and [START_REF] Ossiander | Statistical estimation for multiplicative cascades[END_REF]. However, they provide the framework for dealing with both MRM and MRW so will be dealt with in some detail. Before we state the main results we shall introduce the mixed asymptotic setting, following [START_REF] Bacry | Multifractal analysis in a mixed asymptotic framework[END_REF].

For any given n-tuple r and i < n set r|i = (r 1 , . . . , r i ) and if s is an i-tuple and v an (ni)-tuple set r = s * v to be the resulting n-tuple obtained by concatenation. For each j ∈ Z and fixed T , set I (j) := [jT, (j + 1)T ]. Over each I (j) we will construct an independent multiplicative cascade as defined in [START_REF] Mandelbrot | Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire[END_REF]. For this, consider a collection {W (j) r , r ∈ {0, 1} n , n ≥ 1, j ∈ Z} of independent random variables with common law W such that E[W ] = 1 and E[W log 2 W ] < 1 and for each n ≥ 1 and j ∈ Z, consider the random measure defined by

λ (j) n (I) = T 2 -n {r∈{0,1} n :(j-1+r)T ∈I (j) n i=1 W (j) r|i ,
for any Borel subset I of I (j) , and each r = (r 1 , . . . , r n ) ∈ {0, 1} n is associated to the real number n i=1 r i 2 n-k . It can be seen (see [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF], [START_REF] Ossiander | Statistical estimation for multiplicative cascades[END_REF] for details on the construction and main results) that there exists a random measure

λ (j) ∞ , such that P(λ (j) n ⇒ λ (j) ∞ as n → ∞) = 1 ,
where ⇒ stands for vague convergence. The limiting measure verifies E[λ

(j) ∞ ([0, T ])] = T . By construction λ (j)
∞ are independent random measures, defined over the disjoint intervals

I (j) . Set λ ∞ := j∈Z λ (j) ∞ . Set F n = σ{W (j) r , r ∈ {0, 1} n , j ∈ Z} and let ∆ (j) k,n := [(j + k2 -n )T, (j + (k + 1)2 -n )T ], k = 0, . . . , 2 n -1, be the k-th diadic interval at level n, of the interval I (j) . Then, λ ∞ (∆ (j) k,n ) = 2 -n Z j,k,n n i=1 W (j) rn(k)|i ,
where for each n, Z j,k,n , 0 ≤ k < 2 n , j ∈ Z, are i.i.d. random variables with the same distribution as λ ∞ ([0, T ]) and independent of F n , and r n (k) is the dyadic representation of

k, i.e. k = n i=1 r n,i (k)2 n-i for k < 2 n .
Moreover, Z j,2k,n+1 and Z j,2k+1,n+1 are independent of Z j,k ′ ,n for k ′ = k. The above identity straightforwardly yields the scaling property:

E[λ q ∞ (∆ (j) k,n )] = 2 -nζ(q) E[λ q ∞ ([0, T ])] ,
with

ζ(q) = q -log 2 (E[W q ]) .
It is shown in [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF] that for q > 1, the condition ζ(q) > 1 implies

E[λ q ∞ ([0, T ])] < ∞.
Example 2.1. Consider the log-normal cascade, where log W = µ + σZ and Z is a standard Gaussian random variable. The condition

E[W ] = 1 implies that µ = -σ 2 /2.
Then it is easily obtained that

ζ(q) = q - q(q -1)σ 2 2 log 2 , q max = 2 log 2 σ 2 ∨ 1 , q 0 = √ 2 log 2 σ , q χ = 2(1 + χ) log 2 σ . Denote S L,n (q) = L-1 j=0 2 n -1 k=0 λ q ∞ (∆ (j) k,n ) and ζ(q) := 1 - log 2 (S L,n (q)) n , ζ(q) = 1 + log 2 S L,n (q) S L,n+1 (q) 
.

Note that although in the asymptotics L will eventually depend on n, its value is the same in the quantities S L,n and S L+1,n .

Consistency

For each n ≥ 1, let {ξ, ξ j,k,n , 0

≤ j ≤ L -1, 0 ≤ k ≤ 2 n -1} be a collection of i.i.d. random variables, independent of F n . Define Sn,q = 2 -nq L-1 j=0 2 n -1 k=0 n i=1 W (j) rn(k)|i q ξ j,k,n .
In [START_REF] Bacry | Multifractal analysis in a mixed asymptotic framework[END_REF] the following general result is shown to hold.

Proposition 2.1. For χ > 0, assume that L = [2 nχ ], q < q χ and there exists ǫ > 0

such that E[ξ 1+ǫ ] < ∞. If ξ is nonnegative, then L -1 2 -n 2 nζ(q) ( Sn,q -E[ Sn,q ]) → 0 a.s.
Note that by construction E[ Sn,q ] = L2 n 2 -nζ(q) E[ξ], so that the above result yields the almost sure convergence L -1 2 -n 2 nζ(q) Sn,q → E[ξ] under the stated conditions. As a consequence, by the definition of S L,n (q), Proposition 2.1 yields

L -1 2 -n 2 nζ(q) S L,n (q) → E[λ q ∞ ([0, T ])] a.s. , (2.1) 
for q < q χ . Then, clearly,

ζ(q) -ζ(q) + χ + log 2 E[λ q ∞ ([0, T ])] n → 0 a.s. ,
and (2.1) also implies that ζ(q) → ζ(q) a.s. On the other hand, if q > q χ , then [START_REF] Bacry | Multifractal analysis in a mixed asymptotic framework[END_REF] show that ζ(q) → ζ ′ (q χ )q, which is a linear function of q. In this case ζ(q) is also not consistent as the normalized structure function tends to zero [START_REF] Ossiander | Statistical estimation for multiplicative cascades[END_REF]).

Central limit theorem

Based on Proposition 2.1, it is also possible to obtain a central limit theorem for ζ(q).

We remark that in the mixed asymptotic framework the limiting variance is deterministic.

The proof of the central limit theorem follows from a series of corollaries of the following general result for the mixed framework which is a direct generalization of Proposition 4.1 in [START_REF] Ossiander | Statistical estimation for multiplicative cascades[END_REF] and Proposition 2.1. We first state some general notation.

Let {ξ, ξ j,k,n , 0

≤ j ≤ L -1, 0 ≤ k ≤ 2 n-1
, n ≥ 0} be as above and define

V n,q = 2 -2nq L-1 j=0 2 n -1 k=0 n i=1 (W (j) rn(k)|i ) 2q , R n,q = Sn,q /V 1/2 n,q .
The following proposition is seen to hold true as a direct generalization of Proposition 4.1 in [START_REF] Ossiander | Statistical estimation for multiplicative cascades[END_REF], whenever 2q < q χ . Proposition 2.2.

If 2q < q χ , E[ξ j,k,n ] = 0, E[ξ 2 j,k,n] ] = σ 2 and if sup n sup j,k E |ξ j,k,n | 2(1+δ) < ∞ ,
for some δ > 0, then

lim n→∞ E e izRn,q | F n = e -σ 2 z 2 /2
and R n,q converges weakly to the centered Gaussian law with variance σ 2 .

The proof follows exactly as that of Proposition 4.1 in [START_REF] Ossiander | Statistical estimation for multiplicative cascades[END_REF], using Proposition 2.1. The latter also yields that L -1 2 -n 2 nζ(2q) V n,q converges to 1 a.s. We can now state a central limit theorem for the empirical structure function.

Proposition 2.3. If 2q < q χ , then

L -1/2 2 -n/2 2 nζ(2q)/2 S L,n (q) -2 ζ(q)-1 S L,n+1 (q) → d N(0, V (q)) , with V (q) = var Z q 0 -2 ζ(q)-1-q {Z q 1 W q 1 + Z q 2 W q 2 }
and Z 1 , Z 2 are i.i.d. with the same distribution as λ ∞ ([0, 1]) and independent of W 1 , W 2 , which are i.i.d. with the same distribution as W , and

Z 0 = (Z 1 W 1 + Z 2 W 2 )/2 has the same distribution as λ ∞ ([0, 1]).
Proof. The proof follows from Proposition 2.2, by noting that S L,n (q) -2 ζ(q)-1 S L,n+1 (q) can be expressed as

S L,n (q) -2 ζ(q)-1 S L,n+1 (q) = 2 -nq L-1 j=0 2 n -1 k=0 n i=1 (W (j) rn(k)|i ) q ξ j,k,n .
with ξ j,k,n = Z q j,k,n -2 ζ(q)-1-q Z q j,2k,n+1 W q rn(k) * 0 + Z q j,2k,n+1 W q rn(k) * 1 , since r n (k) * 0 = r n+1 (2k) and r n (k) * 1 = r n+1 (2k + 1). Indeed, the random variables ξ j,k,n , j ∈ Z, 0 ≤ k < 2 n , are i.i.d. (for each fixed n) and it clearly holds that E[ξ j,k,n ] = 0,

E[ξ 2 j,k,n ] = V (q) and E[|ξ j,k,n | 2+δ
] < ∞, whenever 2q < q max for small enough δ > 0.

Thus we obtain a central limit theorem for ζ(q).

Theorem 2.4. Assume 2q < q χ . Then

2 n(1+χ+2ψ(q)-ψ(2q))/2 { ζ(q) -ζ(q)} → d N(0, V (q)/(E[λ q ∞ ([0, T ])]) 2 ).
Proof. By Proposition 2.1 and (2.1), S L,n+1 (q)2 ζ(q)-1 /S n,L (q) → 1 a.s. so

ζ(q) -ζ(q) = log 2 S L,n (q) 2 ζ(q)-1 S L,n+1 (q) = -log 2 1 - S L,n (q) -2 ζ(q)-1 S L,n+1 (q) S L,n (q) = S L,n (q) -2 ζ(q)-1 S L,n+1 (q) S L,n (q) × {1 + o P (1)} .
The proof is concluded by applying Proposition 2.3 and noting that 2 -nχ L → 1.

Multifractal random measures

Once again we are interested in the mixed asymptotic framework defined by the parameter χ. The main ideas dealt with in this section are very similar in spirit to those in [START_REF] Duvernet | Convergence of the structure function of a multifractal random walk in a mixed asymptotic setting[END_REF]. We include the proofs for completeness' sake, since they are very similar to those which will be developed to study Multifractal Random Walks. We recall the main definition and properties of Multifractal Random Measures, hereafter MRM, following [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]. Start by defining for l > 0, w l (u) = P (A l (u)) and set

M(I) = lim l→0 I e w l (u) du ,
where I is any Borel set in R. Here P is an independently scattered random measure on

S + = {(s, t), t > 0} such that P (∪ ∞ i=1 A i ) = ∞ i=1 P (A i )
if the Borel measurable sets A i are pairwise disjoint and then the random variables P (A i ), i ≥ 1, are independent, and E[e qP (A) ] = e ψ(q)µ(A) ,

(3.1) with µ(A) = A t -2 ds dt and

A l (u) = {(s, t), u -(t/2 ∧ T /2) < s < u + (t/2 ∧ T /2), t > l} . l T 0 u -T 2 T 2 + u A l (u) u e e e ¡ ¡ ¡ Figure 1. The set A l (u)
It is readily checked that µ(A l (t)) = T + log(T /l), which implies, with (3.1), that

E[e qw l (t) ] = e (T +log T )ψ(q) l -ψ(q) . (3.2)
The function ψ is the log-Laplace transform of the infinitely divisible random measure P , assumed to exist for q < q * , for some q * > 1. It is convex and satisfies ψ(0) = ψ(1) = 0.

By the Lévy-Khinchine representation Theorem, it can be expressed as

ψ(q) = σ 2 2 + mq + ∞ -∞ {e qx -1 -x1 {|x|≤1} }ν(dx) ,
where ν is the Lévy measure of P and satisfies

∞ -∞ (x 2 ∧ 1)ν(dx) < ∞ .
The assumption that ψ(q) is finite for q < q * entails the following condition. For all q < q * , ∞ 1 e qx ν(dx) < ∞ .

By Bacry and Muzy (2003, Theorem 4), there exists a certain infinitely divisible random variable Ω λ , which is independent of M([0, T ]), such that E[e qΩ λ ] = λ -ψ(q) and for λ, l ∈ (0, 1),

{w λl (λu) , 0 ≤ u ≤ T } law = {w l (u) + Ω λ , 0 ≤ u ≤ T } . (3.3)
The latter is known as the scaling property. This implies that

M([0, λT ]) d = λe Ω λ M([0, T ]) (3.4) for λ ∈ [0, 1], so that E[M q ([0, λT ])] = λ ζ(q) m(q) (3.5) with ζ(q) = q -ψ(q) and m(q) = E[M q ([0, T ])].
It is shown in Bacry and Muzy (2003, Theorem 3) 

that if ζ(q) > 1, then E[M q ([0, T ])] < ∞.
As previously, set q max to be the greatest value of q such that ζ(q) ≥ 1 and for χ ≥ 0, define q χ as q χ = max{q : qψ ′ (q) < ψ(q) + 1 + χ} .

Assume moreover that χ is such that q χ < q max . Then, for all p such that pq < q χ , it holds that 0 < ψ(pq)pψ(q) < (p -1)(1 + χ) .

(3.6)

See Section 5 for a proof.

Example 3.1. Consider the Poisson cascade introduced by [START_REF] Barral | Multifractal products of cylindrical pulses[END_REF].

Let N be a Poisson point process with intensity measure µ on (-∞, ∞) × (0, ∞]. Let Γ i , i ∈ Z denote the points of N and let {W, W i } be a collection of i.i.d. positive random variables such that E[W ] = 1. Define the random measure P by

P (A) = log(W i )1 {Γ i ∈A} for all relatively compact Borel sets A ∈ (-∞, ∞) × (0, ∞]. Then (3.1) holds with ψ(q) = E[W q ] -1 and q max = max{q : E[W q ] ≤ q} , q χ = max{q : qE[W q (log(W ) -1)] ≤ 1 + χ} .
Example 3.2. The random measure P can be a Gaussian random measure. Then

P (A) ∼ N(-σ 2 µ(A)/2, σ 2 µ(A)
) and ψ(q) = σ 2 q(q -1)/2 so that we get the same values of q max , q 0 and q χ as for the multiplicative cascade of the previous section, up to the log 2 term. Note that in this case, var(P (A)) = ψ ′′ (0)µ(A) is finite if and only if µ(A) < ∞.

Example 3.3. Let α ∈ (0, 1) and P be a totally skewed to the left α-stable random measure, i.e., ψ(q) = σ α (qq α ). Then q max > 1 if and only if σ α (1α) < 1 and then

q max = ∞ and for χ ≥ 0, q χ = σ -1 ((1 + χ)/(1 -α)) 1/α .
It is noteworthy that, contrary to the previous case, we have here that

E[|P (A)|] = ∞ and E[e qP (A) ] = ∞ for all A such that µ(A) > 0 and for all q < 0, though E[|P (A)| p ] = c p,α σ p µ(A) p/α if p < α and µ(A) < ∞.
Example 3.4. Let α ∈ (1, 2) and P be a totally skewed to the left α-stable random measure, i.e. ψ(q) = σ α (q αq). Then q max > 1 if and only if σ α (α -1) < 1 and then

q max < ∞. For χ ≥ 0, q χ = σ -1 ((1 + χ)/(α -1)) 1/α .
Define, as in the previous section,

L = [2 nχ ], ∆ (j) k,n = [(j + k2 -n )T, (j + (k + 1)2 -n )T ] and S L,n (M, q) = L-1 j=0 2 n -1 k=0 M q (∆ (j) k,n ) , ζM (q) = 1 + log 2 S L,n (M, q) S L,n+1 (M, q) .

Consistency

For convenience, denote τ (q) = ζ(q) -1. We have the following result, whose proof is in Section 5.

Proposition 3.1. For q < q χ , L -1 2 nτ (q) S L,n (M, q) → m(q) a.s.

Plugging this into the definition of ζM (q) yields the consistency of ζM (q). Corollary 3.2. For q < q χ , ζM (q) → ζ(q) a.s.

Central Limit Theorem

We next give a Central Limit Theorem for ζM (q) in the mixed asymptotic framework.

Define the centered random variables

D j,k,n,q := M q (∆ (j) k,n ) -2 τ (q) (M q (∆ (j) 2k,n+1 ) + M q (∆ (j) 2k+1,n+1 )) (3.7)
and D j,n,q = 2 n -1 k=0 D j,k,n,q . By construction, the variables D j,k,n,q are centered, and stationary and 2-dependent with respect to j. We will start by proving a central limit theorem for (LE[D 2 0,n,q ]) -1/2 L-1 j=0 D j,n,q . Since the random variables D j,n,q , 0 ≤ j ≤ L -1, are 2-dependent, it suffices to show that for some p > 1,

lim n→∞ L 1-p E[D 2p 0,n,q ] (E[D 2 0,n,q ]) p = 0 .
(3.8)

We will need the order of magnitude of D 0,n,q . Set

d q = E M q ([0, T ] -2 τ (q) {M q ([0, T /2]) + M q ([T /2, T ])} 2 and d k,q = 2 nζ(2q) E[D 0,0,n,q D 0,k,n,q ]
. By the scaling property, E[D 2 0,0,n,q ] = 2 -nζ(2q) d q and d k,q does not depend on n. Then,

E[D 2 0,n,q ] = 2 -nτ (2q) d q + 2 • 2 -nτ (2q) 2 n -1 k=1 (1 -k2 -n )d k,q .
By Lemma A.4, we have d k,q = O(k -{ψ(2q)-2ψ(q)+1} ). Since ψ(2q) -2ψ(q) > 0, this implies that the series |d k,q | is convergent, so the Cesaro mean above has a finite limit and thus 2q) ). If 4q < q χ , then ψ(4q) -2ψ(2q) < 1 + χ, thus (3.8) holds for p = 2. The above discussion leads to the following result.

lim n→∞ 2 nτ (2q) E[D 2 0,n,q ] = d q +2 ∞ k=1 d k,q . By Lemma A.5 we have E[D 4 0,n,q ] = O(n2 -nτ (4q) + 2 -2nτ (
Proposition 3.3. If 4q < q χ , then there exists a constant Θ q such that

L -1/2 2 -nτ (2q)/2 L-1 j=0 D j,n,q → d N(0, Θ q ) .
We can now prove the asymptotic normality of ζM (q). Denote

R n = S L,n (M, q) -2 τ (q) S L,n+1 (M, q) S L,n (M, q) = 2 n{2ψ(q)-ψ(2q)-2ψ(q)-1-χ}/2 L -1/2 2 -nτ (2q)/2 L-1 j=0 D j,n,q L -1 2 -nτ (q) S L,n (M, q) .
By (3.6) applied with p = 2 and 2q < q χ , it holds that 1 + χ + 2ψ(q)ψ(2) > 0. Thus, by Propositions 3.1 and 3.3, we have that R n = o(1) a.s., so a second order Taylor expansion

yields ζM (q) -ζ(q) = log 2 S L,n (M, q) 2 τ (q) S L,n+1 (M, q) = -log(1 -R n ) = R n + O P (R 2 n ) .
Applying Propositions 3.1 and 3.3 yields the next result.

Theorem 3.4. If 4q < q χ , then

2 n(1+χ-ψ(2q)+2ψ(q))/2 ( ζM (q) -ζ(q)) → N(0, m -1 (q)Θ q ) .
For q, q ′ < 4q χ , it can be shown that 2 n(1+χ) (2 n{2ψ(q)-ψ(2q)}/2 ( ζM (q)-ζ(q)), 2 n{2ψ(q ′ )-ψ(2q ′ )}/2

( ζM (q ′ )-ζ(q ′ ))) converges to a bivariate Gaussian distribution with dependent components.

The same comment holds for the results of the next section.

Multifractal random walk

Throughout this section, the MRM M and the process {w l (u)} will be as defined in the previous section. A multifractal random walk (MRW) is the process X obtained as the L 2 limit as l → 0 of the integral t 0 e w l (u) dB H (u) where B H is a standard fractional Brownian motion independent of M; see [START_REF] Abry | Multifractal random walks as fractional Wiener integrals[END_REF]; [START_REF] Bacry | Multifractal random walk[END_REF]; [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]; [START_REF] Ludeña | L p -variations for multifractal fractional random walks[END_REF]. Recall that B H is a continuous centered Gaussian process with

B H (0) = 0 and var(B H (t) -B H (s)) = |t -s| 2H ,
for all t, s ∈ [0, 1]. For H = 1/2, B 1/2 is the standard Brownian motion and will be simply denoted by B. Thus, X is the conditionally (with respect to M) Gaussian process whose covariance function is defined in (4.1) or (4.2) below according to whether the Hurst parameter of the fBm is H = 1/2 or H > 1/2. Except for the case H = 1/2, which is ordinary Brownian motion, it is worthwhile to remark that this conditionally Gaussian process X is not the time changed process B H (M[0, t]).

Throughout this section → M will stand for conditional convergence in distribution given

M and E M and var M stand for the conditional expectation and variance given M. We consider the following two cases.

• Case H = 1/2 [START_REF] Bacry | Multifractal random walk[END_REF]; [START_REF] Bacry | Log-infinitely divisible multifractal processes[END_REF]. The MRW X is defined as the centered, conditionally Gaussian process with conditional covariance

Γ(s, t) = lim l→0+ t∧s 0 e w l (u) du = M(s ∧ t) . (4.1)
The scaling function is ζ 1/2 (q) = ζ(q/2), since by (3.4) and (3.5), for λ ∈ (0, 1),

{X(λt), 0 ≤ t ≤ T } law = λ 1/2 e Ω λ /2 {X(t), 0 ≤ t ≤ T } , E[|X(t)| q ] = E[E M [|X(t)| q ]] = c q E[M q/2 (t)] = c q m(q/2)t ζ(q/2) ,
where

c q = E[|N(0, 1)| q ] and m(q) = E[M q ([0, 1])].
• Case H > 1/2 [START_REF] Abry | Multifractal random walks as fractional Wiener integrals[END_REF]; [START_REF] Ludeña | L p -variations for multifractal fractional random walks[END_REF]; [START_REF] Muzy | Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws[END_REF]. The MRW X is defined as the centered, conditionally Gaussian process with conditional covariance

Γ H (s, t) = lim l→0+ t 0 s 0 e w l (u) e w l (v) |u -v| 2-2H du dv = t 0 s 0 M(du) M(dv) |u -v| 2-2H . (4.2)
This process is well defined whenever H -ψ(2)/2 > 1/2, cf. [START_REF] Ludeña | L p -variations for multifractal fractional random walks[END_REF]. Convexity of ψ yields ψ(2) > 0. The scaling function ζ H is defined by

ζ H (q) = qH -ψ(q) ,
since by (4.2) and (3.4) we have

{X(λt), 0 ≤ t ≤ T } law = λ H e Ω λ {X(t), 0 ≤ t ≤ T } , E[|X(t)| q ] = c q m H (q)(t/T ) qH-ψ(q) , with m H (q) = E T 0 T 0 |u -v| 2H-2 M(du)M(dv) q/2 . (4.3)
Since we are considering the mixed asymptotic framework, we assume we have a collection of MRM M (j) , j = 0, . . . , L -1, which are independent, defined over consecutive intervals of length T . For j = 0, . . . , L -1 and k = 0, . . . ,

2 n-1 , define ∆X j,k,n = X (j+(k+1)2 -n )T - X (j+k2 -n )T .
As above, we will investigate the asymptotic properties of the estimator ζX (q) defined by ζX (q) = log 2 S L,n (X, q) S L,n+1 (X, q) + 1 , where now

S L,n (X, q) = L-1 j=0 2 n -1 k=0 |∆X j,k,n | q . Denote τ H = ζ H (q) -1 and T n (X, q) = S L,n (X, q) -2 τ H (q) S L,n+1 (X, q). Then ζX (q) -ζ H (q) = -log 1 - T n (X, q) S L,n(X,q) .
We will prove that T n (X, q)/S L,n (X, q) → 0 a.s. so that a Taylor expansion is valid and

yields ζX (q) -ζ H (q) = T n (X, q) S L,n(X,q) (1 + o(1)) .
In order to study the ratio above, we will first prove that if H = 1/2, then L -1 2 nτ (q/2) S L,n (X, q) → c q m(q/2) ,

and if H > 1/2 then, L -1 2 nτ H (q) S L,n (X, q) → c q m H (q) ,
with m H (q) as in (4.3) and c q = E[|N(0, 1)| q ] in both cases. To study T n (X, q), we write

T n (X, q) = T n (X, q) -E M [T n (X, q)] + E M [T n (X, q)] .
We will prove that in both cases, T n (X, q) -E M [T n (X, q)] and E M [T n (X, q)] converge jointly to independent centered Gaussian distributions with the same normalization. This will yield the asymptotic normality of ζX (q)ζ H (q). Because of the different nature of the conditional dependence structure, which yields different scaling functions, we will consider the cases H = 1/2 and H > 1/2 separately.

The case H = 1/2

In this case, it holds that

E M [S L,n (X, q)] = c q S L,n (M, q/2) , var M (S L,n (X, q)) = σ 2 q S L,n (M, q) ,
where σ 2 q = var(|N(0, 1)| q ). By Proposition 3.1, if q < q χ , we get

L -1 2 nτ (q/2) E M [S L,n (X, q)] → c q m(q/2) a.s. L -1 2 nτ (q) var M (S L,n (X, q)) → σ 2 q m(q) a.s.
This implies that L -1 2 nτ (q/2) S L,n (X, q) converges in probability to c q m(q/2). Since S L,n (X, q)

is the sum of L2 n conditionally independent terms, by an application of Borel-Cantelli's lemma similar to the one used in the proof of Proposition 3.1, almost sure convergence also holds, i.e.

L -1 2 nτ (q/2) S L,n (X, q) → c q m(q/2) a.s. (4.4)

Using the notation (3.7) of the previous section, we have

E M [T n (X, q)] = c q 2 τ (q/2) S L,n+1 (M, q/2) -c q S L,n (M, q/2) = -c q L-1 j=0 2 n -1 k=0 D j,k,n,q .
Thus, by Proposition 3.3, if q < q χ then L -1/2 2 nτ (q)/2 E M [T n (X, q)] converges to a centered Gaussian random variable with variance Σ(1/2, q), say. By the conditional independence of B and M, T n (X, q) -E M [T n (X, q)] is a sum of centered and conditionally independent random variables with conditional variance var M (T n (X, q)) = σ 2 q S L,n (M, q) + σ 2 q (2 2τ (q/2) -2 τ (q/2)+1 )S L,n+1 (M, q) .

By Proposition 3.1, L -1 2 nτ (q) var M (T n (X, q)) converges almost surely to the positive constant Γ(1/2, q) defined by

Γ(1/2, q) = σ 2 q m(q) 1 + (2 2τ (q/2) -2 τ (q/2)+1 )2 -τ (q) .
Thus,

L -1/2 2 nτ (q)/2 {T n (X, q) -E M [T n (X, q)]} → M N(0, Γ(1/2, q)) . (4.5)
Since the variance is deterministic, this assures unconditional convergence to the stated Gaussian random variable. Moreover, the conditional independence of B and M also implies that the sequence of random vectors

L -1/2 2 nτ (q)/2 T n (X, q) -E M [T n (X, q)], E M [T n (X, q)]
converges weakly to (Z 1 , Z 2 ) where Z 1 and Z 2 are independent Gaussian random variables with zero mean and variance Γ(1/2, q) and Σ(1/2, q), respectively. The previous considerations yield the central limit theorem for ζX (q).

Theorem 4.1. If q < q χ , then

L 1/2 2 n(ψ(q/2)-ψ(q)/2+1/2) { ζX (q) -ζ 1/2 (q)} → d N 0, Γ(1/2, q) + Σ(1/2, q) c 2 q m 2 (q/2)
.

Case H > 1/2

We begin by studying

E M [T n (X, q)]. Define a j,k,n,H = E 1/2 M [(∆X j,k,n ) 2 ]. Then E M [T n (X, q)] = c q L-1 j=0 2 n -1 k=0 
2 τ H (q) {a q j,2k,n+1,H + a q j,2k+1,n+1,H }a q j,k,n,H .

Denote U j,k,n = 2 τ H (q) {a q j,2k,n+1,H + a q j,2k+1,n+1,H }a q j,k,n,H and define U j,n := 2 n -1 k=0 U j,k,n . Then the collection {U j,n } 0≤j≤L-1 is centered, 2-dependent and identically distributed. Remark that ϑ(q) = 2 nζ H (2q) var(U j,k,n ) depends only on q. By stationarity, for j = 0, . . . , L -1,

var (U j,n ) = 2 -nτ H (2q) v q + 22 -nτ H (q) 2 n -1 k=1 (2 n -k)2 nζ H (2q) cov(U 0,0,n , U 0,k,n ) . By Lemma A.7, 2 nζ H (2q) |cov(U 0,n,0 , U 0,n,k )| ≤ Ck -{ψ(2q)-2ψ(q)+1}
. This series is convergent, thus the Cesaro mean above converges to its sum. Arguing as in the proof of Proposition 3.3, in order to prove the central limit theorem for E M [T n (X, q)], since the centered random variables U j,n , 0 ≤ j ≤ L -1, are 2-dependent, it suffices to show that

lim n→∞ L 1-p E[U 4 0,k,n ] (E[U 2 0,k,n ]) 2 = 0 .
This is done as in Lemma A.5 using Lemma A.7. We then have the following result.

Proposition 4.2. If 2q < q χ , there exists a positive constant Σ(H, q) such that

L -1 2 -nτ H (2q) var(E M [T n (X, q)]) → Σ(H, q) .
Morover, if 4q < q χ , then

L -1/2 2 -nτ H (2q)/2 E M [T n (X, q)] → M N(0, Σ(H, q)) (4.6)
We next need a result which parallels (4.5). Its proof is more involved and is postponed to Section 5.

Proposition 4.3. Let H < 3/4. If 2q < q χ , then there exists a positive constant Γ(H, q) such that 2q) var M (T L,n (X, q)) → Γ(H, q) a.s.

L -1 2 nτ H (
(4.7)

and if 4q < q χ , then

L -1/2 2 nτ H (2q)/2 {T n (X, q) -E M [T n (X, q)]} → M N(0, Γ(H, q)) . (4.8)
As for the case H = 1/2, the fact that Γ(H, q) is deterministic establishes unconditional convergence in distribution. The proof of (4.8) is based on the recent results of [START_REF] Nualart | Central Limit Theorems for Sequences of Multiple Stochastic Integrals[END_REF] on the convergence of sequences of random variables in a Gaussian chaos. Altogether, (4.6) and (4.8) yield the asymptotic normality of the estimator.

Theorem 4.4. If 4q < q χ and H < 3/4, then

2 n(1+χ-ψ(2q)+2ψ(q))/2 { ζX (q) -ζ H (q)} → d N 0, Γ(H, q) + Σ(H, q) c 2 q m 2 H (q)
.

Proofs

In all the proofs, without loss of generality, we set T = 1. We start by proving (3.6).

The convexity of ψ and ψ(1) = 0 implies that q max > 1 if and only if ψ ′ (1) < 1, and ψ ′ (q max ) > 1. This in turn implies that 1 < q 0 < q max . The convexity of ψ also implies that the function q → qψ ′ (q)ψ(q) is increasing, thus q χ > q 0 for all χ > 0. Consider the positive and increasing function p → ψ(pq)-pψ(q). By convexity, for p > 1, ψ(pq)-ψ(q) ≤ ψ ′ (pq)(pqp). This yields, for p > 1 and pq < q χ , 0 < ψ(pq)pψ(q) = pψ(pq)pψ(q) -(p -1)ψ(pq)

≤ (p -1){pqψ ′ (pq) -ψ(pq)} < (p -1)(1 + χ) .
This proves (3.6).

We will also repeatedly use an argument of m-dependence. If ξ 1 , . . . , ξ N are m-dependent random variables with zero mean and finite stationary p-th moment, 1 ≤ p ≤ 2, then there exists a constant C which depends only on p such that

E N i=1 ξ i p ≤ Cm p-1 NE[|ξ 1 | p ] .
(5.1)

Proof of Proposition 3.1

Let n 0 ≥ 2 be an integer, α = 1/n 0 and l n = 2 -(1-α)n . Fix q < q χ . We can choose α < χ small enough so that q < q χ ′ with χ ′ < χα. Then, we can also choose p > 1, close enough to 1, such that pq < q χ ′ and without loss of generality, we can also impose that

p -1 < α(q ∨ 1)/2. Define Tn,q = 2 -n L -1 L-1 j=0 2 n -1 k=0 e qw ln (j+2 -n k) E[e qw ln (0) ] = 2 -n L -1 e -ψ(q) l ψ(q) n L-1 j=0 2 n -1 k=0 e qw ln (j+2 -n k) .
(5.2)

We will prove that for α and p > 1 chosen as above, there exist constants C, η > 0 such that E Tn,q -1 p ≤ C2 -nη , (5.3)

E Tn,q - S L,n (M, q) E[S L,n (M, q)] p ≤ C2 -nη .
(5.4)

The above inequalities and an application of Borel-Cantelli's lemma yield that Tn,q → 1, a.s. and

S L,n (M, q) E[S L,n (M, q)]
-Tn,q → 0 a.s.

For all j, k, n, we have E[M q (∆ (j) k,n )] = 2 -nζ(q) m(q), so that E[S L,n (M, q)] = L2 -nτ (q) m(q). Thus Proposition 3.1 follows.

Proof of (5.3). Define ǫ = p-1. The variables e qw ln (j+2 -n k) -E[e qw ln (j+2 -n k) ] are 2-dependent (in j) and centered, so there exists a constant C > 0 such that

E Tn,q -1 p ≤ C L ǫ E 1 2 n 2 n -1 k=0 e qw ln (2 -n k) e ψ(q) l -ψ(q) n -1 p .
By Lemma A.1, for any ǫ ′ < ǫ, there exists a constant C such that E Tn,q -1 p ≤ C2 n{(1-α){ψ(pq)-pψ(q)-ǫ ′ }-ǫχ} .

By (3.6), since pq < q χ ′ < q χ , we have

(1 -α){ψ(pq) -pψ(q) -ǫ ′ } -ǫχ < (1 -α){ǫ(1 + χ ′ ) -ǫ ′ } -ǫχ < (1 -α){ǫ(1 + χ -α) -ǫ ′ } -ǫχ = (1 -α){ǫ(1 -α) -ǫ ′ } -αǫχ .
This can be made negative by chosing ǫ ′ > (1α)ǫ.

Proof of (5.4). We start by using again the argument of 2-dependence in j, to obtain, for some constant C,

E S L,n (M, q) E[S L,n (M, q)] -Tn,q p ≤ C L ǫ E 1 2 n 2 n -1 k=0 M q (∆ (0) k,n ) 2 -nζ(q) m(q) - e qw ln (k2 -n )
e ψ(q) l -ψ(q) n p .

(5.5)

For clarity, we now omit the superscript (0) in ∆ (0) k,n . Let M n denote the random measure with density e -w ln with respect to M. By construction, the measure M n is independent of the process w ln . Indeed, for any Borel set A, M n (A) = lim l→0 A e w l (u)-w ln (u) du, and for l < l n , w lw ln is independent of w ln , by the independent increment property of the random measure P . Denote

Sn = 2 nτ (q) 2 n -1 k=0 e qw ln (k2 -n ) M n (∆ k,n ) .
Applying the bound (A.15) in Lemma A.2, we obtain

E[| Sn -2 nτ (q) 2 n -1 k=0 M(∆ k,n )| p ] ≤ C2 -nα(q∨1)/2 2 n{ψ(pq)-pψ(q)} .
Since we have chosen ǫ < α(q ∨ 1)/2, by (3.6), we have ψ(pq)pψ(q)α(q ∨ 1)/2ǫχ < ǫα(q ∨ 1)/2 < 0 . Define m n (q) = e ψ(q) l -ψ(q) n 2 nζ(q) E[M q n (∆ k,n )]. By (A.14), we have lim n→∞ m n (q) = m(q) and thus E[M q n (∆ 0,n )] ∼ l ψ(q) n 2 -nζ(q) e -ψ(q) m(q). Next, we note that the random variables M n (∆ k,n ) are 2 n l n -dependent and e w ln is independent of M n . Thus, applying (5.1) conditionally on w ln yields

E Sn m n (q) -2 -n 2 n -1 k=0 e qw ln (k2 -n e ψ(q) l -ψ(q) n p = E 2 -n 2 n -1 k=0 e qw ln (k2 -n ) e ψ(q) l -ψ(q) n M q n (∆ k,n ) E[M q n (∆ k,n )] -1 p ≤ Cl -ψ(pq)+pψ(q)-ǫ n E M q n (∆ 0,n ) E[M q n (∆ 0,n )] p ≤ C2 n{ψ(pq)-pψ(q)-ǫ(1-α)} .
Using the fact that pq < q χ ′ , (3.6) and χ ′ < χα, we obtain

ψ(pq) -pψ(q) -(1 -α)ǫ -ǫχ ≤ ǫ(1 + χ ′ ) -(1 -α)ǫ -ǫχ = ǫ(χ ′ + α -χ) < 0 .
This concludes the proof of (5.4).

Proof of Proposition 4.3

Define

a j,k,n,H = E 1/2 M [(∆X j,k,n ) 2
] and the conditionally standard Gaussian random variables

Y j,k,n = ∆X j,k,n /a j,k,n,H .
Let G q (x) = |x| qc q . With this notation, we have

S L,n (X, q) -E M [S L,n (X, q)] = L-1 j=0 2 n -1 k=0 a q j,k,n,H G q (Y j,k,n ) .
Let g r (q), r ≥ 0, be the coefficients of the expansion of G q over the Hermite polynomials {H r , r ≥ 0} (which are defined in such a way that E

[H k (X)H l (X)] = k! if k = l and 0 otherwise), i.e. g r (q) = E[H r (V )G q (V )]
where V is a standard Gaussian random variable.

Since G q is a centered even function, g r (q) = 0 for r = 0, 1. Since E[G 2 q (X)] < ∞, the series r=2 g 2 r (q)/r! is summable and G q = ∞ r=2 gr(q) r! H r . Then, by Mehler's formula (see e.g.

Arcones (1994)), we have

L -1 2 nτ H (2q) var M (S L,n (X, q)) = ∞ r=2 g r (q) 2 r! Γ n (r, q) , with Γ n (r, q) = L -1 2 nτ H (q) (r!) -1 var M L-1 j=0 2 n -1 k=0 a q j,k,n,H H r (Y j,k,n ) = L -1 2 nτ H (q) L-1 j 1 ,j 2 =0 2 n -1 k,k ′ =0 ρ r H,n (j 1 , j 2 , k, k ′ ) a q j 1 ,k,n,H a q j 2 ,k ′ ,n,H ,
for r ∈ N, r ≥ 2, and the conditional correlations (which are zero if

H = 1/2) are ρ H,n (j 1 , j 2 , k, k ′ ) = cov M (Y j 1 ,k,n , Y j 2 ,k ′ ,n ) = E M [∆X j 1 ,k,n ∆X j 2 ,k ′ ,n ] a j 1 ,k,n,H a j 2 ,k ′ ,n,H .
By Lemma 3.1 in [START_REF] Ludeña | L p -variations for multifractal fractional random walks[END_REF], for j 1 < j 2 and k < k ′ , we have the bound

ρ H,n (j 1 , j 2 , k, k ′ ) ≤ min(1, C|(j 2 -j 1 )2 n + (k ′ -k)| 2H-2 ) (5.6)
for some deterministic constant C. We start by proving that for H < 3/4 and 2q < q χ , there exists a constant Γ(r, q) such that lim n→∞ 2 n(2ψ(q)-ψ(2q)+1+χ) E[Γ n (r, q)] = Γ(r, q) .

(5.7)

By the scaling property,

E[a q j,k,n,H ] = 2 -nζ H (q) m H (q) ,
with ζ H (q) = qHψ(q). Thus, denoting v χ (q) = 2ψ(q)ψ(2q) + 1 + χ, by stationarity, we have

2 nvχ(q) E[Γ n (r, q)] = m H (2q) + 2 -n 2 nζ H (2q) k =k ′ E[ρ r H,n (0, 0, k, k ′ )a q 0,k,n,H a q 0,k ′ ,n,H ] + 2 -n(1+χ) 2 nζ H (2q) j =j ′ k,k ′ E[ρ r H,n (j, j ′ , k, k ′ )a q j,k,n,H a q j ′ ,k ′ ,n,H ] (5.8)
Consider the middle term. Recall that

ρ r n,H (0, 0, k, k ′ ) a q 0,k,n,H a q 0,k ′ ,n,H = (k+1)2 -n k2 -n (k ′ +1)2 -n k ′ 2 -n |u -v| 2H-2 M(du)M(dv) r × (k+1)2 -n k2 -n (k+1)2 -n k2 -n |u -v| 2H-2 M(du)M(dv) (q-r)/2 × (k ′ +1)2 -n k ′ 2 -n (k ′ +1)2 -n k ′ 2 -n |u -v| 2H-2 M(du)M(dv) (q-r)/2
.

Assume that k < k ′ and denote ℓ = k ′k + 1. By the scaling property and the stationarity of the increments of M, we have

ρ r n,H (0, 0, k, k ′ ) a q 0,k,n,H a q 0,k ′ ,n,H (law) = (ℓ2 -n ) r(2H-2)+2r e 2rΩ ℓ2 -n 1/ℓ 0 1 1-1/ℓ |u -v| 2H-2 M(du)M(dv) r × (ℓ2 -n ) (q-r)(H-1)+q-r e (q-r)Ω ℓ2 -n 1/ℓ 0 1/ℓ 0 |u -v| 2H-2 M(du)M(dv) (q-r)/2 × (ℓ2 -n ) (q-r)(H-1)+q-r e (q-r)Ω ℓ2 -n 1 1-1/ℓ 1 1-1/ℓ |u -v| 2H-2 M(du)M(dv) (q-r)/2 = (ℓ2 -n ) 2qH e 2qΩ ℓ2 -n Q r ℓ a q ℓ b q ℓ , with a 2 ℓ = 1/ℓ 0 1/ℓ 0 |u -v| 2H-2 M(du)M(dv) , b 2 ℓ = 1 1-1/ℓ 1 1-1/ℓ |u -v| 2H-2 M(du)M(dv) , Q ℓ = 1/ℓ 0 1 1-1/ℓ |u -v| 2H-2 M(du)M(dv) a ℓ b ℓ .
With this notation, the middle term in (5.8) can be expressed as

2 • 2 nζ H (2q) 2 n -1 ℓ=1 (1 -ℓ2 -n )(ℓ2 -n ) 2qH E[e 2qΩ ℓ2 -n ] E[Q r ℓ a q ℓ b q ℓ ] = 2 • 2 nζ H (2q) 2 -n{2qH-ψ(2q)} 2 n-1 ℓ=1 (1 -ℓ2 -n )ℓ 2qH-ψ(2q) E[Q r ℓ a q ℓ b q ℓ ] = 2 2 n-1 ℓ=1 (1 -ℓ2 -n )ℓ ζ H (2q) E[Q r ℓ a q ℓ b q ℓ ] . Moreover, a ℓ ≥ ℓ 2-2H M([0, 1/ℓ]), b ℓ ≥ ℓ 2-2H M([1 -1/ℓ, 1]), and the numerator in Q ℓ is bounded from above by (1 -2/ℓ) 2H-2 M([0, 1/ℓ])M([1 -1/ℓ, 1]). Thus Q ℓ ≤ Cℓ 2H-2
(5.9)

for some deterministic constant C. This and Hölder's inequality yields

E[Q r ℓ a q ℓ b q ℓ ] ≤ Cℓ r(2H-2) E 1/2 [a 2q ℓ ] E 1/2 [b 2q ℓ ] .
Applying the scaling property of 2q) m H (q), hence -2) .

M yields E[a 2q ℓ ] = E[b 2q ℓ ] = ℓ -ζ H (
ℓ ζ H (2q) E[Q r ℓ a q ℓ b q ℓ ] ≤ Cℓ r(2H
Since r ≥ 2 and H < 3/4, the series ℓ r(2H-2) is summable, and thus lim n→∞

2 n-1 ℓ=1 (1 -ℓ2 -n ) ℓ ζ H (2q) E[Q r ℓ a q ℓ b q ℓ ] = ∞ ℓ=1 ℓ ζ H (2q) E[Q r ℓ a q ℓ b q ℓ ] .
Consider now the last term in (5.8), say RR n . Using the bound (5.6), the scaling property, the fact that the a j,k,n,H are 2-dependent, and H < 3/4, we have

RR n ≤ C2 n{ζ H (2q)-2ζ H (q)} L j=1 2 n k=1 (j2 n + k) 2H-2 = O(2 n{2ψ(q)-ψ(2q)} ) = o(1) .
(5.10)

This proves (5.7). We now prove that if H < 3/4, for each r ≥ 2, Γ n (r, q)/E[Γ n (r, q)] → 1 a.s.

( 5.11) or equivalently 2 n{1+χ-ψ(2q)+2ψ(q)} Γ n (r, q) → Γ(r, q)] a.s.

Write 2 n{1+χ-ψ(2q)+2ψ(q)} Γ n (r, q) = S n,1 + S n,2 + S n,3 with

S n,1 = 2 nτ H (2q) L -1 L-1 j=0 2 n -1 k=0 a 2q j,k,n,H , S n,2 = 2 nτ H (2q) L -1 L-1 j=0 0≤k =k ′ <2 n ρ r H,n (j, j, k, k ′ )a q j,k,n,H a q j,k ′ ,n,H , S n,3 = 2 nτ H (2q) L -1 0≤j =j ′ <L 2 n -1 k,k ′ =0 ρ r H,n (j ′ , j ′ , k, k ′ )a q j,k,n,H a q j ′ ,k ′ ,n,H .
The bound (5.10) and Borel-Cantelli's lemma implies that S n,3 → 0 a.s. Define ãj,k,n,H = e w ln (t j,k ) δj,k,n,H with

δ2 j,k,n,H = ∆ (j) k,n ∆ (j) k,n |u -v| 2H-2 M n (du)M n (dv) .
By Lemma A.6 we have, if 2q < q χ , lim n→∞ 2 nζ H (2q) e ψ(2q) l -ψ( 2q)

n E[ δ2q j,k,n,H ] = m H (2q) .
(5.12)

By 2-dependence with respect to j, Jensen's inequality, (3.6) applied to 2q < q χ and the bound (A.28), we obtain, some η > 0,

E 2 nτ H (2q) L -1 L-1 j=0 2 n -1 k=0 (a 2q j,k,n,H -ã2q j,k,n,H ) p ≤ CL 1-p 2 npζ(2q) E a 2q j,k,n,H -ã2q j,k,n,H p ≤ CL 1-p 2 nψ(2pq)-pψ(2q)-η ≤ C2 n(p-1-η) .
Choosing p -1 < η and Borel-Cantelli's lemma yield that

2 nτ H (2q) L -1 L-1 j=0 2 n -1 k=0 (a 2q j,k,n,H -ã2q j,k,n,H ) → 0 a.s. (5.13)
Recall the definition of Tn,2q in (5.2) and define further

Sn,1 = 2 nτ H (2q) L -1 L-1 j=0 2 n -1 k=0 ã2q j,k,n,H , m n,H (2q) = 2 nζ H (q) E[ã 2q 0,0,n,H )] = 2 nζ H (q) e ψ(q) l -ψ(q) n E[ δ2q 0,0,n,H )] .
We have already shown in the proof of Proposition 3.1 that if 2q < q χ , then Tn,2q → 1 a.s.

Moreover, by the argument of 2-dependence with respect to j, we have

E Sn,1 m n,H (2q) -Tn,2q p ≤ CL 1-p E 2 -n n k=1 e 2qw ln (k2 -n ) e ψ(2q) l -ψ(2q) n δ2q 0,k,n,H E[ δ2q 0,k,n,H ] -1 p .
As in the proof of Proposition 3.1, we now use the fact that w ln is independent of the measure M n , the 2 n l n -dependence of the variables δ0,k,n,H and (5.12) to obtain

E 2 -n n k=1 e 2qw ln (k2 -n ) e ψ(2q) l -ψ(2q) n δ2q 0,k,n,H E[ δ2q 0,k,n,H ] -1 p ≤ Cl ǫ-ψ(2pq)+pψ(2q) n E δ2pq 0,0,n,H (E[ δ2q 0,0,n,H ]) p ≤ Cl ǫ n 2 n{ψ(2pq)-pψ(2q)} .
Now, as in the proof of Proposition 3.1, we must choose α small enough so that 2q < q χ ′ , for χ ′ < χα, and ǫ such that 2pq < q χ ′ with p = 1 + ǫ. Such a choice and (3.6) applied

with 2pq < q χ ′ yield E Sn,1 m n,H (2q) -Tn,2q p ≤ C2 -ǫχ l ǫ n 2 nǫ(1+χ ′ ) = C2 nǫ(χ ′ +α-χ) .
This last bound and Borel Cantelli's lemma yield that m -1 n,H (2q) Sn,1 -Tn,2q → 0, a.s. This and (5.13) finally prove that Sn,1 → m H (2q) a.s.

In order to prove that S n,2 → 0 a.s., by stationarity and 2-dependence in j, it is enough to prove that, for p = 1 + ǫ,

E 2 nτ H (2q) 0≤k =k ′ <2 n ρ r H,n (0, 0, k, k ′ )a q 0,k,n,H a q 0,k ′ ,n,H p = O(2 (ǫχ-η)n ) (5.14)
for some η > 0 and apply Borel Cantelli's lemma. Since all quantities involved are nonnegative, we can use the bound (5.6), and thus it suffices to obtain a bound for

E 2 nτ H (2q) 0≤k =k ′ <2 n |k -k ′ | r(2H-2) a q 0,k,n,H a q 0,k ′ ,n,H p . Define δ2 k = ∆ n,k ∆ n,k |u -v| 2H-2 M n (du)M n (dv) .
Then ã0,k,n,H = δk e qw ln (k2 -n ) and using the bound (A.29) and (3.6), we obtain

E 2 nτ H (2q) 0≤k =k ′ <2 n |k -k ′ | r(2H-2) {a q 0,k,n,H a q 0,k ′ ,n,H -ãq 0,k,n,H ãq 0,k ′ ,n,H } p = O(2 (ǫχ-η)n ) .
Thus we need to obtain a bound for E[S p n,4 ] where

S n,4 = 2 nτ H (2q) 0≤k =k ′ <2 n |k -k ′ | r(2H-2) ãq 0,k,n,H ãq 0,k ′ ,n,H ,
which we further decompose as S n,4 = S n,5 + S n,6 with

S n,5 = 2 nτ H (2q) 0≤k =k ′ <2 n |k -k ′ | r(2H-2) { δq k δq k ′ -E[ δq k δq k ′ ]} e qw ln (k2 -n )+qw ln (k ′ 2 -n ) , S n,6 = 2 nτ H (2q) 0≤k =k ′ <2 n |k -k ′ | r(2H-2) E[ δq k δq k ′ ] e qw ln (k2 -n )+qw ln (k ′ 2 -n ) .
Since H < 3/4 and r ≥ 2, we have that r(2H -2) < -1 and the series k r(2H-2 is summable. Thus, applying Cauchy-Schwarz' inequality yields

E |2 -n 0≤k =k ′ <2 n |k -k ′ | r(2H-2) e qw ln (k2 -n )+qw ln (k ′ 2 -n ) p ≤ CE   2 -n 2 n -1 k=0 e qw ln (k2 -n ) 2p   .
Next, applying Lemma A.1 with p such that 2pq < q χ and ǫ ′ < p -1 yields

E 2 -n 0≤k =k ′ <2 n |k -k ′ | r(2H-2) e qw ln (k2 -n )+qw ln (k ′ 2 -n ) p ≤ Cl -{ψ(2pq)-ǫ ′ } n .
(5.15)

By (A.27), it holds that E[ δq k δq k ′ ] ∼ C(k, k ′ )l ψ(2q) n 2 -nζ H (q) where C(k, k ′ ) is uniformly bounded, thus E[S p n,6 ] ≤ Cl -{ψ(2pq)-pψ(2q)-ǫ ′ } n , If 2pq < q χ , applying (3.6), we have (1 -α){ψ(2pq) -pψ(2q) -ǫ ′ } -ǫχ ≤ (1 -α)ǫ(1 + χ) -ǫ ′ ≤ ǫ -ǫ ′ -αǫ(1 + χ)
which can be made negative by choosing ǫ ′ close enough to ǫ. To deal with the last term, as in the proof of Proposition 3.1 we use the conditional 2 αn dependence of the random variables δ k . We obtain the bound

E[S p n,5 ] ≤ C2 n{ψ(2pq)-pψ(2q)-ǫ} = O(2 n(ǫχ-η) )
for small some η > 0. We have proved (5.14), and thus (5.11) holds. We can now define

Γ 1 (q) = ∞ r=2 g r (q) 2 r! Γ(r, q) .
As ∞ r=2 (r!) -1 g r (q) 2 < ∞ and Γ n (r, q) ≤ Γ n (2, q), then by the bounded convergence theorem, the previous series is convergent and thus we have obtained that

L -1 2 nτ H (2q) var M (S L,n (X, q)) → Γ 1 (q) , a.s.
This also yield that there exists a constant Γ 2 (q) such that

L -1 2 nτ H (2q) var M (2 τ H (q) S L,n+1 (X, q)) → Γ 2 (q) , a.s.
By similar techniques, we also obtain that there exists a constant Γ 3 (q) such that L -1 2 nτ H (2q) cov M (S L,n (X, q), S L,n+1 (X, q)) → Γ 3 (q) a.s.

Finally, since T n (X, q) = S L,n (X, q)-2 τ H (q) S L,n+1 (X, q), the last three convergences yield (4.7).

Proof of (4.8). By Nualart and Pecatti (2005, Theorem 1) the proof will follow by checking that

L -2 2 2nτ H (2q) E M [{T n (X, q) -E M [T n (X, q)]} 4 ] → 3Γ(H, q) 2 , a.s. (5.16) Define T n,r (X, q) = L-1 j=0 2 n -1 k=0 2 τ H (q) {a q j,2k,n+1,H H r (Y j,2k,n+1 )+a q j,2k+1,n+1,H H r (Y j,2k+1,n+1 )}-a q j,k,n,H H r (Y j,k,n ) .
Then, from the definition of T n (X, q) and recalling the expansion

G q = ∞ r=2 gr(q)
r! H r in terms of the Hermite polynomials, to show (5.16) it is enough to check that

E M [(T n,r (X, q)) 4 ] = 3 (r!) 2 E 2 M [T 2 n,r (X, q)] + R n (q, r) , (5.17) 
with L -2 2 2nτ H (2q) R n (q, r) → 0 a.s. In order to calculate the fourth order moment in (5.17)

we use a standard application of the Diagram formula, for which we use the notation in Surgailis (2003). Given a centered stationary Gaussian process {X j } j≥1 with positive covariance c(t i , t j ) = cov(X t i , X t j ) and variance one, and a triangular array of positive

elements {b t } N t=1 define S N (b) := N t=1 b t H r (X t ).
We introduce the following basic lattice notation. Let W be a 4 row table, whose rows correspond to the size r vectors W i = (i, . . . , i) , i = 1, . . . , 4. Consider the collection Γ of Gaussian flat connected diagrams γ, that is, of partitions of W defined by the disjoint subsets

{V ℓ } with W = ∪ ℓ V ℓ , such that, respectively, |V ℓ | = 2, no V ℓ ⊂ W i and it is not possible to write W = W 1 ∪ W 2 , where
W 1 and W 2 can be partitioned by the diagram separately. Then, we have that (see e.g.

Surgailis (2003)) E[(S N (b)) 4 ] = 3 N t 1 ,t 2 =1 b t 1 b t 2 c r (t 1 , t 2 ) 2 + γ∈Γ t 1 ,...,t 4 b t 1 • • • b t 4 1≤i<j≤4 c l i,j (t i , t j ) , (5.18)
where l i,j is the number of elements V ℓ in the diagram that pair row i with row j. Because the diagram is connected and each row must appear at least once, for each pair i, j we have 1 ≤ l i,j < r. Also, the fact that the diagrams in Γ are flat (i.e. that no V ℓ ⊂ W i ) assures that the second sum is over 4-tuples of pairwise distinct indices. On the other hand, since 0 ≤ c(i, j) ≤ 1 and r ≥ 2, for each γ ∈ Γ, by symmetry

t 1 ,...,t 4 b t 1 • • • b t 4 1≤i<j≤4 c l i,j (t i , t j ) ≤ t 1 ,...,t 4 b t 1 • • • b t 4 c(t 1 , t 2 )c(t 2 , t 3 )c(t 3 , t 4 )c(t 4 , t 1 ) . (5.19)
Applying (5.18) and (5.19) to T n,r (X, q), we obtain (5.17) if we show that

L -2 2 2nτ H (2q) L-1 j 1 ,...,j 4 =1 2 n -1 k 1 ,...,k 4 =1 1≤i≤4 a q j i ,k i ,n,H ρ H,n (j 1 , j 2 , k 1 , k 2 )ρ H,n (j 2 , j 3 , k 2 , k 3 ) × ρ H,n (j 3 , j 4 , k 3 , k 4 )ρ H,n (j 1 , j 2 , k 1 , k 4 ) → 0 a.s. (5.20)
The fact that the sum is over pairwise disctinct indices assures that (j i , k i ) = (j ℓ , k ℓ ) for i = ℓ, however it is necessary to distinguish several cases:

• Case j i ≡ j for all i = 1, . . . , 4. We prove that

L -2 2 2nτ H (2q) L-1 j=1 2 n -1 k 1 ,...,k 4 =1 1≤i≤4 a q j,n,k i ,H ρ H,n (j 1 , j 2 , k 1 , k 2 )
× ρ H,n (j, j, k 2 , k 3 )ρ H,n (j, j, k 3 , k 4 )ρ H,n (j, j, k 1 , k 4 ) → 0 a.s. (5.21) This will be achieved by showing that the expectation of the l.h.s. of (5.21) tends to zero. By stationarity of increments and Hölder's inequality we have

E 1≤i≤4 a q 0,n,k i ,H ≤ E 1/2 a 2q 0,0,n,H a 2q 0,k 2 -k 1 +1,n,H E 1/2 a 2q 0,0,n,H a 2q 0,k 4 -k 3 +1,n,H .
In addition, by the scaling property, we have that 4q). This and the deterministic bounds on the covariance (5.6) yield that the expectation of the l.h.s. of (5.21) is bounded by

E a 2q 0,0,n,H a 2q 0,k 2 -k 1 +1,n,H = 2 -nζ H (4q) (k 2 -k 1 + 1) ζ H (4q)-2ζ H (2q) C(k 1 , k 2 ) , with C(k 1 , k 2 ) ≤ m H (
L -1 2 -2n 2 n{ψ(4q)-2ψ(q)} 2 n -1 k 1 ,...,k 4 =0 |k 1 -k 2 | 2H-2-(ψ(4q)-2ψ(2q))/2 × |k 3 -k 4 | 2H-2-(ψ(4q)-2ψ(2q))/2 |k 2 -k 3 | 2H-2 |k 1 -k 4 | 2H-2 ≤ CL -1 2 -2n 2 n{ψ(4q)-2ψ(q)} 2 n -1 k 1 ,k 2 =0 |k 1 -k 2 | 2(2H-2) 2 n -1 k=0 k 2H-2-(ψ(4q)-2ψ(2q))/2 2 ≤ CL -1 2 -n 2 n -1 k k 2(2H-2) 2 n{ψ(4q)-2ψ(q)}/2 2 n -1 k=0 k 2H-2-(ψ(4q)-2ψ(2q))/2 2 .
Since H > 3/4, the first series is summable, and since ψ(4q) -2ψ(2q) > 0, the second one is of order n2 n({ψ(4q)-2ψ(2q)}∨(4H-2))/2 (where the factor n only arises if the two exponents are equal). Recalling that ψ(4q) -2ψ(q) < 1 = χ yields (5.21).

• Case j 1 = j 2 = j 3 = j. In this case

|k i -k 4 | = O(2 -n(2H-2) ), i = 1, 2, 3

and by

Hölder's inequality and independence of a j ′ ,k 4 ,n,H and 1≤i≤3 a j,k i ,n,H we have E a q j ′ ,k 4 ,n,H 1≤i≤3 a q j,k i ,n,H = O(2 -nζ(4q)/2 2 -nζ(2q)/2 2 -nζ(q) )|k 2k 3 | (ψ(4q)-2ψ(2q))/2 .

Using again the bound (5.6), we obtain q) ) .

L -2 2 2nτ H (2q) L-1 j=0 L-1 j ′ =0 2 n -1 k 1 ,...,k 4 =1 E 1≤i≤3 a q j,k i ,n,H a q j ′ ,k 4 ,n,H ρ 2 H,n (j, j ′ , k 1 , k 4 )ρ H,n (j, j, k 2 , k 3 )ρ H,n (j, j, k 3 , k 1 )) = O(L -1 2 n(4H-3) 2 -n(ψ(2q)/2-ψ(
(5.22)

As before, 2 n(4H-3) → 0 under H < 3/4 and ψ(2q)/2ψ(q) > 0 by convexity of function ψ.

• Case j 1 = j 2 and j 3 = j 4 . The bound for the expectation of the l.h.s. of (5.20) is then -3) , (5.23) by independence of a q j,n,k 1 ,H and a q j ′ ,n,k 2 ,H whenever j = j ′ . • Case all j i are different. The bound is then -3) . (5.24)

L -2 2 2nτ H (2q) L-1 j,j,j ′ ,j ′ 2 n -1 k 1 ,...,k 4 =1 E[a q j,k 1 ,n,H a q j,k 2 ,n,H a q j ′ ,k 3 ,n,H a q j ′ ,k 4 ,n,H × ρ 2 H,n (j, j ′ , k 1 , k 4 )ρ H,n (j, j, k 1 , k 2 )ρ H,n (j ′ , j ′ , k 3 , k 4 ))] ≤ C2 n(4H
L -2 2 2nτ H (2q) L-1 j 1 ,j 2 ,j 3 ,j 4 2 n -1 k 1 ,...,k 4 =1 E 1≤i≤4 a q j i ,n,k i ,H ρ 2 H,n (j 1 , j 2 , k 1 , k 4 ) × ρ H,n (j 2 , j 3 , k 2 , k 3 )ρ H,n (j 3 , j 4 , k 3 , k 4 )] ≤ C2 n(-2ψ(2q)+4ψ(q)) 2 n(2+χ)(4H
As before, 2 n(2+χ)(4H-3) → 0 under H < 3/4 and we use ψ(2q) > 2ψ(q).

The proof follows by gathering (5.21), (5.22), (5.23) and (5.24).

To prove (A.2), note that P 1 (A) is a coumpond Poisson distribution with negative jumps, thus P 1 (A) < 0 for all A, and for all p ≥ 1,

E[|e qP 1 (A) -1| p ] ≤ 1 -e ψ 1 (q)µ(A) = O(µ(A)) .
Further, write e qP (A) -1 -qP 0 (A) = {e qP 1 (A) -1}e qP 0 (A) + e qP 0 (A) -1 -qP 0 (A) .

(A.4)

This decomposition, (A.2), (A.3) and the independence of P 0 and P 1 yield, for q > 0 and

p ≥ 1, E[|e qP (A) -1 -qP 0 (A)| p ] = O(µ(A)) .
(A.5)

Since P , P 0 and P 1 are independently scattered, these inequalities yield martingale maximal inequalities. For A such that µ(A) ≤ 1, and for C u an increasing sequence of measurable subsets of A, it holds that

E[sup u |P 0 (C u )| p ] = O(µ (p/2)∨1 (A)) , p ≥ 1 , (A.6) E sup u |e qP (Cu) -1| p = O(µ(A) (p/2)∨1 ) , p ≥ 1 , (A.7) E sup u |e qP (Cu) -1 -qP 0 (C u )| p = O(µ(A)) , p ≥ 1 . (A.8)
Approximation and covariance bounds for the MRM Lemma A.1. Let α = 1/n 0 for some arbitrary integer n 0 ≥ 2. For all p > 1 such that E[e pqw l (0) ] < ∞, for any ǫ ′ ∈ (0, p -1), there exists a constant C such that

E 1 0 e qw ln (u) E[e qw ln (0) ] du p ≤ Cl -{ψ(pq)-pψ(q)-ǫ ′ } n . (A.9) E 2 -n 2 n -1 k=0 e qw ln (k2 -n ) E[e qw ln (0) ] p ≤ Cl -{ψ(pq)-pψ(q)-ǫ ′ } n . (A.10)
Proof. The choice of α implies that (1α)n 0 = n 0 -1 is an integer. Denote g n (u) = e qw ln (u) /E[e qw ln (0) ]. Fix some integer k 0 , and define n .11) We bound the first integral by applying Jensen's inequality:

1 = k 0 n 0 . If n 1 < n, then 1 0 g n (u)du = 1 0 g n 1 (u)du + 1 0 {g n (u) -g n 1 (u)}du = 1 0 g n 1 (u)du + 2 (1-α)n 1 -1 k=0 ∆ k,(1-α)n 1 {g n (u) -g n 1 (u)}du . ( A 
E 1 0 g n 1 (u) du p ≤ E[g p n 1 (0)] = 2 (1-α)n 1 {ψ(pq)-pψ(q)} . (A.12)
Since w ln 1 is independent of w lnw ln 1 , we can write

g n (u) -g n 1 (u) = g n 1 (u) e qw ln (u)-qw ln 1 (u)
E[e qw ln (0)-qw ln 1 (0) ] -1

Thus we see that the integrals ∆ j,n 1 {g n (u)-g n 1 (u)} du are centered and 2-dependent conditionally on F n 1 the sigma-field generated by {w ln 1 (u), u ∈ [0, 1]}. Thus by von Bahr and Esseen (1965, Theorem 2), there is a constant C such that

E   2 (1-α)n 1 -1 k=0 ∆ k,(1-α)n 1 {g n (u) -g n 1 (u)} du p   ≤ C2 (1-α)n 1 E ∆ 0,(1-α)n 1 {g n (u) -g n 1 (u)} du p ≤ C2 p-1 2 (1-α)n 1 E ∆ 0,(1-α)n 1 g n (u) du p + C2 p-1 2 (1-α)n 1 E ∆ 0,(1-α)n 1 g n 1 (u) du p ≤ C2 p-1 2 (1-α)n 1 E ∆ 0,(1-α)n 1 g n (u) du p + C2 p-1 2 {1-p+ψ(pq)-pψ(q)}(1-α)n 1 .
Since l n /l n 1 = l n-n 1 , by the scaling property (3.3), we have

∆ 0,(1-α)n 1 e qw ln (u) du = l n 1 1 0 e qw l n-n 1 ln 1 (ln 1 u) du law = l n 1 e qΩ ln 1 1 0 e qw l n-n 1 (u) du .
Thus,

E ∆ 0,(1-α)n 1 g n (u) du p = 2 (1-α)n 1 (ψ(pq)-p) (E[e qw l n-n 1 (0) ]) p (E[e qw ln (0) ]) p E 1 0 g n-n 1 (u) du p = 2 (1-α)n 1 (ψ(pq)-pψ(q)-p) E 1 0 g n-n 1 (u) du p .
See Figure 2 for an illustration. By definition of the function ψ and the measure µ, we have, E[e qP (In) ] = e ψ(q)µ(In) and

µ(I n ) = In ds dt t 2 = 1 ln t -2 -n t 2 dt + ∞ 1 1 -2 -n t 2 dt = -log(l n ) -2 -n (l -1 n -1) + 1 -2 -n = 1 -log(l n ) -2 -αn = µ(A ln (0)) -2 -αn .
This yields w ln (u) = P (I n ) + P (B n (u)) where the two summands are independent and

E[e qP (In) ] = E[e qw ln (0) ]{1 + O(2 -αn )} . (A.16) Write further M(∆ 0,n ) = 2 -n 0 e w ln (u) M n (du) = e P (In) 2 -n 0 e P (Bn(u)) M n (du) = ξ n 2 -n 0 e P (Bn(u))
Mn (du) , with ξ n = e P (In) M n (∆ 0,n ) and Mn (du) = M n (du)/M n (∆ 0,n ) is a random probability measure on ∆ 0,n . We thus obtain M q (∆ 0,n )e qw ln (0) M q n (∆ 0,n ) = ξ q n 2 -n 0 e P (Bn(u)) Mn (du)

q e qP (Bn(0)) .

Noting that for x > -1 and q > 0, it holds that 0 ≤ |1 -(1 + x) q | ≤ C q (|x| + |x| q ) and since P (I n ), M n (∆ 0,n ) and P (B n (u)), 0 ≤ u ≤ 2 -n , are mutually independent, we have

E ξ pq n 2 -n 0 e P (Bn(u)) Mn (du) q -e qP (Bn(0)) p ≤ CE[ξ pq n ]    E sup 0≤u≤2 -n e P (Bn(u)) -1 p(q∨1) q∧1 + E sup 0≤u≤2 -n e P (Bn(u)) -1 p    .
Thus, applying (A.7) yields Lemma A.3. If q + q ′ < q max , then for s, t ∈ (0, 1) such that s + t < 1/2, cov M q ([0, s]), M q ′ ([1t, 1]) = O (s + t) ζ(q)+ζ(q ′ )+1 .

E M q (∆ 0,n ) -e qw ln (0) M q n (∆ 0,n ) p = O(2 -αn(q∧1)/2 )E[ξ pq n ] . l n 1 0 B n (u) I n B n (u) 0 u 2 -n -1 2 u -1 2 1 2 n -1 2 1 2 1 2 + u 1 2 + 1 2 n t t
(A.17)

Proof of Lemma A.3. Define l = 1-s-t and M l (du) = e -w l (u) M(du). By construction, the measure M l is independent of {w l (u)} and M

l ([0, s]) is independent of M l ([1 -t, 1]).
Define the sets A s,t and B s,t by

A s,t = A l (s) \ A l (1 -t) , B s,t = A l (1 -t) \ A l (s) , For u ≤ s and v ≥ 1 -t, define C u,v = A l (u) ∩ A l (v) , D s,u = C s,v \ C u,v , D ′ s,u = A l (u) \ A l (s) E t,u = C u,1-t \ C u,v , E ′ t,v = A l (v) \ A l (1 -t) .
See Figure 3 for an illustration. Note that all these sets are above the horizontal line at level l = 1st, hence P (A) is independent of M l and P (A) is independent of P (B), where A, B are any two of these sets. Note also that ∪ u≤s,v≥1-

1 l = 1 -s -t 0 s s -1 2 1 2 + s 1 2 + u u u -1 2 v v -1 2 v + 1 2 A s,t B s,t C u,v D s,u D ′ s,u E t,v E ′ t,v 1 -t 1 2 -t 3 
t C u,v = C s,1-t , D s,u ⊂ C s,1-t , E t,v ⊂ C s,1-t , D ′ s,u ⊂ D ′ s,0 and E ′ t,v ⊂ E ′ t,1 . We moreover have µ(A s,t ) = µ(B s,t ) = 1 , µ(C s,1-t ) = -log(1 -s -t) , µ(D ′ s,0 ) = s 1 -s -t , µ(E ′ t,1 ) = t 1 -s -t .
Moreover, for u ≤ s and v ≥ 1t, we have the following decompositions:

w l (u) = P (A s,t ) + P (C u,v ) + P (D ′ s,u ) + P (E t,v ) , w l (v) = P (B s,t ) + P (C u,v ) + P (D s,u ) + P (E ′ t,v ) ,
Recall that the random measure P can be split into two independent random measures P 0 and P 1 such that P = P 0 + P 1 . For i = 0, 1 and u ∈ [0, s], define π i,l (u) = P i (D ′ s,u ) + P i (C u,1-t ) and π l (u) = π 0,l (u) + π 1,l (u) .

Lemma A.5. If 4q < q χ , then E[D 4 0,n,q ] = O(n2 -nτ (4q) + 2 -2nτ (2q) ) .

Proof. Let us compute the fourth moment of D 0,n,q . For brevity, let the centered random variables D 0,k,n,q be simply denoted by x k . We have .22) By the scaling property and Lemma A.3, obtain that 2q) .

E[D 4 0,n,q ] = 2 n E[x 4 0 ] + 0≤i =j≤2 n -1 E[x 2 i x 2 j ] + 0≤i =j≤2 n -1 E[x 3 i x j ] + 1≤i,j,k≤2 n #{i,j,k}=3 E[x 2 i x j x k ] + 1≤i,j,k,l≤2 n #{i,j,k,l}=4 E[x i x j x k x l ] . (A
2 nζ(4q) k -ζ(4q) E[x 2 1 x 2 k ] = O k -2ζ(
Since ζ(4q) < 2ζ(2q), this yields

0≤i =j≤2 n -1 E[x 2 i x 2 j ] = O 2 -nτ (4q)
2 n -1 k=0 k ζ(4q)-2ζ(2q)) = O(n2 -nτ (4q) + 2 -2nτ (2q) ) .

Again, by Lemma A.3, we have

2 nζ(4q) k -ζ(4q) E[x 3 1 x k ] = 2 nζ(4q) k -ζ(4q) cov(x 3 1 , x k ) = O k -ζ(3q)-ζ(q)-1 .
By (3.6), if 4q < q χ , then ψ(4q) > 4ψ(3q)/3 and ψ(3q)/3 > ψ(q), so ζ(4q)-ζ(3q)-ζ(q) < 0, 4q) ) .

thus 0≤i =j≤2 n -1 E[x 3 i x j ] = O 2 -nτ (4q) 2 n -1 k=0 k ζ(4q)-ζ(3q)-ζ(q)-1 = O(2 -nτ ( 
We now calculate the fourth term in the expansion (A.22) of E[D 4 0,n,q ]. By stationarity we may assume i = 0 and without loss of generality assume j < k/2. Set y ℓ = D 0,ℓ,log 2 (k),q for ℓ = 1, . . . , k. Then by the scaling property

E[x 2 i x j x k ] = (k/2 n ) ζ(4q) E[y 2 1 y j y k ] .
On the other hand, again by the scaling property, and because E[y j ] = 0, E[y 2 1 y j ] = cov(y 2 1 , y j ) and applying Lemma A. Noting that by convexity of ψ, it holds that 2ψ(q) < ψ(2q), this yields 1≤i,j,k≤2 n #{i,j,k}=3

E[x 2 i x j x k ] = O(2 -2nτ (2q) + n2 -nτ (4q) ) .

For the last term in (A.22) by stationarity set i = 0, and assume j < ℓ < k and moreover that ℓj < k/2. Write E[x i x j x ℓ x k ] = cov(x i x j , x ℓ x k ) + E[y i y j ]E[y ℓ y k ] .

The term cov(y 1 y j , y ℓ y k ) can be shown to be of smaller order than the product of expectations. Thus, applying Lemma A.4, we finally obtain 1≤i,j,k,l≤2 n #{i,j,k,l}=4 q) .

E[x i x j x k x ℓ ] = O 2 -2nτ ( 
Bounds for the MRW, case H > 1/2 Define ãj,k,n,H = e w ln (t j,k ) δj,k,n,H with Then, by the scaling property, we have

2 nζ H (2q) E[U 0,n,0 U 0,n,k ] = k ζ H (2q) cov(U q k , V q k ) -2 τ H (q) (k -1/2) ζ H (2q) cov(U q k , V q 2k ) -2 τ H (q) k ζ H (2q) {cov(U q k , V ′ k q ) -cov(U q 2k , V q k ) + cov(U ′ k q , V q k )} + 2 2τ H (q) (k -1/2) ζ H (2q) {cov(U q 2k , V q 2k ) + cov(U ′ k q , V q 2k )} + 2 2τ H (q) k ζ H (2q) {cov(U q 2k , V ′ k q ) + cov(U ′ k q , V ′ k q )} .
All the covariance terms are of the same order, and we only consider the first one, cov(U q k , V q k ). Denote l = 1 -2/k, define the measure M l (du) = e -w l (u) M(du) and Then we can write U q k = e 2qP (A k ) ζ q k,H + e 2qP (A k ) ζ q k,H αk + e 2qP (A k ) ζ q k,H R k ,

ζ k,H = 1/k 0 1/k 0 |u -v| 2H-2 M l (du)M l (dv) , ξ k,H = 1 1-1/k 1 1-1/k |u -v| 2H-2 M l (du)M l (dv) , A k = A l (1/k) \ A l (1 -1/k) B k = A l (1 -1/k) \ A l (1/k) , Āk (u) = A l (u) \ A k Bk (u) = A l (u) \ B k ,
V q k = e 2qP (B k ) ξ q k,H + e 2qP (B k ) ξ q k,H βk + e 2qP (B k ) ξ q k,H R ′ k ,

with

R k = 1/k 0 1/k 0 |u -v| 2H
-2 e P ( Āk (u))+P ( Āk (v)) Ml (du) Ml (dv)

q -1 -q αk , R ′ k = 1 1-1/k 1 1-1/k
|u -v| 2H-2 e P ( Bk (u))+P ( Bk (v)) M′ l (du) M′ l (dv) q -1q βk . e P ( Āk (u))+P ( Āk (v)) -1π k (u, v) .

Applying now the bounds (A.7) and (A.8) we obtain that

E[U q k ] = e 2ψ(q) E[ζ q k,H ]{1 + O(k -1 )} + qe 2ψ(q) E[ζ q k,H αk ] ,
E[V q k ] = e 2ψ(q) E[ξ q k,H ]{1 + O(k -1 )} + qe 2ψ(q) E[ξ q k,H βk ] ,

E[U q k V q k ] = e 4ψ(q) E[ζ q k,H ]E[ξ q k,H ]{1 + O(k -1 )} + qe 2ψ(q) {E[ξ q k,H ]E[ζ q k,H αk ] + E[ζ q k,h ]E[ξ q k,H βk ]} .

Combining these bounds yields the requested bound for cov(U q k , V q k ) and (A.30).

  3 we haveE[y 2 1 y j ] = O(k -ζ(3q) j ζ(3q)-ζ(2q)-ζ(q)-1 ) . (A.25)By (A.24) and (A.25) we obtain the boundE[x 2 0 x j x k ] = O(2 -nζ(4q) j ζ(3q)-ζ(2q)-ζ(q) k ζ(4q)-ζ(3q)-ζ(q)-1) .

  2H-2 M n (du)M n (dv) and forj 1 = j 2 , ρH (j 1 , j 2 , k, k ′ ) = ∆ (j 1 ) k,n ∆ (j 2 ) k ′ ,n |u -v| 2H-2 M n (du) M n (dv) δ j 1 ,k,n,H δ j 2 ,k,n,H .Lemma A.7. If 2q < q χ , then2 nζ H (2q) |E[U 0,n,0 , U 0,n,k ]| ≤ Ck -{ψ(2q)-2ψ(q)+1} . (A.30)Proof of Lemma A.7. For k ≥ 1, denote 2H-2 M(du)M(dv) .

  π k (u, , v) = P 0 ( Āk (u)) + P 0 ( Āk (v)) , π ′ k (u, , v) = P 0 ( Bk (u)) + P 0 ( Bk (v)) , 2H-2 π k (u, v)M l (du)M l (dv) , 2H-2 π ′ k (u, v)M l (du)M l (dv) .

  Note that P ( Āk (u)), P ( Bk (u)), ζ k and ξ k are mutually independent and by (A.20),|R k | ≤ C sup u,v∈[0,1/k]e P ( Āk (u))+P( Āk (v)) 

  Figure 2. The sets I n and B n (u)
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  Figure 3. The sets A, B, C, D, D ′ , E, E ′
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Appendix A: Additional Lemmas

Bounds for infinitely divisible random measures

We now state some results using the properties of infinitely divisible random measures. The infinitely divisible measure P introduced in Section 3 can be decomposed as P = P 0 + P 1 where P 0 and P 1 are independent and E[e qP i (A) ] = e µ(A)ψ i (q) , with

{e qx -1}ν(dx) .

Note that by Assumption, ψ 0 is infinitely differentiable on [0, ∞), whereas ψ 1 is infinitely differentiable on (0, ∞) only. Then, for A such that µ(A) ≤ 1, q > 0 and p ≥ 1 such that pq < q * , it holds that Indeed, since 0 ≤ e x -1x ≤ x 2 e x + ≤ x 2 (e x + 1), with x + = max(x, 0), we have A) ] = e ψ 0 (s) µ(A). The function L is infinitely differentiable on [0, q * ) and L (n) (q) = O(µ(A)) for all q ≥ 0 and n ≥ 1. This yields (A.1) by the Cauchy-Schwarz inequality. Let n be an integer greater than p. Then, for 0 ≤ q < q * , (A.3) follows from the following bound:

E P 2p 0 (A)e pqP 0 (A) ≤ E P 2 0 (A)e pqP 0 (A) + E P 2n 0 (A)e pqP 0 (A) = L ′′ (pq) + L (2n) (pq) .

Thus we have obtained

. Gathering (A.11), (A.12) and (A.13), we obtain the following recurrence:

By choosing k 0 large enough, this yields that for any ǫ ′ ∈ (0, ǫ),

Thus, there exists a constant D such that u n ≤ D2 (1-α)n(ψ(pq)-pψ(q)-ǫ ′ ) .

This proves (A.9). The bound (A.10) follows by replacing the measure du with a discrete measure.

Lemma A.2. Let 0 < α < 1 and l n = 2 -(1-α)n . For p ≥ 1 and q > 0 such that pq < q χ , there exists a positive constant C such that

Proof. Note that (A.15) implies (A.14). So we only need to prove (A.15). Define the sets

Similarly, for i = 0, 1 and v ∈

Let Ml and M′ l denote the normalized measures M l /M l ([0, s]) and M l /M l ([1t, 1]) and

This yields

Note that ζ l and ξ l are independent and independent of π l and π ′ l which are independent of M l . Thus, ξ l is also independent of γ l and R l , and ζ l is independent of γ ′ l and R ′ l . Also, P (A s,t ) and P (B s,t ) are independent of all the other quantities, and E[e qP (As,t) ] = E[e qP (Bs,t) ] = e ψ(q) . Thus,

We will show that all the terms on the right-hand side are of order (s

. Since π l and π ′ l are independent of the measure M l , using the definition of π l and π ′ l and the fact that the random measure P ′ has independent increments, and E[e P (A) ] = 1 for all measurable set A with finite µ measure, we have

If q > 0, a second order Taylor expansion yields that there exists a constant C q ≥ 1 such that for all x ≥ -1,

Applying (A.20) and Jensen's inequality (since by definition Ml is a probability measure on [0, s]), we obtain, with

Define r ′ l = sup u∈[0,s] |e π l (u) -1| and note that |γ l | ≤ r l and |γ ′ l | ≤ r ′ l . We thus get

Applying (A.7), we obtain, for any h ≥ 2,

Thus finally

The remaining terms in (A.18) and (A.19) are dealt with similarly and we obtain

The previous considerations also yield that

and all the previous bounds finally yield (A.17).

Lemma A.4. If 2q < q max , then for k = 1, . . . , 2 n -1,

Proof of Lemma A.4. By the scaling property, and since E[D 0,k,n,q ] = 0, we have

Applying Lemma A.3, with s and t replaced by k and 2k and q = q ′ , we obtain that each covariance term that appears above is of order k -2ζ(q)-1 , which yields 2 nζ(2q) E[D 0,0,n,q D 0,k,n,q ] = O(k ζ(2q)-2ζ(q)-1 ), and since ζ(2q) -2ζ(q) = 2ψ(q)ψ(2q), the bound (A.21) is proved.

Since E[y k ] = 0, from the definition of D ℓ,log 2 (k),q we may write

where

In the notation of Lemmas A.2 and A.

which by construction are independent of e P (A i ) and e P (C) . Then

where γ l,i and R l,i are independent of ζ l,i , e P (A i ) and e P (C) and satisfy

,1 e qr l (P (A 1 )+P (A 2 )) e qP (A 1 ) ] and K l,2 = E[ζ l,2 e qP (A 3 ) ]. Then, for each of the terms in (A.23)

Adding up all the terms in (A.23) and using

) for all ℓ yields

Lemma A.6. For p ≥ 1 such that 2pq < q χ and for r ≥ 2, there exist η, C > 0 and uniformly bounded constants c q,H (k, k ′ ) such that ] ∼ E[e qw ln (0 ] = e ψ(q) l -ψ(q) n , this implies that E[ δq 0 ] ∼ cl ψ(q) n 2 -nζ H (q) . Next, using the bound |(1 + x) q -1| ≤ C(|x| + |x| q∧1 ) valid for x ≥ 0, we obtain E [|a q 0 a q kξ q 0 ξ q k | p ] ≤ E ξ pq 0 ξ pq k |(R 0 + 1) q/2 (R k + 1) q/2 -1| p ≤ E [ξ pq 0 ξ pq k ] E [|(r 0 + 1) q (r k + 1) q -1| p ] ≤ C2 -ηn E ξ 2pq 0 , for some η > 0. This proves (A.29).