
Minimizing the sum of many rational functions∗

Florian Bugarin,1 Didier Henrion,2,3 Jean-Bernard Lasserre2,4

December 4, 2014

Abstract

We consider the problem of globally minimizing the sum of many rational func-
tions over a given compact semialgebraic set. The number of terms can be large (10
to 100), the degree of each term should be small (up to 10), and the number of vari-
ables can be relatively large (10 to 100) provided some kind of sparsity is present.
We describe a formulation of the rational optimization problem as a generalized
moment problem and its hierarchy of convex semidefinite relaxations. Under some
conditions we prove that the sequence of optimal values converges to the globally
optimal value. We show how public-domain software can be used to model and
solve such problems. Finally, we also compare with the epigraph approach and the
BARON software.
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1 Introduction

Consider the optimization problem

f ∗ := inf
x∈K

N∑

i=1

fi(x) (1)

over the basic semi-algebraic set

K := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . , m }, (2)
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for given polynomials gj ∈ R[x], j = 1, . . . , m, and where each term fi : R
n → R is a

rational function

x 7→ fi(x) :=
pi(x)

qi(x)
,

with pi, qi ∈ R[x] for each i = 1, . . . , N .

Problem (1) is a fractional programming problem of a rather general form. Nevertheless,
we assume that the degree of each fi and gj is relatively small (up to 10), but the number
of terms N can be quite large (10 to 100). For dense data, the number of variables n
should also be small (up to 10). However, this number can be also relatively large (10
to 100) provided that the problem data exhibits some kind of structured sparsity (to be
specified later). Even though problem (1) is of independent interest, our initial motivation
came from some applications in computer vision, where such problems are typical. These
applications will be described elsewhere.

In such a situation, the fractional programming problem (1) is quite challenging. Indeed,
we make no assumption on the polynomials pi, qi whereas even with a relatively small
number of fractions and under convexity (resp. concavity) assumptions on pi (resp. qi),
problem (1) is hard to solve, especially if one wants to compute the global minimum.
In addition, we are interested in solving problem (1) globally, that is, we do not content
ourselves with a local optimum satisfying first order optimality conditions, as is typically
the case with standard local optimization algorithms such as Newton’s method or its
variants. If problem (1) is too difficult to solve globally (because of ill-conditioning and/or
a large a number of variables or terms in the objective function), we would like to have
at least a valid lower bound on the global minimum, since upper bounds can be obtained
with local optimization algorithms.

In the literature, problem (1) is often called a sum-of-ratios program. Without assump-
tions, it is NP-complete [9]. Surveys on methods for solving this problem have been made
in [23] and then [31]. The reader can especially refer to [31, Table 1]. According to this
survey, many attempts make restrictive assumptions either on the concavity or linearity of
the ratios. When the ratios are nonlinear, the most popular methods are based on Branch
and Bound approaches, see e.g. [3]. Because this problem often occurs in computer vision,
many practical studies have been carried out. These studies aim at solving problem (1)
in the quadratic case [14], or at certifying a posteriori if a solution is global or not [10].

In this paper, we would like to approach the fractional programming problem (1) as a
generalized moment problem solved with its hierarchy of convex semidefinite programming
(SDP) relaxations:

• One possible approach is to reduce all fractions pi/qi to same denominator q̃ and
obtain a single rational fraction to minimize. Then one may try to apply the hi-
erarchy of SDP relaxations defined in [13], see also [19, Section 5.8]. But such a
strategy is not appropriate because the degree of q̃ is potentially large and even
if n is small, one cannot even implement the first relaxation of the hierarchy, due
to present limitations of SDP solvers. Moreover, in general this strategy also de-
stroys potential sparsity patterns present in the original formulation (1), and so
precludes from using an appropriate version (for the rational fraction case) of the
sparse semidefinite relaxations introduced in [28] whose convergence was proved in
[17] under some conditions on the sparsity pattern, see also [19, Sections 4.6 and
5.3.4].
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• Another possibility is to introduce additional variables ri (that we may call lifting
variables) with associated constraints

pi(x)

qi(x)
≤ ri, i = 1, . . . , N,

and solve the equivalent problem:

f ∗ := inf
(x,r)∈K̂

N∑

i=1

ri (3)

which is now a polynomial optimization problem in the new variables(x, r) ∈ R
n ×

R
N , and where the new feasible set K̂ = K ∩ {(x, r) ∈ R

n+N : riqi(x)− pi(x) ≥ 0}
is modeling the epigraphs of the rational terms. This approach is an extension
of the approach in [13] (it coincides if N = 1). Potential sparsity patterns in the
x variables are preserved and if K is compact one may in general obtain upper
and lower bounds ri, ri on the ri so as to make K̂ compact by adding the quadratic
(redundant) constraints (ri−ri)(ri−ri) ≥ 0, i = 1, . . . , N , and apply a sparse version
of semidefinite relaxations [13]. However, in doing so one introduces N additional
variables, and this may have an impact on the overall performance, especially if N
is large. In the sequel this approach is referred to as the epigraph approach.

The goal of the present paper is to overcome the above difficulties in the following two
situations: either n is relatively small, or n is relatively large but some sparsity is present,
i.e., each fi and each gj in (1) is concerned with only a small subset of variables. In the
approach that we propose, we do not need the epigraph liftings. The idea is to formulate
(1) as an equivalent infinite-dimensional linear problem which a particular instance of the
generalized moment problem (GMP) as defined in [18], with N unknown measures (where
each measure is associated with a fraction pi/qi). In turn this problem can be easily mod-
eled and solved with our public-domain software GloptiPoly 3 [12], a significant update
of GloptiPoly 2 [11]. In the sequel this approach is referred to as the GMP approach. A
collection of numerical experiments shows the potential of our GMP approach, especially
in comparison with the epigraph approach. Numerical results also show that our results
compare favorably with BARON software.

The outline of the paper is as follows. In Section 2 we introduce the SDP relaxations first
in the case where n is small and with no sparsity pattern. Then in Section 3 we extend
the SDP relaxations to the case that n is relatively large but some sparsity is present
and can be exploited. In Section 4 we show how the GMP formulation can be exploited
to model the SDP relaxations of problem (1) easily with GloptiPoly 3. The last section
is devoted to a comparison with the epigraph approach and with the BARON solver on
some numerical experiments.
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2 Dense SDP relaxations

Consider the fractional programming problem (1) over the semi-algebraic set (2). We
assume that f ∗ > −∞ and the two polynomials:

p̃(x) :=
N∑

i=1

(
pi(x)

N∏

j 6=i

qj(x)

)
(4)

q̃(x) :=

N∏

i=1

qi(x), (5)

are relatively prime. Hence, without loss of generality, qi > 0 on K for each i = 1, . . . , N .
Indeed, by reducing the cost function to a common denominator, we obtain :

N∑

i=1

fi(x) =
p̃(x)

q̃(x)
. (6)

So, if i0 ∈ N exists, such that qi0 changes its sign on K, then q̃ changes its sign on K.
Thus, according to [13, Corollary 1 and Theorem 2], f ∗ = −∞, which contradicts our
hypothesis. Moreover, we assume that n, the number of variables in problem (1), is small,
say up to 10.

2.1 GMP formulation

Consider the infinite dimensional linear problem

f̂ := inf
µi∈M(K)

N∑

i=1

∫

K

pi dµi

s.t.

∫

K

q1dµ1 = 1

∫

K

xαqidµi =

∫

K

xαq1dµ1, ∀α ∈ N
n, i = 2, . . . , N,

(7)

where M(K) is the space of finite Borel measures supported on K.

Theorem 2.1 Let K ⊂ R
n in (2) be compact, and assume that qi > 0 on K, i = 1, . . . , N .

Then f̂ = f ∗.

Proof: We first prove that f ∗ ≥ f̂ . As f =
∑

i pi/qi is continuous on K, there exists a
global minimizer x∗ ∈ K with f(x∗) = f ∗. Define µi := qi(x

∗)−1δx∗ , i = 1, . . . , N , where
δx∗ is the Dirac measure at x∗. Then obviously, the measures (µi), i = 1, . . . , N , are
feasible for (7) with associated value

N∑

i=1

∫

K

pidµi =

N∑

i=1

pi(x
∗)/qi(x

∗) = f(x∗) = f ∗.
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Conversely, let (µi) be a feasible solution of (7). For every i = 1, . . . , N , let dνi be the
measure qidµi, i.e.

νi(B) :=

∫

K∩B

qi(x)dµi(x)

for all sets B in the Borel σ-algebra of Rn, and so the support of νi is K. As measures on
compact sets are moment determinate, see the Appendix, the moments constraints of (7)
imply that νi = ν1, for every i = 2, . . . , N , and from

∫
K
q1dµ1 = 1 we also deduce that ν1

is a probability measure on K. But then

N∑

i=1

∫

K

pidµi =

N∑

i=1

∫

K

pi
qi
qidµi =

N∑

i=1

∫

K

pi
qi
dν1

=

∫

K

(
N∑

i=1

pi
qi

)
dν1 =

∫

K

fdν1 ≥

∫

K

f ∗dν1 = f ∗,

where we have used that f ≥ f ∗ on K and ν1 is a probability measure on K. �

We next make the following assumption meaning that the set K admits analgebraic cer-
tificate of compactness.

Assumption 2.1 The set K ⊂ R
n in (2) is compact and the quadratic polynomial x 7→

M − |x|2 can be written as

M − |x|2 = σ0 +
m∑

j=1

σj gj,

for some polynomials σj ∈ R[x], all sums of squares of polynomials.

Remark 2.1 If Assumption (2.1) is not satisfied (or cannot be checked easily) and if we
know some M > 0 such that:

K ⊂
{
x : ‖x‖2 ≤ M

}
, (8)

then it suffices to add the redundant quadratic constraint M − ‖x‖2 ≥ 0 in the definition
of K.

2.2 A hierarchy of dense SDP relaxations

Let yi = (yiα), α ∈ N
n, be a real sequence indexed in the canonical basis (xα) of R[x],

i = 1, . . . , N , and for every k ∈ N, let Nn
k := {α ∈ N

n :
∑

j αj ≤ k}.

Define the moment matrix Mk(yi) of order k, associated with y, whose entries indexed
by multi-indices β (rows) and γ (columns) read

[Mk(yi)]β,γ := yi(β+γ), ∀ β, γ ∈ N
n
k , i = 1, . . . , N,

and so are linear in yi. Similarly, given a polynomial g(x) =
∑

α gαx
α, define the localizing

matrix Mk(g yi) of order k, associated with y and g, whose entries read

[Mk(g yi)]β,γ :=
∑

α

gαyi(α+β+γ), ∀ β, γ ∈ N
n
k , i = 1, . . . , N.
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In particular, matrix M0(g yi) is identical to Lyi
(g) where for every i, Lyi

: R[x] → R is
the Riesz linear functional defined by:

g 7→ Lyi
(g) :=

∑

α∈Nn

gαyiα, ∀g ∈ R[x].

Let:

ui := ⌈(deg qi)/2⌉, i = 1, . . . , N ,

rj := ⌈(deg gj)/2⌉, j = 1, . . . , m, and r := maxj rj,

and with no loss of generality assume that u1 ≤ u2 ≤ . . . ≤ uN . Consider the hierarchy
of semidefinite programming (SDP) relaxations:

f ∗
k = inf

yi

N∑

i=1

Lyi
(pi)

s.t. Mk(yi) � 0, i = 1, . . . , N
Mk−rj (gjyi) � 0, i = 1, . . . , N, j = 1, . . . , m
Ly1(q1) = 1,
Lyi

(xαqi) = Ly1(x
αq1), ∀α ∈ N

n
2(k−ui)

, i = 2, . . . , N,

(9)

with 2k > uN .

Theorem 2.2 Let Assumption 2.1 hold and consider the hierarchy of SDP relaxations
(9). Then it follows that

(a) f ∗
k ↑ f ∗ as k → ∞.

(b) Moreover, let (yk
i ) be an optimal solution of (9), such that

rankMk(y
k
i ) = rankMk−r(y

k
i ) =: R, i = 1, . . . , N.

if R = 1 then f ∗
k = f ∗,

if R > 1 then each yk
i has a representating measure µi supported on R points

xl(i) ∈ K, l = 1, . . . , R, which can be extracted. If xl(i) = xl(j) for all i 6= j
and every l, then f ∗

k = f ∗.

Proof: Let us first prove statement (a). As K is compact, with no loss of generality
we may and will assume that K ⊂ {x : M − ‖x‖2 ≥ 0} for some M > 0, and we also
assume that the quadratic redundant constraint M − ‖x‖2 ≥ 0 constraint is part of the
description of K, modeled by the constraint g1(x) ≥ 0.

Then the semidefinite constraint Mk−1(g1 yi) � 0 implies

0 ≤ Lyi
(x2ℓ

t g1(x)) = MLyi
(x2ℓ

t )− Lyi
(x2ℓ+2

t )−
n∑

s 6=t

Lyi
(x2ℓ

t x
2
s)

︸ ︷︷ ︸
≥0

,
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for all 0 ≤ ℓ ≤ k − 1, and all t = 1, . . . , n. Hence, an easy induction yields that for any
feasible solution yi one has:

M yi0 ≥ Lyi
(x2

t ); M
2 (yi0) ≥ Lyi

(x4
t ); · · · ;M

k yi0 ≥ Lyi
(x2k

t ), (10)

for every t = 1, . . . , n.

Next by [19, Proposition 3.6], if Mk(yi) � 0 then

|yiα| ≤ max[yi0, [max
t

Lyi
(x2k

t )] ], ∀α with |α| ≤ 2k. (11)

Next as q1 > 0 on K (compact) then q1 > δ on K for some δ > 0, and so by Putinar’s
Theorem [22] there exists k0 such that

q1 − δ = σ0 +

m∑

j=1

σj gj,

for some SOS polynomials σj such that degσjgj ≤ 2k for all j (with g0 = 1). Applying
Lyi

and using Lyi
(q1) = 1, yields:

1− yi0 δ = Lyi

(
m∑

j=0

σj gj

)
=

m∑

j=0

Lyi
(σj gj) ≥ 0,

as soon as k ≥ k0. And so yi0 ≤ δ−1, which in view of (10)-(11) yields

|yiα| ≤ max[δ−1,Mkδ−1] =: Sk, ∀α with |α| ≤ 2k.

And in fact, a soon as k ≥ k0,

|yiα| ≤ max[δ−1,M |α|δ−1] =: S|α|, ∀α.

So for every k ≥ k0, the feasible set is compact which ensures the existence of an optimal
solution yk

i .

So let yk
i be a nearly optimal solution as in Theorem 2.2(a). Complete the finite sequence

yk
i with zeros to make it an infinite sequence indexed in N

n (instead of Nn
2k). As soon as

k ≥ k0 define the new sequence wk
i = ((wk

i )α), α ∈ N
n, by

wk
iα = ykiα/S|α|,

so that |wk
iα| ≤ 1 for all α, and all k ≥ k0.

Hence every element wk
i is an element of the unit ball B of the Banach space ℓ∞ of infinite

sequences, uniformly bounded. Equipped with the usual sup-norm, ℓ∞ is the topological
dual of ℓ1. And so by Banach-Alaoglu’s Theorem the unit ball of ℓ∞ being compact (and
sequentially compact) in the weak-⋆ topology σ(ℓ∞, ℓ1), there exists a subsequence kt and
an infinite sequence wi ∈ B such that wkt

i → wi as t → ∞, for the weak-⋆ topology, and
in particular pointwise convergence holds, i.e.,

lim
t→∞

wkt
iα = wiα, ∀α ∈ N

n.

Recalling the definition of wk
i , one may define an infinite sequence yi by:

yiα := wiα S|α|, α ∈ N
n,
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to obtain:
lim
t→∞

yktiα = S|α| lim
t→∞

wkt
iα = S|α|wiα =: yiα, ∀α ∈ N

n.

Statement (b) follows from the flat extension theorem of Curto and Fialkow [7], see e.g.
[19, Theorem 3.7] or [20, Section 5], so that each measure νi is supported on R points of
K. �

Remark 2.2 Note that Theorem 2.2 is a generalization of [13, Theorem 9]. However,
when N is large, [13, Theorem 9] is unsuitable to solve (1). Indeed, the dual hierarchy of
SDP relaxations used in [13, Theorem 9] is given by:

inf
y

Ly(p̃)

s.t. Ly(q̃) = 1
Mk(y) � 0
Mk−rj(gjy) � 0, j = 1, . . . , m,

(12)

with 2k > deg(q̃) and p̃, q̃ defined by (6). If N is large, then the degree of p̃ and q̃ is large
and the corresponding relaxations cannot be solved by conventional SDP solvers (see e.g.
[6, 4, 32, 27, 25]).

3 Sparse SDP relaxations

In this section we assume that the number n of variables in problem (1), is large, say
from 10 to 100, and moreover we also assume that some sparsity pattern is present in the
polynomial data.

3.1 GMP formulation

Let I0 := {1, . . . , n} = ∪N
i=1Ii with possible overlaps, and let R[xk : k ∈ Ii] denote the ring

of polynomials in the variables xk, k ∈ Ii. Denote by ni the cardinality of Ii.

One will assume that K ⊂ R
n in (2) is compact, and one knows some M > 0 such

that x ∈ K ⇒ M − |x|2 ≥ 0. For every i ≤ N , introduce the quadratic polynomial
x 7→ gm+i(x) = M −

∑
k∈Ii

x2
k. The index set {1, . . . , m + N} has a partition ∪N

i=1Ji

with Ji 6= ∅ for every i = 1, . . . , N . In the sequel we assume that for every i = 1, . . . , N ,
pi, qi ∈ R[xk : k ∈ Ii] and for every j ∈ Ji, gj ∈ R[xk : k ∈ Ii]. Next, for every i = 1, . . . , N ,
let

Ki := {z ∈ R
ni : gk(z) ≥ 0, k ∈ Ji}

so that K in (2) has the equivalent characterization

K = {x ∈ R
n : (xk, k ∈ Ii) ∈ Ki, i = 1, . . . , N}.

Similarly, for every i, j ∈ {1, . . . , N} such that i 6= j and Ii ∩ Ij 6= ∅,

Kij = Kji := {(xk, k ∈ Ii ∩ Ij) : (xk, k ∈ Ii) ∈ Ki; (xk, k ∈ Ij) ∈ Kj }.
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Let M(K) be the space of finite Borel measures on K, and for every i = 1, . . . , N , let
πi : M(K) → M(Ki) denote the projection on Ki, that is, for every µ ∈ M(K):

πiµ(B) := µ({x : x ∈ K; (xk, k ∈ Ii) ∈ B}), ∀B ∈ B(Ki)

where B(Ki) is the usual Borel σ-algebra associated with Ki.

For every i, j ∈ {1, . . . , N} such that i 6= j and Ii ∩ Ij 6= ∅, the projection πij : M(Ki) →
M(Kij) is also defined in an obvious similar manner. For every i = 1, . . . , N − 1 define
the set:

Ui := { j ∈ {i+ 1, . . . , N} : Ii ∩ Ij 6= ∅ },

and consider the infinite dimensional problem

f̂ := inf
µi∈M(Ki)

N∑

i=1

∫

Ki

pi dµi

s.t.

∫

Ki

qidµi = 1, i = 1, . . . , N

πij(qidµi) = πji(qjdµj), ∀j ∈ Ui, i = 1, . . . , N − 1.

(13)

Definition 3.1 Sparsity pattern (Ii)
N
i=1 satisfies the running intersection property if for

every i = 2, . . . , N :

Ii
⋂
(

i−1⋃

k=1

Ik

)
⊆ Ij , for some j ≤ i− 1. (14)

Remark 3.1 : In general, the running intersection property (14) holds for sparsity pat-
terns associated with many rational estimation problems in engineering (e.g. computer
vision). Indeed, these problems are formulated as least squares problems where each resid-
ual is the difference between an observed parameter qi and a rational function f(x, ri)
recalibrated to reflect the observed behaviour:

min
(x,r)∈Rn×RlN

N∑

i=1

‖qi − f(x, ri)‖
2
2. (15)

In this formulation, unknowns are x ∈ R
n and each ri ∈ R

l, i = 1, . . . , N . The vector x
represents the parameters of the model. The vector r ∈ R

lN represents the input obser-
vations. Classicaly, these variables are fixed. However, as is often the case in computer
vision, it is necessary to reestimate r in order to increase the accuracy of the final model.
Let

I0 := { 1, 2, . . . , l︸ ︷︷ ︸
r1

, l + 1, . . . , 2l︸ ︷︷ ︸
r2

, . . . , (N − 1)l + 1, . . . , Nl︸ ︷︷ ︸
rN

, Nl + 1, . . . , Nl + n︸ ︷︷ ︸
x

}

be the set of indices which correspond to the variables {r1, . . . , rN , x1, . . . , xn}. Then,
I0 :=

⋃N
i=1 Ii with Ii = {(i− 1)l + 1, . . . , il, Nl + 1, . . . , Nl + n} and, because

Ii ∩ Ij = {Nl + 1, . . . , Nl + n} ∀i 6= j,

the sparsity pattern (Ii)i=1,...,N satisfies the running intersection property (14).
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Theorem 3.1 Let K ⊂ R
n in (2) be compact. If the sparsity pattern (Ii)

N
i=1 satisfies the

running intersection property (14) then f̂ = f ∗.

Proof: That f̂ ≤ f ∗ is straightforward. As K is compact and qi > 0 on K for every
i = 1, . . . , N , f ∗ =

∑N

i=1 fi(x
∗) for some x ∈ K. So let µ be the Dirac measure δx∗

at x∗ and let νi be the projection πiµ of µ on Ki. That is νi = δ(x∗

k
,k∈Ii), the Dirac

measure at the point (x∗
k, k ∈ Ii) of Ki. Next, for every i = 1, . . . , N ,define the measure

dµi := qi(x
∗)−1dνi. Obviously, (µi) is a feasible solution of (13) because µi ∈ M(Ki) and∫

qidµi = 1, for every i = 1, . . . , N , and one also has:

(x∗
k, k ∈ Ii ∩ Ij) = πijµi = πjiµj, ∀j 6= i such that Ij ∩ Ii 6= ∅.

Finally, its value satisfies

N∑

i=1

∫

Ki

pidµi =
N∑

i=1

pi(x
∗)/qi(x

∗) = f ∗,

and so f̂ ≤ f ∗.

We next prove the converse inequality f̂ ≥ f ∗. Let (µi) be an arbitrary feasible solution of
(13), and for every i = 1, . . . , N , denote by νi the probability measure on Ki with density
qi with respect to µi, that is,

νi(B) :=

∫

Ki∩B

qi(x) dµi(x), ∀B ∈ B(Ki).

By definition of the linear program (13), πijνi = πjiνj for every couple j 6= i such that
Ij ∩ Ii 6= ∅. Therefore, by [19, Lemma B.13] there exists a probability measure ν on K

such that πiν = νi for every i = 1, . . . , N . But then

N∑

i=1

∫

Ki

pi dµi =

N∑

i=1

∫

Ki

pi
qi

dνi =

N∑

i=1

∫

Ki

pi
qi

dν

=

∫

K

(
N∑

i=1

pi
qi

)
dν ≥ f ∗

and so f̂ ≥ f ∗. �

3.2 A hierarchy of sparse SDP relaxations

Let y = (yα) be a real sequence indexed in the canonical basis (xα) of R[x]. Define the
Riesz linear functional Ly : R[x] → R, by:

f

(
=
∑

α∈Nn

fαx
α

)
7→

∑

α∈Nn

fαyα, ∀f ∈ R[x].

For every i = 1, . . . , N , let

N
(i) := { α ∈ N

n : αk = 0 if k 6∈ Ii }; N
(i)
k := { α ∈ N

(i) :
∑

i

αi ≤ k }.
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An obvious similar definition of N(ij) (= N
(ji)) and N

(ij)
k (= N

(ji)
k ) applies when considering

Ij ∩ Ii 6= ∅.

For every i = 1, . . . , N , let yi = (yiα) be a given sequence indexed in the canonical basis of
R[x]. The sparse moment matrix Mk(yi, Ii) associated with yi, has its rows and columns
indexed in the canonical basis (xα) of R[xk : k ∈ Ii], and with entries:

Mk(yi, Ii)α,β = Lyi
(xα+β) = yi(α+β), ∀α, β ∈ N

(i)
k .

Similarly, for a given polynomial h ∈ R[xk : k ∈ Ii], the sparse localizing matrix
Mk(hyi, Ii) associated with yi and h, has its rows and columns indexed in the canonical
basis (xα) of R[xk : k ∈ Ii], and with entries:

Mk(hyi, Ii)α,β = Lyi
(hxα+β) =

∑

γ∈N(i)

hγ yi(α+β+γ), ∀α, β ∈ N
(i)
k .

With K ⊂ R
n defined in (2), let rj := ⌈(deggj)/2⌉, for every j = 1, . . . , m+N . Consider

the hierarchy of semidefinite relaxations:

f ∗
k = inf

y1,...,yN

N∑

i=1

Lyi
(pi)

s.t. Mk(yi, Ii) � 0, i = 1, . . . , N
Mk−rj(gjyi, Ii) � 0, ∀j ∈ Ji, i = 1, . . . , N
Lyi

(qi) = 1, i = 1, . . . , N
Lyi

(xαqi) = Lyj
(xαqj) = 0, ∀α ∈ N

(ij), ∀j ∈ Ui, i = 1, . . . , N − 1
with |α|+max[degqi, degqj ] ≤ 2k.

(16)

Theorem 3.2 Let K ⊂ R
n in (2) be compact. Let the sparsity pattern (Ii)

N
i=1 satisfy

the running intersection property, and consider the hierarchy of semidefinite relaxations
defined in (16). Then:

(a) f ∗
k ↑ f ∗ as k → ∞.

(b) If an optimal solution y∗ = (y∗
1, . . . ,y

∗
N) of (16) satisfies

rankMk(y
∗
i , Ii) = rankMk−vi(y

∗
i , Ii) =: Ri, ∀i = 1, . . . , N,

(where vi = maxj∈Ji[rj]), and

rankMk(y
∗
i , Ii ∩ Ij) = 1, ∀j ∈ Ui, i = 1, . . . , N − 1,

then f ∗
k = f ∗ and one may extract finitely many global minimizers.

Proof: The proof is similar to that of Theorem 2.2 and also to that of [19, Theorem 4.7].
One first proves that (16) has a feasible solution and f ∗

k > −∞ for sufficiently large k.
Next, let yk = (yk

1 , . . . ,y
k
N) be a nearly optimal solution of (16), i.e.

f ∗
k ≤

N∑

i=1

Lyk
i
(pi) ≤ f ∗

k +
1

k
.

(Again K ⊂ {x : |x|2 ≤ M} for some M because K is compact. So if such a scalar
M is known, one may include the redundant quadratic constraint M − |x|2 ≥ 0 in the
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definition of K, in which case existence of an optimal solution to (16) is guaranteed.)then
there exists a subsequence (kℓ) and a sequence y = (y1, . . . ,yN), such that

lim
ℓ→∞

ykℓiα = yiα, ∀α ∈ N
(i), i = 1, . . . , N.

Of course, for every i = 1, . . . , N , yi is a sequence (yiα), α ∈ N
n, but only the entries yiα,

α ∈ N
(i), are relevant and all the other entries can be set to zero.

From this pointwise convergence it easily follows that for every i = 1, . . . , N and j ∈ Ji,

Mk(yi, Ii) � 0, Mk(gj yi, Ii) � 0, j ∈ Ji; i = 1, . . . , N.

Now observe that each set Ki ⊂ R
ni satisfies Assumption 2.1. Therefore, by Putinar’s

theorem, see [22] or [19, Theorem 2.14], the sequence yi = (yiα), α ∈ N
(i) (i.e., the

subsequence of yi ignoring the entries yiα, α 6∈ N
(i)), has a representing measure µi

supported on Ki. Again, by pointwise convergence, Lyi(qi)(= Lyi
(qi)) = 1, for every

i = 1, . . . , N , and

Lyi(qi x
α) =

∫

Ki

xα qi(x) dµi︸ ︷︷ ︸
dνi(x)

=

∫

Kj

xα qj(x) dµj︸ ︷︷ ︸
dνj(x)

, ∀α ∈ N
(ij), ∀j ∈ Ui. (17)

Therefore, for every i = 1, . . . , N , dνi := qi(x)dµi is a finite Borel probability measure sup-
ported on Ki. As measures on compact sets are moment determinate, see the Appendix,
(17) yields:

πijνi = πjiνj, ∀(i, j), j ∈ Ui.

Therefore, by [19, Lemma B.13] there exists a probability measure ν on K such that
πiν = νi for every i = 1, . . . , N . But then

f ∗ ≥ lim
ℓ→∞

f ∗
kℓ

= lim
ℓ→∞

N∑

i=1

L
y
kℓ
i

(pi) =
N∑

i=1

∫

Ki

pi dµi

=

N∑

i=1

∫

Ki

pi
qi

qidµi =

N∑

i=1

∫

Ki

pi
qi

dνi

=

∫

K

(
N∑

i=1

pi
qi

)
dν ≥ f ∗.

As the converging subsequence was arbitrary, and (f ∗
k ) is monotone non decreasing, we

finally get f ∗
k ↑ f ∗. In addition, ν is an optimal solution of (13) with optimal value f ∗ = f̂ .

The proof of (b) is as in [17] and uses the flat extension theorem of Curto and Fialkow,
see [7] or [19, Theorem 3.7], from which, the sequence (y∗)i = (y∗iα), α ∈ N

(i), has an
atomic representing measure supported on Ri points of Ki, for every i = 1, . . . , N . �

4 GloptiPoly and examples

In this section we show that the generalized moment problem (GMP) formulation of ra-
tional optimization problem (1) has a straightforward Matlab implementation when using
our software GloptiPoly 3 [12]. Rather than explaining the approach in full generality
with awkward notations, we describe three simple examples.

12



4.1 Illustrative univariate examples

4.1.1 Wilkinson-like rational function

Consider the elementary univariate rational optimization problem

f ∗ = sup
x∈R

f(x), f(x) =

N∑

i=1

pi(x)

qi(x)
=

N∑

i=1

1

x2 + i

with N an integer. The only real critical point is x = 0, at which the objective function
takes its maximum

f ∗ = f(0) =
N∑

i=1

1

i
.

Reducing to the same denominator

f(x) =

∑
i

∏
j 6=i(x

2 + j)
∏

i(x
2 + i)

=
p(x2)

q(x2)

yields the well-known Wilkinson polynomial q whose squared root moduli are the integers
from 1 to N . This polynomial was described in the mid 1960s by J.H. Wilkinson to
illustrate the difficulty of computing (numerically) roots of polynomials. If we choose e.g.
N = 20, reduction to the same denominator is hopeless since the constant coefficient in
monic polynomial q is 20! = 2432902008176640000. The GMP formulation (7) of this
problem reads (up to replacing “inf” with “sup” in the objective function):

sup
µi∈M(R)

N∑

i=1

∫

R

pidµi

s.t.

∫

R

q1dµ1 = 1
∫

R

xαqidµi =

∫

R

xαq1dµ1, ∀α ∈ N
n, i = 1, . . . , N.

Our Matlab script to model and solve this problem is given in Appendix 7.1.

At the first SDP relaxation we obtain a rank-one moment matrix corresponding to a Dirac
at x∗ = 0 with f ∗ = 3.5977 which is consistent with Maple’s output:

> f := sum(1/(x^2+i), i=1..20);

> evalf(subs(x = 0, f));

3.5977

Note that for this example Assumption 2.1 is violated, since we optimize over the un-
bounded set K = R. In spite of this, we could solve the problem globally because for
univariate problems, compactness of the feasible set is not required.

4.1.2 Relevance of the compactness assumption

With the next elementary example we would like to emphasize the practical impact of
optimization on a bounded set K (and the smaller, the better). Consider the univariate

13



problem

f ∗ = inf
x∈K

f(x), f(x) =
1 + x+ x2

1 + x2
+

1 + x2

1 + 2x2
. (18)

First let K = R. The numerator of the gradient of f(x) has two real roots, one of
which being the global minimum located at x∗ = −1.4215 for which f ∗ = 1.1286. The
GloptiPoly script given in Appendix 7.2 models and solves the SDP relaxations of orders
k = 0, . . . , 9 of the GMP formulation of (18). We retrieve the following monotonically
increasing sequence of lower bounds f ∗

k (up to 5 digits) obtained by solving the SDP
relaxations (9):

order k bound f ∗
k order k bound f ∗

k

1 1.0000 4 1.0958
2 1.0001 5 1.1285
3 1.0169 6 1.1286

Table 1: Lower bounds for SDP relaxations of problem (18).

At SDP relaxation k = 9, GloptiPoly certifies global optimality and extracts the global
minimizer. Table 1 shows that the convergence of the hierarchy of SDP relaxations is
rather slow for this very simple example. This is due to the fact that one optimizes
over the unbounded set K = R. In Figure 1 we display the sequences of lower bounds
obtained by solving the SDP relaxations of problem (18) on compact sets K = [−R, R]
for R = 2, 3, . . . , 10. Clearly, the smaller is R the faster is the convergence.

4.2 Exploiting sparsity with GloptiPoly

Even though version 3 of GloptiPoly may exploit problem sparsity, there is no illustra-
tion of this feature in the software user’s guide [12]. In this section we provide such a
simple example. Note also that GloptiPoly does not detect sparsity for a given problem,
in contrast with SparsePOP which includes a routine to detect structural sparsity pat-
terns by using a heuristic to build up chordal extensions of some graph [29] associated
with the problem data. However, SparsePOP is not designed to handle directly rational
optimization problems.

Consider the elementary example of [17, Section 3.2]:

inf
x∈R4

x1x2 + x1x3 + x1x4

s.t. x2
1 + x2

2 ≤ 1
x2
1 + x2

3 ≤ 2
x2
1 + x2

4 ≤ 3

for which the variable index subsets I1 = {1, 2}, I2 = {1, 3}, I3 = {1, 4} satisfy the
running intersection property (14) in Definition 14. Note that this problem is a particular
case of (1) with a polynomial objective function.

Without exploiting sparsity, the GloptiPoly script to solve this problem is given in Ap-
pendix 7.3.1. GloptiPoly certifies global optimality with a moment matrix of size 15, and

14
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1
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1.14

Figure 1: Lower bounds for SDP relaxations of problem (18) on bounded setsK = [−R, R]
for R=2 (top curve), 3, 4, 5, 6, 7, 8, 9 and 10 (bottom curve).

3 localizing matrices of size 5. The script exploiting sparsity, given in Appendix 7.3.2,
associates variables with several measures µi, in a manner consistent with subsets Ii.
GloptiPoly certifies global optimality with 3 moment matrices of size 6, and 3 localizing
matrices of size 3.

Remark 4.1 GloptiPoly is a Matlab interface which constructs LMI relaxations of a given
GMP. The corresponding LMI relaxation can then be solved via any SDP solver interfaced
via YALMIP [33]. So, for the same optimization problem converted by Gloptipoly, the
number of function evaluations and the number of iterations depend on the solver used. For
this reason, we believe that the latter two quantities cannot be considered as representative
values in this context. However, the number of function evaluations and the number of
iterations are directly related to the size of the problem converted by GloptiPoly. This size
is represented by the sizes of moment matrices and localizing matrices.

4.3 Comparison with the epigraph approach

Recall the epigraph optimization problem:

f ∗ := inf
(x,r)∈K̂

N∑

i=1

ri (3)

with:

K̂ = K ∩ {(x, r) ∈ R
n+N : riqi(x)− pi(x) ≥ 0}.
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Note that the epigraph approach is consistent with the running intersection property (14).
Indeed, let I0 = {1, 2, . . . , n+N} be the set of indices which correspond to the variables
{r1, . . . , rN , x1, . . . , xn}. Then, I0 :=

⋃N
i=1 Ii with Ii = {i, N + 1, . . . , N + n} and, because

Ii ∩ Ij = {N + 1, . . . , N + n} ∀i 6= j, the sparsity pattern (Ii)i=1,...,N verifies the running
intersection property. Consequently (see e.g. [19, Theorem 5.9]), if k is the relaxation
order, the size of the moment matrix can be reduced from

(
n+N+k

n+N

)
to
(
n+1+k

n+1

)
. Thus, in

the sequel, we use this sparsity pattern in the epigraph approach to reduce the number
of variables of the SDP relaxation.

In most of the examples that we have processed, the epigraph approach described in the
Introduction (consisting of introducing one lifting variable for each rational term in the
objective function) was less efficient than the GMP approach. Typically, the order of the
SDP relaxation (and hence its size) required to certify global optimality is larger with the
epigraph approach than with the GMP approach.

When testing the epigraph approach, we have also observed that numerically, it is better
to replace the inequality constraints riqi(x)−pi(x) ≥ 0 with equality constraints riqi(x)−
pi(x) = 0 in the definition of semi-algebraic set K̂ in (3). For the example of Section 4.1.1
the epigraph approach with inequalities certifies global optimality at order k = 5, whereas
the epigraph approach with equalities requires k = 1.

Note that for all problems presented in this subsection, there is no sparsity pattern to
exploit because all variables appear in each term of the sum.

4.3.1 Eighth-degree function

As a typical illustration of the issues faced with the epigraph approach,consider the ex-
ample with eighth-degree terms

min
x∈R2

f(x) :=
∑10

i=1

(x1 + x2)(x
2
1 + x2

1x
2
2 + x4

2 + i2)− (ix2
2 + 1)(x4

1 + x2
2 + 2i)

(x4
1 + x2

2 + 2i)(x2
1 + x2

1x
2
2 + x4

2 + i2)
,

s.t. x2
i 6 10

(19)

which is cooked up to have several local optima and sufficiently high degree to prevent
reduction to the same denominator. The GMP approach yields a certificate of global
optimality with x∗

1 = −0.60490, x∗
2 = −2.2053, f ∗ = −6.2844 at order k = 6 in a

few seconds on a standard PC. In contrast, the epigraph approach does not provide a
certificate for an order as high as k = 7, and requires more than one minute of CPU time.

4.3.2 Kowalik’s function

In order to illustrate this behaviour, the two approaches are compared on the Kowalik
problem [1]. This academic problem is a minimization in the least squares sense, given
by:

min
x∈R2

f(x) :=
11∑

k=1

(
ak −

x1(1 + x2bk)

(1 + x3bk + x4b
2
k)

)2

,

s.t. (xi − 0.21)2 6 0.212
(20)
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with :

a = (0.195 0.194 0.173 0.160 0.084 0.062 0.045 0.034 0.032 0.023 0.024) ,

b =
(
0.25 0.5 1 2 4 6 8 10 12 14 16

)
.

The GMP approach yields a certificate of global optimality at order k = 3 in 10.7 seconds
on a standard PC. The obtained solution matches with the known global minimizer to
four significant digits. In contrast, the epigraph approach does not provide a certificate
within a reasonable time. To obtain an approximation of the global minimizer, the search
domain is reduce to the ball {x ∈ R

4 :
∑n

i=1(xi − 0.21)2 6 0.21} which contains the
global solution certified by the GMP approach. Then, as the global minimizer is unique,
the vector of first order moments provides an approximation of the global minimizer. In
fact this vector converges to the unique optimal solution (see [24]). Table 2 shows the
certified solution obtained by the GMP approach and the approximation given by the
minimization of the epigraph problem on the ball {x ∈ R

4 :
∑n

i=1(xi−0.21)2 6 0.21}. In
addition to high computational times, Table 2 also shows that the resulting approximation
is far from the global minimizer. Note that to ensure the convergence of the sequence of

Method x∗
1 x∗

2 x∗
3 x∗

4 f ∗ times (s) order k
GMP 0.192 0.190 0.123 0.135 3.10×10−4 10 3
Epigraph 0.194 0.188 0.129 0.132 3.12×10−4 208 3

Table 2: Solution certified by the GMP approach at k = 3 versus the approximation given
by the minimization of the epigraph problem on the ball {x ∈ R

4 :
∑n

i=1(xi − 0.21)2 6

0.21} at k = 3.

the solutions of the SDP relaxations of the epigraph formulation to the global minimizer,
the lifting variables must be bounded. For solving problem (20), the lifting variables were
bounded by using the following constraints:

r2k 6

(
ak −

x∗
1(1 + x∗

2bk)

(1 + x∗
3bk + x∗

4b
2
k)

)2

, k = 1, . . . , 11. (21)

Consequently, an additional information is given to the epigraph approach (but not given
in the GMP approach). However, even with this additional information, the GMP ap-
proach still provides better results.

4.3.3 De Jong’s functions

Consider the modified De Jong’s rational function minimization problem [21], given by:

min
x∈R2

f(x) := −
N∑

i=1

1

(10x1 + ai)2 + (10x2 + bi)2 +
c

i2
s.t. x2

1 + (x2 + 0.1)2 6 0.85

(22)

with:

a = (−4 0 4 −4 0 4 −4 0 4 −4 0 4 −4 0 4),
b = (−4 −4 −4 −1 −1 −1 2.5 2.5 2.5 6 6 6 9 9 9),
c = 14.

(23)
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N x∗
1 x∗

2 f ∗ order k times (s)
9 -0.4000 -0.2500 -6.037 6 4.40s
12 -0.4000 -0.6000 -10.56 8 11.4s
15 -0.4000 -0.9000 -16.40 13 81.7s

Table 3: Solutions, certification orders and computational times given by the GMP ap-
proach for problem (22).

The certified solutions obtained by the GMP approach are given in Table 3. As we already
mentioned, the lifting variables of the epigraph formulation must be bounded. In most
examples that we have processed, these bounds play an important role in the accuracy
of the algorithm. If the bounds are properly set, the convergence speed and the accuracy
of the solutions can be equivalent to that of the GMP approach. However, finding tight
bounds on each lifting variable is a difficult problem a priori. In practice, a simple way
to proceed is to bound each lifting variable thanks to the following constraints:

r2i 6



max
x∈K

|pi(x)|

min
x∈K

qi(x)




2

, ∀i = 1 . . . N. (24)

For problem (22), these constraints reduce to:

r2i 6
i4

c2
, ∀i = 1 . . . N. (25)

For N = 9, 12, 15 we observe the same behaviour: the epigraph approach never provides
a certified solution. However, because the global minimizer is unique, again the vector
of first order moments provides an approximation of the global minimizer. Table 4 sum-
marizes the approximations given by the epigraph approach, the orders k of the SDP
relaxation from which the vector of first order moments is read, and the computational
times required to solve this relaxation. This table shows off a significant gap between
the approximation given by the epigraph approach and the certified solution given by
the GMP approach. Note that, due to the increasing size of the relaxations, we have
observed numerical instabilities of the SDP solver SeDuMi [25] used in Gloptipoly. These
instabilities were observed for k > 3 with N = 9 and k > 2 with N = 12, 15.

N x∗
1 x∗

2 f ∗ order k times (s)
9 -0.3484 -0.2417 -2.527 3 5.8s
12 -0.0272 -0.2887 -2.739 2 3.2s
15 -0.0323 -0.5588 -3.115 2 4.9s

Table 4: Approximation, orders and computational times given by the epigraph approach
for problem (22).

4.4 Comparison with BARON solver

In the previous examples, we have compared the GMP approach with the epigraph ap-
proach. However, it is also possible to solve directly this particular class of problems by
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using standard software packages. Among these methods, a reviewer of a previous ver-
sion of this paper suggested to compare the GMP approach with BARON software [26]
publicly available on the NEOS server [8]. We used the version 14.0.3 (built: LNX-64) of
BARON available on NEOS, and the GMP experiments were run on our own computer
with GloptiPoly version 3.7 on Matlab 2014 on an IntelCore i7 2.2GHz (4 cores) with
16GB RAM.

4.4.1 Shekel’s foxholes

In order to compare the GMP approach with the BARON solver on some benchmark
problems, consider the modified Shekel foxholes minimization problem [5]:

min
x∈Rn

f(x) := −
N∑

i=1

1∑n

j=1(xj − aij)2 + ci

s.t.

n∑

i=1

(xi − 5)2 6 60

(26)

whose data aij, ci, i = 1, . . . , N , j = 1, . . . , n are given. These functions have been
designed to have many local minima. Note that it is not possible to exploit problem
sparsity in this case, since all variables appear in each term of the sum (26). We know the
unique global minima for the set of data [1, 16]. For this set, N is fixed to 30. Note that,
in order to avoid numerical problems, a suitable scaling is done to make critical points fit
within the ball {x ∈ R

n :
∑n

i=1(xi − 0.5)2 6 0.6}.

In the case n = 5, the GMP approach yields a certificate of global optimality at order
k = 3 in about 84 seconds on a standard PC. The extracted minimizer is:

x∗
GMP = (8.025, 9.151, 5.114, 7.621, 4.564), (27)

which matches with the known unique global minimizer to four significant digits. This
point can be refined if given an initial guess for a local optimization method: if we
use a standard quasi-Newton BFGS algorithm, we obtain after a few iterations a point
matching the known unique global minimizer to eight significant digits. Comparatively,
BARON provides an approximation of the unique global minimum with four correct
significant digits in 1000 seconds which by default is set as a time limit on the NEOS
server. The solver interrupts because the limit time is reached, with a solver status equal
to 3. Consequently, the obtained approximation is not certified and detected as a local
minimum. Moreover, if this limit is decreased to 100 seconds, the approximation remains
equal to the unique global minimum with four significant digits but always detected as
a local minimum. To obtain a certified solution, the time limit must be increased to
approximately 2500 seconds.

In the case n = 10, for which the global minimum is given in [1, Table 17], the GMP
approach yields a certificate of global optimality at order k = 2 in about 284 seconds of
CPU time. Here too, we observe that the extracted minimizer

x∗
GMP = (8.025, 9.151, 5.114, 7.621, 4.564, 4.711, 2.996, 6.126, 0.7341, 4.982)

is a good approximation to the minimizer, with four correct significant digits. If neces-
sary, this point can be used as an initial guess in some (local) optimization algorithm.
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Comparatively, BARON provides an approximation of the unique global minimum with
four correct significant digits in 3600 seconds which we set as a time limit on the NEOS
server. The solver interrupts because the limit time is reached, with a solver status equal
to 3. Consequently, the obtained approximation is not certified and detected as a local
minimum. Moreover, if this limit is decreased to 300 seconds, the approximation remains
equal to the unique global minimum with four significant digits but always detected as a
local minimum.

4.4.2 Rosenbrock’s functions

Consider the rational optimization problem

f ∗ = max
x∈Rn

n−1∑

i=1

1

100(xi+1 − x2
i )

2 + (xi − 1)2 + 1
(28)

which has the same critical points as the well-known Rosenbrock problem

min
x∈Rn

n−1∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2)

whose geometry is troublesome for local optimization solvers. Note that a sparsity pattern
can be exploited to reduce the number of variables in the SDP relaxations. It can been
easily shown that the global maximum f ∗ = n−1 of problem (28) is achieved at x∗

i = 1, i =
1, . . . , n. Our experiments with local optimization algorithms reveal that standard quasi-
Newton solvers or functions of the Optimization toolbox for Matlab, called repeatedly with
random initial guesses, typically yield local maxima quite far from the global maximum.

With our GMP approach, after exploiting sparsity and adding bound constraints x2
i ≤ 16,

i = 1, . . . , n, we could solve problem (28) with a certificate of global optimality for n up
to 1000. A certificate of global optimality is obtained at order k = 1 with typical CPU
times ranging from 10 seconds for n = 100 to 500 seconds for n = 1000.

By varying n from 20 to 1000 and submitting the corresponding problems to BARON
on the NEOS solver, we observe the following behavior. First, BARON finds a solution
(i.e. with a termination status equal to 1) with typical CPU times ranging from less than
one second to 500 seconds. Second, BARON finds the global maximum in most of cases
except for the values of n summarized on Table 5. Moreover, for n > 640 (except for
n = 860), all solutions provided by BARON are wrong since all satisfy x1 = −0.995 ( 6= 1)
and xk = 1 for all k 6= 1 (the expected values of the global maximum). Consequently,
it may be seen that problem (28) creates numerical instabilities which can be overcome
thanks to GMP sparse formulation.

In order to increase the difficulty of problem (28), we defined the following rational opti-
mization problem:

f ∗ = max
x2
i
≤ 1

n−1∑

i=1

(−1)i

100(xi+1 − x2
i )

2 + (xi − 1)2 + 1
. (29)

In the case n = 17, the GMP approach yields a certificate of global optimality at order
k = 8 in about 26 seconds on a standard PC. The extracted minimizer is :

x∗
GMP = (−0.006 0.839 0.703 1.00 1.00 0.667 0.444 0.844 0.711

1.00 1.00 0.667 0.444 0.844 0.711 1.00 1.00 −1.00),
(30)
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n f ∗ f ∗
BAR

260 259 243.474
280 279 252.753
340 339 336.403
420 419 414.606

Table 5: Values of n for which BARON finds a solution far from the global maximum of
problem (22), and the corresponding optimal values f ∗

BAR.

and f ∗
GMP = 7.383. Comparatively, in less than one second BARON finds (with a solver

status equal to 1) the following solution:

x∗
BAR = (−0.006 0.783 0.612 0.803 0.643 0.808 0.652 0.811 0.656

0.815 0.663 0.827 0.682 0.864 0.746 1.000 1.000 −1.000).
(31)

which is not the correct global minimizer as f ∗
BAR = 7.342 < fGMP .

4.4.3 Kowalik’s function

We revisit the Kowalik problem of Example 4.3.2. As reported in Table 4.4.3, BARON
finds a good approximate solution in less than 2 seconds, whereas the GMP approaches
certifies globally optimality of a solution which is slightly closer to the theoretical optimum
in approx. 10 seconds.

Method x∗
1 x∗

2 x∗
3 x∗

4 f ∗ times (s) order k
GMP 0.192 0.190 0.123 0.135 3.10×10−4 10 3
BARON 0.192 0.184 0.113 0.134 3.12×10−4 2
Theoretical 0.192 0.190 0.123 0.135 3.10×10−4

4.4.4 Sum of linear and quadratic ratios

We have compared the performance of GMP and BARON on several instances of problem
(1) with a small number of variables, found in the technical literature:

• [31, Example 5.1] is an instance with a sum of N = 16 ratios with linear numerators
and denominators in n = 3 variables, on a polytopic set K. Our GMP approach
certifies the global solution in approx. 14 seconds, while BARON solves this problem
is less than 1 second.

• [31, Example 6.3], also reported in [3], is an instance with a sum of N = 2 ratios
with quadratic numerators and denominators in n = 3 variables, on a polytopic set
K. Both our GMP approach and BARON solve this problem is less than 1 second.

• [2, Example 6.2] is an instance with a sum ofN = 2 ratios with quadratic numerators
and denominators in n = 2 variables, on a polytopic setK. Both our GMP approach
and BARON solve this problem is less than 1 second.
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• [16, Example 5.1] is an instance with a sum of N = 3 ratios with linear numerators
and denominators in n = 3 variables, on a polytopic set K. Our GMP approach
solves the problem is approx. 2 seconds, whereas BARON solves this problem is
less than 1 second.

• [16, Example 5.2] is an instance with a sum of N = 4 ratios with linear numerators
and denominators in n = 3 variables, on a polytopic set K. Our GMP approach
solves the problem is approx. 3 seconds, whereas BARON solves this problem is
less than 1 second.

• [30, Example 5.1] is an instance with a sum of N = 2 ratios with quadratic nu-
merators and denominators in n = 3 variables, on a quartic set K. Both our GMP
approach and BARON solve this problem is less than 1 second.

• [30, Example 5.3] is an instance with a sum of N = 2 ratios with quadratic numer-
ators and denominators in n = 2 variables, on a polytopic set K. Both our GMP
approach and BARON solve this problem is less than 1 second.

5 Conclusion

The problem of minimizing a sum of many low-degree (typically non-convex) rational
fractions on a (typically non-convex) semi-algebraic set arises in several important ap-
plications, and notably in computer vision (triangulation, estimation of the fundamental
matrix in epipolar geometry) and in systems control (H2 optimal control with a fixed-
order controller of a linear system subject to parametric uncertainty). These engineering
problems motivated our work, but the application of our techniques to computer vision
and systems control will be described elsewhere. These fractional programming problems
being non convex, local optimization approaches yield only upper bounds on the optimum.

In this paper we were interested in computing the global minimum (and possibly global
minimizers) or at least, computing valid lower bounds on the global minimum, for frac-
tional programs involving a sum with many terms. We have used a moment-SOS ap-
proach with semidefinite relaxations by formulating the rational optimization problem as
an instance of the generalized moment problem (GMP). In addition, when the number of
variables is large, some structured sparsity pattern in problem data can sometimes be ex-
ploited. In numerical experiments, our public-domain software GloptiPoly interfaced with
off-the-shelf semidefinite programming solvers indicate that the approach can solve prob-
lems that can be challenging for state-of-the-art global optimization algorithms. This is
consistent with the experiments made in [15] where the (dense) SDP relaxation approach
was first applied to (polynomial) optimization problems of computer vision.

For larger and/or ill-conditioned problems, it can happen that GloptiPolyextracts from
the moment matrix a minimizer which is not very accurate. It can also happen that
GloptiPoly is not able to extract a minimizer, but when the global minimizer is unique
(which is generically true) the vector of first-order moments (of an optimal solution of
the relaxation) provides an approximation that converges to the global minimizer. And
so this resulting approximation may be used as initial guess for any local optimization
algorithm.
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A comparison of our approach with other global optimization techniques (e.g., reported in
Hans Mittelmann’s or Arnold Neumaier’s webpages) is out of the scope of this paper. We
believe however that such a comparison would be fair only if no expert tuning is required
for alternative algorithms. Indeed, when using GloptiPoly the only assumption we make
is that we know a ball containing the global optimizer. Besides this, our results are fully
reproducible (Matlab files reproducing our examples are available upon request) and the
SDP relaxations are solved with (black box) general-purpose semidefinite programming
solvers.

6 Appendix on determinacy of measures on compact

sets

Let K ⊂ R
n be a compact set and let C(K) be the Banach space of continuous functions

on K, equipped with the sup-norm. By Stone-Weierstrass, the polynomials are dense in
C(K). So let µ and ν be two finite Borel measures on K and assume that µ and ν have
all same moment y = (yα), α ∈ N

n, i.e.,

yα =

∫

K

xα dµ =

∫

K

xα dν, α ∈ N
n.

Let f ∈ C(K) be fixed arbitrary. As the polynomials are dense in C(K) then
∫
K
fdµ =∫

K
fdν. And as f was arbitrary one concludes that this holds for every f ∈ C(K).

But this clearly implies that µ = ν. Hence every finite Borel measure on K is moment
determinate.

7 Appendix on GloptiPoly scripts

7.1 Wilkinson-like rational function script

N = 20; mpol(’x’,N); % create variables

q = cell(N,1); % problem data

mu = cell(N,1); % measures

for i = 1:N, q{i} = i+x(i)^2; mu{i} = meas(x(i)); end

% model GMP

k = 0; % relaxation order

f = mass(mu{1}); % objective function

e = [mom(q{1}) == 1]; % moment contraints

for i = 2:N

f = f + mass(mu{i});

e = [e; mom(mmon(x(1),k)*q{1}) == mom(mmon(x(i),k)*q{i})];

end

% model SDP relaxation of GMP

P = msdp(max(f),e);

% solve SDP relaxation

[stat,obj] = msol(P)
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In this Matlab script, the instructions mpol, meas, mass, mom, mmon, msdp, max and msol

are GloptiPoly 3 commands, see the user’s guide [12] for more information. Variable f is
the objective function to be maximized. Since pi = 1 for all i = 1, . . . , N , it is the sum of
masses of measures µi. Vector e stores the linear moment constraints and the instruction
mmon(x,k) generates all monomials of variable x up to degree k. Finally, instruction msdp

generates the SDP relaxation of the GMP, and msol solves the SDP problem with the
default conic solver (SeDuMi 1.3 in our case).

7.2 Subsection 4.1.2 function script

mpol x1 x2

f1 = 1+x1+x1^2; g1 = 1+x1^2; f2 = 1+x2^2; g2 = 1+2*x2^2;

mu1 = meas(x1); mu2 = meas(x2);

bounds = [];

for k = 1:6

P = msdp(min(mom(f1)+mom(f2)), ...

mom(mmon(x1,2*(k-1))*g1) == mom(mmon(x2,2*(k-1))*g2), mom(g1) == 1);

[stat, obj] = msol(P);

bounds = [bounds; obj];

end

bounds

7.3 Subsection 4.2 function scripts

7.3.1 Script 1

mpol x1 x2 x3 x4

Pdense = msdp(min(x1*x2+x1*x3+x1*x4), ...

x1^2+x2^2<=1,x1^2+x3^2<=2,x1^2+x4^2<=3,2);

[stat,obj] = msol(Pdense);

7.3.2 Script 2

mpol x1 3

mpol x2 x3 x4

mu(1) = meas([x1(1) x2]); % first measure on x1 and x2

mu(2) = meas([x1(2) x3]); % second measure on x1 and x3

mu(3) = meas([x1(3) x4]); % third measure on x1 and x4

f = mom(x1(1)*x2)+mom(x1(2)*x3)+mom(x1(3)*x4); % objective function

m1 = mom(mmon(x1(1),3)); % moments of first measure

m2 = mom(mmon(x1(2),3)); % moments of second measure

m3 = mom(mmon(x1(3),3)); % moments of third measure

K = [x1(1)^2+x2^2<=1, x1(2)^2+x3^2<=2, x1(3)^2+x4^2<=3]; % supports

Psparse = msdp(min(f),m1-m2==0,m2-m3==0,K,mass(mu)==1);

[stat,obj] = msol(Psparse);
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