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Abstract

A risk process with constant premium rate c and Poisson arrivals of
claims is considered. A threshold r is defined for claim interarrival times,
such that if k consecutive interarrival times are larger than r, then the
next claim has distribution G. Otherwise, the claim size distribution is F .
Asymptotic expressions for the infinite horizon ruin probabilities are given
for both light- and the heavy-tailed cases. A basic observation is that the
process regenerates at each G-claim. Also an approach via Markov addi-
tive processes is outlined, and heuristics are given for the distribution of
the time to ruin.

Keywords: Ruin theory; Subexponential distribution; Large deviations;
Markov additive process; Finite horizon ruin

1 Introduction

In a recent paper, Biard, Lefevre, Loisel & Nagaraja [9] considered risk processes
with constant premium inflow at rate c, claims arriving according to a Poisson(λ)
process N and a certain dependence between claim interarrival times and claims.
That is, the claim surplus process S ([5, p. 1]) is given by

S(t) =
N(t)∑
i=1

Ui − ct , (1.1)

where a claim Ui arriving at time t has a distribution depending on {N(s)}s≤t.
In one model of [9], a threshold r is defined for claim interarrival times,

such that if k consecutive interarrival times are larger than r, then the claim
has distribution G. Otherwise, the claim size distribution is F . A motivating
example in [9] is situations where claims are generated by earthquakes. More
precisely, a ‘claim’ is to be understood as the aggregation of the many individual
claims caused by the earthquake. The size of a claim is then positively correlated
to the size of the earthquake, and one expects an earthquake to be the more
severe the fewer earthquakes have recently occurred so that a G-claim should
be larger than an F -claim in some appropriate sense (see Section 8 for some
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more detailed motivating discussion). Another model in [9] has flooding as a
motivating example. Here a close succession of claims is expected to be followed
by a more important catastrophe. For more details on the model, see [9] and
Section 8. We focus here on the first model, since the treatment of the second is
largely very similar (see again the discussion in Section 8). We also take k = 2
for simplicity; the needed extensions to k > 2 are outlined, and note also that
even the case k = 1 is non-trivial (but of course simpler than k ≥ 2).

The results of [9] are asymptotic relations for finite horizon ruin probabilities
ψ(u, T ) when u is large and T is fixed. The present paper complements these
results by giving the asymptotics for the infinite horizon ruin probability ψ(u)
with initial reserve u as u→∞. We also heuristically look into the time τ(u) of
ruin, identify the most likely deterministic time when ruin occurs, which leads
to expansions for the finite horizon ruin probability ψ(u, T ) when both u and T
are large. Here

τ(u) = inf
{
t > 0 : S(t) > u

}
, ψ(u) = P

(
τ(u) <∞

)
, ψ(u, T ) = P

(
τ(u) ≤ T

)
.

Whereas these topics are more mainstream ruin theory than [9], we also need a
restriction: it is assumed that all claim sizes are independent. Note, however,
that some of the dependence modeling in [9] does not easily generalize to an
infinite horizon setting.

Our basic point of view is that of regenerative processes, [4, Ch. VI]. The
process regenerates at a G-claim in the sense that the process forgets about the
preceding large claims. Before the next G-claim can occur, it has to wait until
k long (short) interarrival times have occured. See Section 2 for formalities.
Asmussen, Schmidli & Schmidt [7] used such a structure to get ruin probability
asymptotics in some non-standard risk processes with heavy tails (regeneration
is also used in Foss & Zachary [16] and in Schmidli [21] but in [21] at process
levels rather than time instants).

The regenerative set-up is presented in Section 2, with a key calculation
(of the mean cycle length) given in Section 3. The first application to the
present model is presented in Section 4, where we show that the classical heavy-
tailed asymptotics for the ruin probability ψ(u) as u → ∞ holds here as well.
Section 5 deals with light tails. Using large deviations techniques from Glynn &
Whitt [17] and Duffield & O’Connell [12], we show that the first order decay of
ψ(u) is exponential and we identify the rate γ (the adjustment coefficient). Also
here the details use the regenerative structure. Section 6 presents an alternative
point of view, to view the process as a Markov-modulated risk process where
the modulating process is the relevant information on the last two interarrival
intervals. This point of view, though not fully exploited here, has the potential of
giving stronger results than the large deviations approach, and we demonstrate
this by deriving a proper Cramér-Lundberg approximation ψ(u) ∼ Ce−γu. ln
Section 7, we then (in part heuristically) derive the conditional distribution of
the ruin time given that ruin occurs. Finally Section 8 contains a number of
concluding remarks, and in Appendices A–D, we give the details of some of the
longer technical calculations.

2 Preliminaries

We recall the basic regenerative set-up of [7]:
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Assumption 2.1 There exist random times ω0 = 0, ω1, ω2, . . . such that the
post-ωk process

{
S(t + ωk) − S(ωk)

}
t≥0

is independent of the pre-ωk process{
S(t)

}
0≤t≤ωk

and its distribution does not depend on k.

In our setting, ω1, ω2, . . . are the times of G-claims. Except for independence
of
{
S(t+ ω1)− S(ω1)

}
t≥0

, we will typically not need strong conditions on the
distribution of the initial cycle

{
S(t)}0≤t<ω1 . However, some weak technical

conditions are given in the respective theorems. When ω1 = 0, we write P0,E0.
We often use notation like P(ω ≤ x) instead of P0(ω2 ≤ x). Define further

M∗k = sup
ωk≤t<ωk+1

(
S(t)− S(ωk)

)
, S∗k = S(ωk+1) , m∗ =

∣∣E0S
∗
1

∣∣ =
∣∣ES(ω)

∣∣ .
Under Assumption 2.1, M1,M2, . . . are i.i.d. and the S∗k − S∗1 form a random
walk. A basic assumption of [7] is (note that trivially P0(S∗1 > x) ≤ P0(M∗1 >
x)):

Assumption 2.2 P0(S∗1 > x) ∼ P0(M∗1 > x), x→∞.

Then ([7]; for background on subexponential distributions, see, e.g., [13], [5,
X.1] or [14]):

Theorem 2.3 Assume in addition to Assumptions 2.1 and 2.2 that E0S
∗
1 < 0,

that both H(x) = P0(S∗1 > x) and the integrated tail HI(x) =
∫∞
x
H(y) dy are

subexponential tails, and that P(M∗0 > x) = o
(
HI(x)). Then ψ(u) ∼ 1

m∗
HI(u),

u→∞.

3 The mean cycle length

As usual when applying regenerative processes, a main step is computation of
the mean cycle length µ = Eω = E0ω2. To this end, let V denote the generic
claim interarrival time and define

p+ = P(V > r) = e−λr , p− = P(V ≤ r) = 1− e−λr , (3.1)

m+ = E[V |V > r] =
1
p+

∫ ∞
r

xλe−λx dx = r +
1
λ
, (3.2)

m− = E[V |V ≤ r] =
1
p−

∫ r

0

xλe−λx dx =
1
λ
− re−λr

1− e−λr
. (3.3)

Recall that a cycle starts just after a G-claim and ends at the next. A cycle is
initiated by K short claims where K is geometric, P(K = k) = p−

kp+; this part
ω(1) of the cycle has mean (p−/p+)m−. After that comes a long part ω(2) with
mean m+. For the final part ω(3), two possibilities occur: The next interarrival
time is long and the cycle terminates. This gives an additional contribution to
the mean of p+m+. The second possibility is that the next interarrival time is
short and the cycle starts afresh after that. Putting things together gives

µ =
p−
p+
m− +m+ + p+m+ + p−(m− + µ)

so that we have shown
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Theorem 3.1 The mean cycle length µ = Eω = E0ω2 is given by

µ =
1
p+

[p−
p+
m− +m+ + p+m+ + p−m−

]
=

1
p+

[
(1 +

1
p+

)(p+m+ + p−m−)
]

=
1
λ

1 + p+

p+
2

=
1
λ

eλr(1 + eλr) . (3.4)

4 Heavy tails and regeneration

Having computed µ, the criterion for stability follows easily. Let mF ,mG denote
the means of F , resp. G.

Corollary 4.1 Define η = 1 − (λµ− 1)mF +mG

cµ
. If η > 0, then ψ(u) < 1

for all u, whereas ψ(u) ≡ 1 if η ≤ 0.

Proof. Let M denote the number of claims in a cycle. By regenerative process
theory, λ = EM/µ and limt→∞ S(t)/t exists and equals ES(ω)/µ. But

ES(ω) = E(M − 1)mF +mG − cµ = (λµ− 1)mF +mG − cµ . (4.1)

Thus limS(t)/t is < 0 for η > 0 and > 0 for η < 0, which immediately gives
the conclusion. If η = 0, we need in addition to remark that S(ω1), S(ω2), . . . is
a mean zero random walk. Hence lim supk S(ωk) =∞ so that τ(u) <∞ for all
u. 2

Note that, as the proof reveals, η plays the role of the safety loading (the relative
amount by which the premium rate c exceeds the expected inflow of claims), cf.
[5, p. 3]. In the following, it is throughout assumed that η > 0.

We now turn attention to our main result for the heavy-tailed case. We will
not necessarily make the assumption, founded in the earthquake interpretation,
that G has a heavier tail than F but instead:

Assumption 4.2 There exists a distribution K on [0,∞) such that both K and
the integrated tail KI are subexponential, and that

F (x) ∼ cFK(x) , G(x) ∼ cGK(x) , x→∞,

where cF + cG > 0.

The easy consequence of Assumption 4.2 is

Proposition 4.3 Let A =
∑M

1 Ui denote the total accumulated claims in a
cycle. Then P(A > x) ∼ dK(x), where d = E(M − 1)cF + cG.

Proof. By general results on sums of a light-tailed number of subexponential
r.v.’s ([5, p. 302]), we have P

(∑M−1
1 Ui > x

)
∼ E(M −1)cFK(x). Since UM has

tail cGK(x) and is independent of U1, . . . , UM−1, a general convolution result
([5, pp.297–8]) completes the proof. 2

From e.g. [14], subexponentiality of a distribution L implies that there exists
a non-decreasing function δ with δ(x)→∞ as x→∞, such that

L
(
x± δ(x)

)
∼ L(x) as x→∞ . (4.2)
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Lemma 4.4 Let A ≥ 0 be a r.v. with subexponential distribution L and ω ≥ 0
a (not necessarily independent) light-tailed r.v.. Then P(A − ω > x) ∼ L(x)
provided δ(·) in (4.2) can be chosen with e−gδ(x) = o

(
L(x)

)
for all g > 0.

Proof. Write

P(A− ω > x) = P
(
A− ω > x, ω ≤ δ(x)

)
+ P

(
A− ω > x, ω > δ(x)

)
.

Since ω has finite exponential moments, we have, for some constant γ > 0,

P
(
A− ω > x, ω > δ(x)

)
≤ P

(
ω > δ(x)

)
≤ e−γδ(x) = o

(
L(x)

)
. (4.3)

Moreover,

P
(
A− ω > x, ω ≤ δ(x)

)
≤ P(A > x) = L(x) ,

P
(
A− ω > x, ω ≤ δ(x)

)
≥ P

(
A− δ(x) > x, ω ≤ δ(x)

)
= P

(
A− δ(x) > x

)
− P

(
A− δ(x) > x, ω > δ(x)

)
∼ L(x)− o

(
L(x)

)
.

Putting these estimates together completes the proof. 2

Here is then our main result on the heavy-tailed case:

Theorem 4.5 Assume in addition to Assumption 4.2 that e−gδ(x) = o
(
KI(x)

)
for all g > 0, and that P(M∗0 > x) = o

(
GI(x)

)
. Then

ψ(u) ∼ d

ηcµ
LI(u) , u→∞. (4.4)

Proof. Define S∗ = S(ω), M∗ = supt≤ω S(t). Then

P(A > x) ∼ dK(x) , (4.5)
P(S∗ > x) ∼ dK(x) , (4.6)

P(M∗ > x) ∼ dK(x) (4.7)

as x → ∞, from which the result follows from Theorem 3.1, using (4.1) to
identify the constant

∣∣ES(ω)
∣∣ in front of dK(u). Indeed, (4.5) is just Proposi-

tion 4.3, (4.6) then follows from S∗ = A− cω and Lemma 4.4, and (4.6) is then
a consequence of S∗ ≤M∗ ≤ A. 2

Remark 4.6 The condition e−gδ(x) = o
(
L(x)

)
for all x holds for L regularly

varying (take h(x) = f log x with f sufficiently large), the lognormal distribution
(h(x) = x/ log2 x) and the heavy-tailed Weibull with L(x) = e−x

β

with β < 1/2
(h(x) = x1−β∗ with β < β∗ < 1). Thus, the condition covers most standard
heavy-tailed distributions except the ones closest to the light-tailed case. Since
with independent A,ω with A subexponential, A and A − ω always have the
same tail ([5, p. 306]), one could believe that the condition is just technical.
However, in Appendix D we show it is not.

However, whereas the approach taken here departs from the general discus-
sion in Lemma 4.4, we can in fact prove Theorem 4.5 without the condition by
using the special structure for our problem. We have taken here the point of
view that the general discussion is of more interest. 2
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5 Light tails and regeneration

We now assume both G and F are light-tailed and write F̂ [·] for the m.g.f. of
F and Ĝ[·] for the m.g.f. of G. To obtain the first order asymptotics of the ruin
probability ψ(u) as u→∞, the theory of large deviations ([5, XIII.1]) suggests
that we first establish that in a suitable α-range,

1
t

log EeαS(t) → κ(α) (5.1)

for some function κ. If κ(γ) = 0 for some γ > 0, it then holds under weak
additional conditions that ψ(u) is of rough order e−γu in the sense that

1
u

logψ(u) → −γ . (5.2)

The precise additional conditions are in Glynn & Whitt [17] and Duffield &
O’Connell [12]. Note that the set-up of [17] is discrete time, whereas we here, as
in [12], have a continuous-time problem. The conditions of [12] are somewhat
more technical to verify than those of [17], but luckily, the path structure (1.1)
essentially reduces the problem to discrete time; see Section 7.2 for details.
Thus, we will omit the easy verification of conditions of [17] beyond (5.1) and
the existence of γ.

We proceed in two steps, of which the first is:

Proposition 5.1 ϕ(α, β) = E
[
eαS(ω)eβω

]
is given by

ϕ(α, β) =
g(α, β)2F̂ [α]Ĝ[α]

1− k(α, β)F̂ [α]
[
1 + g(α, β)F̂ [α]

] , (5.3)

where

g(α, β) =
λ

λ+ cα− β
e(β−cα−λ)r ,

k(α, β) =
λ

λ+ cα− β
[
1− e(β−cα−λ)r

]
.

Proof. The argument is similar to the one for (3.4), though more elaborate. We
will need the formulas

Â+[α] = E[eαV |V > r] =
λ

λ− α
eαr , (5.4)

Â−[α] = E[eαV |V ≤ r] =
λ

λ− α

(1− e−(λ−α)r

1− e−λr
)
. (5.5)

Let S#
1 = S(ω(1)), S#

2 = S(ω(1) +ω(2))−S(ω(1)), S#
3 = S(ω(1) +ω(2) +ω(3))−

S(ω(1) + ω(2)) with ω(1), ω(2), ω(3) as in Section 3. Then

ϕ(α, β) =
3∏
i=1

E
[
eαS

#
i eβω

(i)]
.

The easy case is i = 2 where we can write S#
2 = UF − cV +, ω(2) = V + where

UF has distribution F and V + the conditional distribution of V given V > r.
This gives

E
[
eαS

#
2 eβω

(2)]
= F̂ [α]Â+[β − cα] .
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For i = 3, considering the same two possibilities as for the mean gives by a
similar sample path representation the expression

p+Ĝ[α]Â+[β − cα] + p−Â
−[β − cα]F̂ [α]ϕ(α, β)

for E
[
eαS

#
3 eβω

(3)]
. Finally, E

[
eαS

#
1 eβω

(1)]
is given by

E
[
F̂ [α]KÂ−[β − cα]K

]
=

p+

1− p−F̂ [α]Â−[β − cα]
.

Putting things together proves the proposition. 2

To obtain (5.1) from (5.3), we use renewal theory. Let Z(t) = E0eαS(t).
Conditioning on ω then yields the renewal equation

Z(t) = E
[
eαS(t); ω > t

]
+
∫ t

0

Z(t− y)E
[
eαS(ω); ω ∈ dy

]
. (5.6)

Choose κ = κ(α) as the solution of

1 = ϕ(α, κ) =
∫ ∞

0

e−κyE
[
eαS(ω); ω ∈ dy

]
. (5.7)

Then by standard renewal theory, e−κ(α)tZ(t) has limit∫ ∞
0

e−κ(α)vE
[
eαS(v); ω > v

]
dv
/∫ ∞

0

ve−κ(α)vE
[
eαS(v); ω ∈ dv

]
(5.8)

as t → ∞. This implies (5.1). Taking γ > 0 as solution of κ(γ) = 0 gives the
ruin probability approximation (5.2) in the zero-delayed case. Putting things
together and involving the further technical conditions of [17] gives:

Theorem 5.2 Assume there exists γ > 0 such that (5.1) holds in a neighbor-
hood of γ, that κ(γ) = 0 and that P(M∗0 > x) = o(e−γx). Then (5.2) holds.

6 The Markov additive point of view

The large deviations approach of Section 5 is quick and applicable to more
general models, but also somewhat imprecise by only giving logarithmic asymp-
totics. In this section, we outline how a Markov additive point of view ([5,
III.4, VI.3b, VII, IX.5] can lead to more precise asymptotics, in particular a
Cramér-Lundberg approximation of the form ψ(u) ∼ Ce−γu.

A special case of a Markov additive model for the claim surplus process S
is the Markov-modulated Cramér-Lundberg model. It asserts that there is a
driving background Markov process J with state space E, such that the claim
arrival intensity is λi when J(t) = i and the claim size distribution is Fi. Cf.
[5, III.4, Ch. VII]. This covers the model of the present paper as will next be
explained.

The relevant background information for our Poisson gap generated risk
process at time t is at a first sight (b, a) where a is the time since the last
arrival and b is the length of the previous interarrival interval. However, this
description is somewhat redundant since what matters is really comparisons of
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b, a to the threshold length r. Accordingly, we define J(t) = −, a if b, a ≤ r,
J(t) = −,+ if b ≤ r, a > r, J(t) = +, a if b > r, a ≤ r and J(t) = +,+ if
a, b > r. Thus, the state space of J is

E = {−} × [0, r] ∪ {−,+} ∪ {+} × [0, r] ∪ {+,+}

and λi ≡ λ, Fi = G when i = +,+, Fi = F for all other i ∈ E. Note that
after a G-claim, J is reset to −, 0. An important point is that E is uncountable,
which presents a complication compared to the most studied finite case, cf. [5,
Ch. VII].

For the analysis, we proceed according to the program outlined for the in-
finite case in [5, Remark III.4.8 p. 58] (the examples treated in [5] are periodic
environment in VII.6 and the renewal risk processes in VI.3b). For a fixed θ,
we need to determine κ(θ) and hθ : E → (0,∞) such that

EieθS(t) ∼ etκ(θ)hθ(i) , t→∞, (6.1)

where Ei refers to the case J(0) = i. Noting that J(0) = −, 0 corresponds to
the zero-delayed regenerative case, we know from Section 5 that this holds for
i = −, 0 with the same κ(θ) as computed there and hθ(−, 0) given by (5.8). For
a general i, we have

EieθS(t) =
∫ t

0

Ei
[
eθS(ω1); ω1 ∈ ds

]
E−,0eθS(t−s) + Ei

[
eθS(t); ω1 > t] .

Letting t → ∞, the second term vanishes, and using (6.1) with i = −, 0 gives
(6.1) for a general i with

hθ(i) = EieθS(ω1)−κ(θ)ω1 . (6.2)

Here, as will be shown in Appendix C, we have with g, h as in Proposition 5.1
and with

g(a)(α, β) =
λ

λ+ cα− β
e(β−cα−λ)(r−a) ,

k(a)(α, β) =
λ

λ+ cα− β

(
1− e(β−cα−λ)(r−a)

)
,

that

hθ(−, 0) =
g(θ,−κ(θ))2F̂ [θ]Ĝ[θ]

1− k(θ,−κ(θ))F̂ [θ]
(

1 + g(θ,−κ(θ))F̂ [θ]
) , (6.3)

hθ(+,+) =
λ

λ+ cθ + κ(θ)
Ĝ[θ] , (6.4)

hθ(+, a) =
k(a)(θ,−κ(θ))g(θ,−κ(θ))2F̂ [θ]2Ĝ[θ]

1− k(θ,−κ(θ))F̂ [θ]
(

1 + g(θ,−κ(θ))F̂ [θ]
) + g(a)(θ,−κ(θ))Ĝ[θ] , (6.5)

hθ(−,+) =
λ

λ+ cθ + κ(θ)

g(θ,−κ(θ))F̂ [θ]Ĝ[θ]
(

1− k(θ,−κ(θ))F̂ [θ]
)

1− k(θ,−κ(θ))F̂ [θ]
(

1 + g(θ,−κ(θ))F̂ [θ]
) , (6.6)

hθ(−, a) =
g(θ,−κ(θ))F̂ [θ]Ĝ[θ]

1− k
(
θ,−κ(θ)

)
F̂ [θ]

(
1 + g

(
θ,−κ(θ)

)
F̂ [θ]

){k(a)(θ,−κ(θ))g(θ,−κ(θ))F̂ [θ]

+ g(a)
(
θ,−κ(θ)

)
Ĝ[θ]

(
1− k

(
θ,−κ(θ)

)
F̂ [θ]

)}
. (6.7)
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From [5, Remark III.4.8 p. 58], we now have the representation

ψi(u) = e−γuhγ(i)Ẽi
[
e−γξ(u)/hγ

(
J(τ(u))

)]
, (6.8)

where ψi(u) = Pi
(
τ(u) < ∞

)
, ξ(u) = S

(
τ(u)

)
− u and Ẽ refers to a suitably

exponentially tilted probability measure. Now the process
{(
ξ(u), J(τ(u))

)}
u>0

is regenerative (say, regeneration occurs at u-values with ξ(u) = 0, J(τ(u)) =
+,+). Hence a limit

(
ξ(∞), J∗(∞)

)
in distribution exists and is independent

of i, and (6.8) gives:

Theorem 6.1 In the light-tailed case,

ψi(u) ∼ e−γuhγ(i)C , (6.9)

where C = E
[
e−γξ(∞)/hγ

(
J∗(∞)

)]
.

We note that whereas hγ(i) is explicitly computable for all i, this is hardly
the case for C (even in the finite case, the evaluation leads into ladder height
problems with no explicit solution). The Markov additive point of view in the
heavy-tailed case is exploited in Foss & Zachary [16], and in fact, Theorem 4.5
can be derived from that paper. However, the details are hardly shorter than
the present proof via [7].

7 The time to ruin

Let P(u) denote the conditional distribution given τ(u) < ∞. Our goal here is
to determine the asymptotic form of the P(u)-distribution of the ruin time τ(u).
Once this has been obtained, asymptotic expansions of the finite horizon ruin
probabilities follow from

ψ(u, T ) = ψ(u)P(u)
(
τ(u) ≤ T

)
,

but we shall not spell out the easy details.

7.1 The heavy-tailed case

We here state a result that we strongly believe to be true, with a sketch (but
only sketch!) of proof. Results of this type have their origin in Asmussen &
Klüppelberg [6]). The setting is that of the general regenerative structure in
Section 2. which, of course, covers our Poisson gap model as a special case .
We will need the mean excess function e(x) of H given by e(x) = HI(x)/H(x).
There are two main cases (cf. [5, pp. 300–301]):

(a) H is a regularly varying tail with index α > 1, i.e. H(x) = L(x)/xα with L
slowly varying at +∞. Then HI(x) ∼ L(x)/xα−1(α− 1), e(x) ∼ x/(α− 1) and
H
(
x+we(x)

)
∼ H(x)P(W > w) where W is Pareto with mean 1 and the same

α, i.e. with tail
(
1 + w/(α− 1)

)−α;

(b) e(x) is self-neglecting in the sense that for all y, e
(
x + ye(x)

)
/e(x) → 1 as

x→∞. Then H
(
x+we(x)

)
∼ H(x)P(W > w) where W is standard exponen-

tial.
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Note that the self-neglecting property holds in standard examples of subexpo-
nential distributions with lighter tails than regularly varying, say the lognormal
or the DFR Weibull. For further discussion and background, see [6], [8], [20].

Recall that m∗ =
∣∣ES(ω)

∣∣.
Conjecture 7.1 In addition to the conditions of Theorem 2.3, assume that
either (a) or (b) holds and that E0[ω2 |M∗2 > x] = o

(
e(x)

)
. Then τ(u)/e(u) →

Wµ/m∗ in P(u)-distribution

Proof. It is contained in the proof of [7] that ψ(u) ∼ P(M∗ > u) = P(τ∗(u) <∞)
where M∗ = sup(S∗, S∗2 , . . .), τ

∗(u) = inf{k : S∗k > u}. It follows (using more
general results by Foss, Palmowski & Zachary [15] in the first step) that

P
(
τ∗(u) ≤ ae(u)

)
∼

ae(u)∑
k=1

H(km∗ + u) ∼
∫ ae(u)

0

H(zm∗ + u) dz

=
[
HI(u)−HI

(
u+ am∗e(u)

)]
/m∗

=
[
H(u)e(u)−H

(
u+ am∗e(u)

)
e
(
u+ am∗e(u)

)]
/m∗ .(7.1)

In case (a), the asymptotics of [·] is

L(u)
uα
· u

α− 1
−
L
(
u+ am∗u/(α− 1)

)(
u+ am∗e(u)

)α · u+ am∗u/(α− 1)
α− 1

∼ L(u)
uα
· u

α− 1
− L(u)(

u+ am∗u/(α− 1)
)α · u+ am∗u/(α− 1)

α− 1

=
L(u)

(α− 1)uα−1

[
1− 1(

1 + am∗/(α− 1)
)α−1

]
= HI(u)P(W/m∗ ≤ a) .

It is further strongly suggested by the proof of [7] that cycles prior to the one
with ruin are ‘typical’ and so should have approximate mean µ. Thus one
expects that (recall the assumption E0[ω2 |M∗2 > x] = o

(
e(x)

)
)

τ(u) ≈ (τ∗(u)− 1)µ + E0

[
ω2 |M∗2 > u

]
≈ τ∗(u)µ

on the set where τ(u) <∞. Therefore, by Theorem 2.3,

P(u)
(
τ(u)/e(u) ≤ b

)
=

P
(
µτ(u)/e(u ≤ b

)
ψ(u)

≈ HI(u)P(µW/m∗ ≤ b)/m∗

HI(u)/m∗
= P(µW/m∗ ≤ b) ,

showing the claim in case (a).
In case (b) the asymptotics of (7.1) is[
H(u)e(u)−H

(
u+ am∗e(u)

)
e(u)

]
/m∗ ∼ HI(u)

[
1− P(W/m∗ > a)

]
/m∗ .

Now just proceed as in case (a). 2
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7.2 The light-tailed case

With light tails, we have

Proposition 7.2 For each δ > 0,
1
u

log P
(∣∣∣τ(u)

u
− 1
κ′(γ)

∣∣∣ ≤ δ) → −γ .

Proof. A discrete time version of the results is in Glynn & Whitt [17] (see
also [5, p. 404]), but is less explicit in the continuous-time setting of Duffield
& O’Connell [12]. However, with the path structure (1.1) the continuous-time
version is easily derived from the discrete-time one. Let τ0(u) = inf{n ∈ N :
S(n) > u}. Then clearly τ(u) ≤ τ0(u), whereas (1.1) implies τ0(u−c) ≤ τ(u)+1.
Further, by [17],

1
u

log P
(∣∣∣τ0(u)

u
− 1
κ′(γ)

∣∣∣ ≤ δ) → −γ , (7.2)

which together with (5.2) gives

1
u

log P
(∣∣∣τ0(u)

u
− 1
κ′(γ)

∣∣∣ > δ, τ0(u) <∞
)
→ 0 . (7.3)

Now write

P
(∣∣∣τ(u)

u
− 1
κ′(γ)

∣∣∣ ≤ δ) (7.4)

= P
(τ(u)

u
− 1
κ′(γ)

≤ δ
)
− P

(τ(u)
u
− 1
κ′(γ)

< −δ
)
. (7.5)

Recalling τ(u) ≤ τ0(u), the first term in (7.5) can be rewritten as

P
(τ0(u)

u
− 1
κ′(γ)

≤ δ
)

+ P
(τ0(u)

u
− 1
κ′(γ)

> δ,
τ(u)
u
− 1
κ′(γ)

≤ δ
)
.

Using (7.2), (7.3) shows that the first term dominates the second in the loga-
rithmic sense. Similarly, the second term in (7.5) can be rewritten as

P
(τ0(u)

u
− 1
κ′(γ)

< −δ
)
− P

(τ0(u)
u
− 1
κ′(γ)

> −δ, τ(u)
u
− 1
κ′(γ)

< −δ
)
.

Recalling τ0(u− c) ≤ τ(u) + 1, the second term can be bounded by

P
(τ0(u− c)− 1

u
− 1
κ′(γ)

≤ −δ
)

= P
(τ0(u− c)

u− c
− 1
κ′(γ)

≤ −δ u

u− c
+

1 + c/κ′(γ)
u− c

)
,

which is at most

P
(τ0(u− c)

u− c
− 1
κ′(γ)

≤ −δ/2
)

for large u. Collecting terms shows that the logarithmic order of (7.4) is the
same as that of

P
(∣∣∣τ0(u)

u
− 1
κ′(γ)

∣∣∣ ≤ δ) .
Using (7.2) completes the proof. 2

For discussion of Proposition 7.2, see Section 8.
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8 Remarks and extensions

1. Of further recent studies of risk models with dependence between claim
sizes and interarrival times, we mention in particular Albrecher & Boxma [2],
Boudreault, Cossette, Landriault & Marceau [10], Asimit & Badescu [3]
and Li, Tang & Wu [19]. A survey of different types of risk models with
dependence and references is in [5, Ch. XIII].

2. One main direction in earthquake modeling is stress release models where
for a stochastic process X, X(t) represents the seismic pressure at time
t. Between eartquakes, X increases (say linearly) and a downward jump
(earthquake) occurs (say) at a rate λ(x) depending on the current level
X(t) = x of the seismic pressure. Clearly, the jump size should be stochas-
tically increasing in x, which in turn is increasing in the time since the last
jump. This suggests that the size of earthquake should be stochastically
increasing in the time since the last earthquake and, more generally, in
the next-to-last interarrival times and the previous ones. This thereby
also motivates our model, even only as an approximation.
For a general impression of the above type of earthquake modeling, we
refer to the section ‘Models and statistics in seismology’ in the volume [11]
(here also statistical justifications can be found).

3. In Biard, Lefevre, Loisel & Nagaraja [9], a flooding model is also consid-
ered which has a regenerative structure as well. The difference between
the two models is the cycle structure. In the earthquake model the process
regenerates at a G-claim, so after a sequence of k successive interarrival
times larger than r. In the flooding model, the process regenerates after a
sequence of at least k successive interarrival times smaller than r followed
by one larger than r.
To substantiate the claim made in Section 1 that the regenerative analysis
carries over to this case, we will as an example derive the mean cycle length
for also k = 2. Let ω be the cycle length and µ its mean. A cycle is initiated
by K long interarrival times where K is geometric, P(K = k) = p+

kp−;
this part ω(1) of the cycle has mean (p+/p−)m+. After that comes a short
part ω(2) with mean m−. For the final part ω(3), two possibilities occur:
The next interarrival time is short and the cycle terminates after K

′
short

interarrival times where K
′

is geometric plus one other long time. This
gives an additional contribution to the mean of p−(m− + p−

p+
m− + m+).

The second possibility is that the next interarrival time is long and the
cycle starts afresh after that. Putting things together gives

µ =
p+

p−
m+ +m− + p−

(
m− +

p−
p+
m− +m+

)
+ p+(m+ + µ)

so that

µ =
1
p−

[p+

p−
m+ +m− + p−

(
m− +

p−
p+
m− +m+

)
+ p+m+

]
=

1
p−

[ 1
p−
m+ +

1
p+
m−

]
=

1
p+p−2

1
λ

=
1
λ

e3λr

(1− eλr)2
.
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4. In the earthquake interpretation of the model, one could argue that an
earthquake triggers not only a single claim but a whole cascade due to
the effects of afterquakes. This is conveniently modeled by a shot-noise
process with the same characteristics of the primary process of initiation
of cascades as in this paper. Many of our conclusions carry over in an easy
matter to this case. The basic fact is that replacing cascades by a single
claim of the time of initiation changes neither the exact asymptotics in
the heavy-tailed case nor the logarithmic asymptotics in the light-tailed
case, cf. Albrecher & Asmussen [1].

5. As the two previous items suggest, the techniques of the paper carry far
beyond our specific model, so that in a wider perspective, one could view
the paper as a case study in regenerative methods.

6. A different approach to the heavy-tailed case is reduced load equivalence,
which is a way to formalize the frequently occuring phenomenon that if a
risk process S′ with heavy tails is perturbed by a process S′′ with drift zero
and lighter tails, then the ruin probability asymptotics for S = S′ + S′′

remains the same as for S′. See for example Jelenković, Momcilović &
Zwart [18]. In our setting, S′′ consists of the centered F -claims,

S′′(t) =
N(t)∑
i=1

UFi −
m∗ −mG

µ
t

where UFi = Ui if the ith claim is an F -claim and UFi = 0 if it is a G-
claim, and S′ is the renewal risk model with interarrival times distributed
as ω, claim size distribution G, and premium rate c′ = mG/µ. However,
verification of the technical conditions of [18] is messy, and one should also
note that the results obtained in this way only cover so-called square-root
insensitivity, excluding for example that G(x) = e−x

β

with 1/2 < β < 1.

7. The analysis of Section 4 easily generalizes to the renewal model, where the
time between claims is not necessarily exponential but follows a general
distribution. Since one of us has repeatedly questioned how worthwhile
such a generalization is (e.g. [5, pp. 12, 152–153]), we have chosen not to
give the details!

8. Proposition 7.2 strongly suggests that, as in many other risk models, the
most likely time of ruin is u/κ′(γ). However, because of the logarithmic
form the result is not entirely satisfying. For example, it does not exclude
that

P(u)
(∣∣∣τ(u)

u
− 1
κ′(γ)

∣∣∣ ≤ δ) → 0 . (8.1)

Classical theory ([5, V.4]) suggests that

τ(u)− u/κ′(γ)[
uκ′′(γ)/κ′(γ)3

]1/2
has a standard normal limit in P(u)-distribution, which shows that the
limit in (8.1) is 1 as one would expect. A rigorous verification of this
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CLT could, e.g., proceed via the Markov additive approach but requires
several steps which are easy for a finite Markov additive process but at
best tedious in the general case. First one needs to identify the evolvement
of the process under the γ-tilted distribution P̃, next to derive a CLT for
S under P̃ and finally to justify an application of Anscombe’s theorem
together with Stam’s lemma.

A Regenerative calculations for k > 2

Now, let us prove that for k ≥ 2,

µ(k) =
eλr

λ

eλkr − 1
eλr − 1

, (1.1)

where µ(k) is the mean of the cycle length in the k-case, which we denote a
k-cycle. For k = 2, we can easily check that

1
λ

eλr(1 + eλr) =
eλr

λ

eλ2r − 1
eλr − 1

.

We assume now the result holds for some k ≥ 2. After a k-cycle, we have
two possibilities. The next interarrival time is long and we get a (k + 1)-cycle.
This gives an additional contribution to the mean of a (k + 1)-cycle length of
p+m+. The second possibility is that the next interarrival time is short and the
(k + 1)-cycle starts afresh after that. Putting things together gives

µ(k+1) = µ(k) + p+m+ + p−(m− + µ(k+1))

so that

µ(k+1) =
1
p+

[
µ(k) + p+m+ + p−m−

]
= eλr

[
eλr

λ

eλkr − 1
eλr − 1

+
1
λ

]
,

=
eλr

λ

eλ(k+1)r − 1
eλr − 1

,

which ends the proof.

B Light-tailed calculations for k > 2

Here, let us prove that, for k > 2,

ϕ(k)(α, β) =
g(α, β)kF̂ [α]k−1Ĝ[α]

1− k(α, β)F̂ [α]
[
1−

(
g(α, β)F̂ [α]

)k]
/
[
1− g(α, β)F̂ [α]

] ,
where

g(α, β) =
λ

λ+ cα− β
e(β−cα−λ)r ,

k(α, β) =
λ

λ+ cα− β

(
1− e(β−cα−λ)r

)
,
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and ϕ(k)(α, β) = E
[
eαS(ω)eβω

]
in the k-case. We use the same notation as in

Section 5. A (k > 2)-cycle begins as a (k = 2)-cycle with some short interarrival
times, each followed by an F -claim with contribution to ϕ(k)(α, β) equals to

p+

1− p−F̂ [α]Â−[β − cα]
,

followed by a long interarrival time and an F -claim which gives a contribution
of

F̂ [α]Â+[β − cα] .

After that, there are k possible paths. One path is constituted with k − 1 long
interarrival times. The first k − 2 times are followed by an F -claim and the
last one by a G-claim and so the cycle terminates. This path has a probability
p+

k−1 to occur and gives a contribution of(
p+A

+[β − cα]
)k−1

F̂ [α]k−2Ĝ[α].

For 0 ≤ i ≤ k − 2, the i-path is constituted with i long interarrival times and
one short time, each followed by an F -claim, then the cycle starts afresh after
that. The i-path occurs with probability p+

ip− and gives a contribution of

p+
ip−F̂ [α]i+1A+[β − cα]iA−[β − cα]ϕ(k)(α, β) .

Putting things together gives

ϕ(k)(α, β) =
p+

1− p−F̂ [α]Â−[β − cα]
F [α]Â+[β−cα]×

((
p+A

+[β−cα]
)k−1

F̂ [α]k−2Ĝ[α]

+
k−2∑
i=0

p+
ip−F̂ [α]i+1A+[β − cα]iA−[β − cα]ϕ(k)(α, β)

)
,

which ends the proof.

C Proof of (6.3)–(6.7)

The expression (6.3) for hθ(−, 0) is just Proposition 5.1.
To compute hθ(i) for all i, we first introduce some notation, with V an

exponential random variable with rate λ:

p(a)+ = P (V > r − a) = e−λ(r−a) ,

p(a)− = P (V ≤ r − a) = 1− e−λ(r−a) ,

Â[α] = E
[
eαV

]
=

λ

λ+ α
,

Â(a)+[α] = E
[
eαV

∣∣V > r − a
]

=
λ

λ− α
eα(r−a) ,

Â(a)−[α] = E
[
eαV

∣∣V ≤ r − a] =
λ

λ− α

(
1− e−(λ−α)(r−a)

1− e−λ(r−a)

)
,
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and we are using p+, p−, A+[α] and A−[α] defined in Sections 3, 5.

The easiest case is the (+,+)-one. Actually, after an exponential time, a
G-claim occurs which ends the cycle, so

hθ(+,+) = E(+,+)eθS(ω1)−κ(θ)ω1 = Ee−(cθ+κ(θ))V eUG

= Â[−cθ − κ(θ)]Ĝ[θ] =
λ

λ+ cθ + κ(θ)
Ĝ[θ] .

For the (+, a)-case, two cases have to be considered. If the exponential time
before the first claim is larger than r − a then a G-claim occurs, otherwise, an
F -claim occurs and the state becomes (−, 0):

hθ(+, a) = E(+,a)eθS(ω1)−κ(θ)ω1 ,

= p(a)−Â
(a)−[−cθ − κ(θ)]F̂ [θ]hθ(−, 0) + p(a)+Â

(a)+[−cθ − κ(θ)]Ĝ[θ]

=
k(a)(θ,−κ(θ))g(θ,−κ(θ))2F̂ [θ]2Ĝ[θ]

1− k(θ,−κ(θ))F̂ [θ]
(

1 + g(θ,−κ(θ))F̂ [θ]
) + g(a)(θ,−κ(θ))Ĝ[θ] .

The particular case (+, 0) gives

hθ(+, 0) = k(0)(θ,−κ(θ))hθ(−, 0) + g(0)(θ,−κ(θ))

=
g(θ,−κ(θ))Ĝ[θ]

(
1− k(θ,−κ(θ))F̂ [θ]

)
1− k(θ,−κ(θ))F̂ [θ]

(
1 + g(θ,−κ(θ))F̂ [θ]

) .
The (−,+)-case can be easily solved using the (+, 0) one. Actually, after an
exponential time, an F -claim occurs and the state becomes (+, 0):

hθ(−,+) = E(−,+)eθS(ω1)−κ(θ)ω = Â[−cθ − κ(θ)]F̂ [θ]hθ(+, 0)

=
λ

λ+ cθ + κ(θ)

g(θ,−κ(θ))F̂ [θ]Ĝ[θ]
(

1− k(θ,−κ(θ))F̂ [θ]
)

1− k(θ,−κ(θ))F̂ [θ]
(

1 + g(θ,−κ(θ))F̂ [θ]
) .

We solve the (−, a)-case using both (+, 0) and (−, 0) ones. If the exponential
time before the first claim is larger than r − a, then an F -claim occurs and
the state becomes (+, 0), otherwise, an F -claim occurs and the state becomes
(−, 0):

hθ(−, a) = E(−,a)eθS(ω1)−κ(θ)ω1 ,

= p(a)−Â
(a)−[−cθ − κ(θ)]F̂ [θ]hθ(−, 0)

+ p(a)+Â
(a)+[−cθ − κ(θ)]F̂ [θ]hθ(+, 0) ,

=
g(θ,−κ(θ))F̂ [θ]Ĝ[θ]

1− k
(
θ,−κ(θ)

)
F̂ [θ]

(
1 + g

(
θ,−κ(θ)

)
F̂ [θ]

){k(a)(θ,−κ(θ))g(θ,−κ(θ))F̂ [θ]

+ g(a)
(
θ,−κ(θ)

)
Ĝ[θ]

(
1− k

(
θ,−κ(θ)

)
F̂ [θ]

)}
.
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D A counterexample

We give here an example of random variablesX,Y such thatX is subexponential
and Y light-tailed, but the tail of X −Y is lighter than the tail of X (of course,
such r.v.’s have to be dependent).

We take X with tail F (x) = e−x/ log x, x > e. Then the density and failure
rates are

f(x) =
[ 1

log x
− 1

log2 x

]
e−x/ log x , resp. λ(x) =

f(x)
F (x)

=
1

log x
− 1

log2 x
.

The integral to be inspected for Pitman’s criterion ([5, p. 299]) is∫ ∞
e

exλ(x)f(x) dx =
∫ ∞

e

e−x/ log2 x
[ 1

log x
− 1

log2 x

]
dx ,

which is finite so that X is subexponential.
Let Y = ϕ(X) = X/ logX and note that whenever z < ϕ−1(x), i.e. ϕ(z) <

x, then
P(Y > x) = P

(
X > ϕ−1(x)

)
≤ P(X > z).

Taking z = z(x) = x log x, we have

ϕ(z) =
x log x

log x+ log log x
< x .

and thus

P(Y > x) ≤ P(X > z) = exp
{
−x log x/[log x+ log log x]

}
< e−x/2

for all large x. Thus Y is light-tailed.
Let 0 < b < a < 1 and note that X − Y = ψ(X) = X(1− 1/ logX). Taking

z = z(x) = x+ ax/ log x, we get

ψ(z) = (x+ ax/ log x)
[
1− 1

log x
[
1 + log(1 + a/ log x)/ log x

]] < x

for large x (using a < 1), and thus as above,

P(X − Y > x) ≤ P(X > z) = e−z/ log z .

Now

z

log z
=

x+ ax/ log x
log x

[
1 + log(1 + a/ log x)/ log x

]
≥ x+ ax/ log x

log x

[
1−

[
1 + log(1 + a/ log x)/ log x

]]
≥ x

log x
+

bx

log2 x

for all large x (using (1 + v)−1 > 1− v in the second step). Thus

P(X − Y > x) ≤ P(X > x)o(1) ,

and the counterexample is complete.

17



References

[1] H. Albrecher & S. Asmussen (2006) Ruin probabilities and aggregate claims dis-
tributions for shot noise Cox processes. Scand. Actuar. J. 2006, 86–110.

[2] H. Albrecher & O. Boxma (2004) A ruin model with dependence between claim
sizes and claim intervals. Insurance: Math. Econom. 35, 245–254.

[3] V. Asimit & A. Badescu (2010) Extremes on the discounted aggregate claims in
a time dependent risk model. Scand. Actuar. J. 2010, 93–104.

[4] S. Asmussen (2003) Applied Probability and Queues (2nd ed.). Springer-Verlag.

[5] S. Asmussen & H. Albrecher (2010) Ruin Probabilities (2nd ed.). World Scientific.
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