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Introduction

The problem of recovering the geometry and topology of compact sets from finite point samples has seen several important developments in the previous decade. Homeomorphic surface reconstruction algorithms have been proposed to deal with surfaces in R 3 sampled without noise [START_REF] Amenta | Surface reconstruction by Voronoi filtering[END_REF] and with moderate Hausdorff (local) noise [START_REF] Dey | Provable surface reconstruction from noisy samples[END_REF]. In the case of submanifolds of a higher dimensional Euclidean space [START_REF] Niyogi | Finding the homology of submanifolds with high confidence from random samples[END_REF], or even for more general compact subsets [START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF], it is also possible, at least in principle, to compute the homotopy type from a Hausdorff sampling. If one is only interested in the homology of the underlying space, the theory of persistent homology [START_REF] Edelsbrunner | Persistent homology -a survey[END_REF] applied to Rips graphs provides an algorithmically tractable way to estimate the Betti numbers from a finite Hausdorff sampling [START_REF] Chazal | Towards persistence-based reconstruction in Euclidean spaces[END_REF].

All of these constructions share a common feature: they estimate the geometry of the underlying space by a union of balls of some radius r centered at the data points P . A different way to interpret this union is as the r-sublevel set of the distance function to P , d P : x → min p∈P xp . Distance functions capture the geometry of their defining sets, and they are stable to Hausdorff perturbations of those sets, making them well-suited for reconstruction results. However, they are also extremely sensitive to the presence of outliers (i.e. data points that lie far from the underlying set); all reconstruction techniques that rely on them fail even in presence of a single outlier.

To counter this problem, Chazal, Cohen-Steiner, and Mérigot [START_REF] Chazal | Geometric Inference for Measures based on Distance Functions[END_REF] developed a notion of distance function to a probability measure that retains the properties of the (usual) distance important for geometric inference. Instead of assuming an underlying compact set that is sampled by the points, they assume an underlying probability measure µ from which the point sample P is drawn. The distance function d µ,m 0 to the measure µ depends on a mass parameter m 0 ∈ (0, 1). This parameter acts as a smoothing term: a smaller m 0 captures the geometry of the support better, while a larger m 0 leads to better stability at the price of precision. The crucial feature of the function d µ,m 0 is its stability to the perturbations of the measure µ under the Wasserstein distance, defined in Section 2.2. For instance, the Wasserstein distance between the underlying measure µ and the uniform probability measure on the point set P can be small even if P contains some outliers. When this happens, the stability result ensures that distance function d 1 P ,m 0 to the uniform probability measure 1 P on P retains the geometric information contained in the underlying measure µ and its support.

Computing with distance functions to measures. In this article we address the computational issues related to this new notion. If P is a subset of R d containing N points, and m 0 = k/N , we will denote the distance function to the uniform measure on P by d P,k . As observed in [START_REF] Chazal | Geometric Inference for Measures based on Distance Functions[END_REF], the value of d P,k at a given point x is easy to compute: it is the square root of the average squared distance from the point x to its k nearest neighbors in P . However, most inference methods require a way to represent the function, or more precisely its sublevel sets, globally. It turns out that the distance function d P,k can be rewritten as a minimum (1)

d 2 P,k (x) = min c x -c 2 -w c,
where c ranges over the set of barycenters of k points in P (see Section 3).

Computational geometry provides a rich toolbox to represent sublevel sets of such functions, for example, via weighted α-complexes [START_REF] Edelsbrunner | The union of balls and its dual shape[END_REF]. The difficulty in applying these methods is that to get an equality in (1) the minimum number of barycenters to store is the same as the number of order-k Voronoi sites of P , making this representation unusable even for modest input sizes. The solution that we propose is to construct an approximation of the distance function d P,k , defined by the same equation as ( 1), but with c ranging over a smaller subset of barycenters. In this article, we study the quality of approximation given by a linear-sized subset: the witnessed barycenters defined as the barycenters of any k points in P whose order-k Voronoi cell contains at least one of the sample points. The algorithmic simplicity of the scheme is appealing: we only have to find the k -1 nearest neighbors for each input point. We denote by d w P,k and call witnessed k-distance the function defined by Equation [START_REF] Amenta | Surface reconstruction by Voronoi filtering[END_REF], where c ranges over the witnessed barycenters.

Contributions. Our goal is to give conditions on the point cloud P under which the witnessed k-distance d w P,k provides a good uniform approximation of the distance to measure d P,k . We first give a general multiplicative bound on the error produced by this approximation. However, most of our paper (Sections 4 and 5) analyzes the uniform approximation error, when P is a set of independent samples from a measure concentrated near a lowerdimensional subset of the Euclidean space. The following is a prototypical example for our setting, although the analysis we propose allows for a wider range of problems. Note that some of the common settings in the literature either fit directly into this example, or in its logic: the mixture of Gaussians [START_REF] Dasgupta | Learning mixtures of Gaussians[END_REF] and off-manifold Gaussian noise in normal directions [START_REF] Niyogi | A topological view of unsupervised learning from noisy data[END_REF] are two examples.

(H1) We assume that the "ground truth" is an unknown probability measure µ whose dimension is bounded by a constant ℓ ≪ d. Practically, this means that µ is concentrated on a compact set K ⊆ R whose dimension is at most ℓ, and that its mass distribution shouldn't "forget" any part of K (see Definition 3). As an example µ could be the uniform measure on a smooth compact ℓ-dimensional submanifold K, or on a finite union of such submanifolds.

This hypothesis ensures that the distance to the measure µ is close to the distance to the support K of µ, and lets us recover information about K.

Our first result (Witnessed Bound Theorem 2) states that if the uniform measure to a point cloud P is a good Wasserstein-approximation of µ, then the witnessed k-distance to P provides a good approximation of the distance to the underlying compact set K. The bound we obtain is only a constant times worse than the bound for the exact k-distance.

(H2) The second assumption is that we are not sampling directly from µ, but through a noisy channel. We model this by considering that our measurements come from a measure ν, which is obtained by adding noise to µ. For instance, ν could be the result of the convolution of µ with a Gaussian distribution N (0, d -1 σ 2 I) whose variance is σ 2 . More generally, ν can be any measure such that the Wasserstein distance from µ to ν is at most σ. This generalization allows, in particular, to consider noise models that are not translation-invariant. (H3) Finally, we suppose that our input data set P ⊆ R d consists of N points drawn independently from the noisy measure ν. Denote with 1 P the uniform measure on P .

These two hypothesis allow us to control the Wasserstein distance between µ and 1 P with high probability. We assume that the point cloud P is gathered following the three hypothesis above. Our second result states that the witnessed k-distance to P provides a good approximation of the distance to the compact set K with high probability, as soon as the amount of noise σ is low enough and the number of points N is large enough. Approximation Theorem (Theorem 4). Let P be a set of N points drawn according to the three hypothesis (H1)-(H3), let k ∈ {1, . . . , N } and m 0 = k/N . Then, the error bound

d w P,k -d K ∞ ≤ 54m -1/2 0 σ + 24m 1/ℓ 0 α -1/ℓ µ
holds with probability at least

1 -γ µ exp(-β µ N max(σ 2+2ℓ , σ 4 ) -ℓ ln(σ))
where the constants β µ and γ µ depend only on µ.

We illustrate the utility of the bound with an example and a topological inference statement in our final Section 6.

Outline. The relevant background appears in Section 2. We present our approximation scheme together with a general bound of its quality in Section 3. We analyze its approximation quality for measures concentrated on lowdimensional subsets of the Euclidean space in Section 4. The convergence of the uniform measure on a point cloud sampled from a measure of low complexity appears in Section 5 and leads to our main result.

Background

We begin by reviewing the relevant background.

2.1. Measure. Let us briefly recap the few concepts of measure theory that we use. A non-negative measure µ on the space R d is a mass distribution. Mathematically, it is defined as a function that maps every (Borel) subset B of R d to a non-negative number µ(B), which is additive in the sense

that µ (∪ i∈N B i ) = i µ(B i ) whenever (B i ) is a countable family of disjoint (Borel) subsets of R d . The total mass of a measure µ is mass(µ) = µ(R d ).
A measure µ is called a probability measure if its total mass is one. The support of a probability measure µ, denoted by spt(µ) is the smallest closed set whose complement has zero measure. The expectation or mean of µ is the point

E(µ) = R d xdµ(x); the variance of µ is the number σ 2 µ = R d x -E(µ) 2 dµ(x).
Although the results we present are often more general, the typical probability measures we have in mind are of two kinds: (i) the uniform probability measure defined by the volume form of a lower-dimensional submanifold of the ambient space and (ii) discrete probability measures that are obtained through noisy sampling of probability measures of the previous kind. For any finite set P with N points, denote by 1 P the uniform measure supported on P , i.e. the sum of Dirac masses centered at p ∈ P with weight 1/N .

Wasserstein distance.

A natural way to quantify the distance between two measures is the Wasserstein distance. This distance measures the L 2 -cost of transporting the mass of the first measure onto the second one. A general study of this notion and its relation to the problem of optimal transport appear in [START_REF] Villani | Topics in Optimal Transportation[END_REF]. We first give the general definition and then explain its interpretation when one of the two measures has finite support.

A transport plan between two measures µ and ν with the same total mass is a measure π on the product space R d × R d such that for every subsets

A, B of R d , π(A × R d ) = µ(A) and π(R d × B) = ν(B). Intuitively, π(A × B)
represents the amount of mass of µ contained in A that will be transported to B by π. The cost of this transport plan is given by

c(π) := R d ×R d x -y 2 dπ(x, y) 1/2
Finally, the Wasserstein distance between µ and ν is the minimum cost of a transport plan between these measures.

Consider the special case where the measure ν is supported on a finite set P . This means that ν can be written as p∈P α p δ p , where δ p is the unit Dirac mass at P . Moreover, p α p must equal the total mass of µ. A transport plan π between µ and ν corresponds to a decomposition of µ into a sum of positive measures p∈P µ p such that mass(µ p ) = α p . The squared cost of the plan defined by this decomposition is then

c(π) =   p∈P R d x -p 2 dµ p (x)   1/2 .
Wasserstein noise. Two properties of the Wasserstein distances are worth mentioning for our purpose. Together, they show that the Wasserstein noise and sampling model generalize the commonly used empirical sampling with Gaussian noise model:

• Consider a probability measure µ and f : R d → R the density of a probability distribution centered at the origin, and denote by ν the result of the convolution of µ by f . Then, the Wasserstein distance between µ and ν is at most σ, where σ 2 := R d x 2 f (x)dx is the variance of the probability distribution defined by f . • Let P denote a set of N points drawn independently from a given measure ν. Then, the the Wasserstein distance W 2 (ν, 1 P ) between ν and the uniform probability measure on P converges to zero as N grows to infinity with high probability. Examples of such asymptotic convergence results are common in statistics, e.g. [START_REF] Bolley | Quantitative Concentration Inequalities for Empirical Measures on Non-compact Spaces[END_REF] and references therein. In Proposition 3 below, we give a quantitative non-asymptotic result assuming that ν is low-dimensional (H1). Using the notation introduced in the two items above, one has lim sup

N →+∞ W 2 (µ, 1 p ) ≤ σ
with high probability as the number of point grows to infinity. A more quantitative version of this statement can be found in Corollary 1.

2.3.

Distance-to-measure and k-distance. In [START_REF] Chazal | Geometric Inference for Measures based on Distance Functions[END_REF], the authors introduce a distance to a probability measure as a way to infer the geometry and topology of this measure in the same way the geometry and topology of a set is inferred from its distance function. Given a probability measure µ and a mass parameter m 0 ∈ (0, 1), they define a distance function d µ,m 0 which captures the properties of the usual distance function to a compact set that are used for geometric inference. Definition 1. For any point x in R d , let δ µ,m (x) be the radius of the smallest ball centered at x that contains a mass at least m of the measure µ. The distance to the measure µ with parameter m 0 is defined by

d µ,m 0 (x) = m -1/2 0 m 0 m=0 δ µ,m (x) 2 dm 1/2 .
Given a point cloud P containing N points, the measure of interest is the uniform measure 1 P on P . When m 0 is a fraction k/N of the number of points (where k is an integer), we call k-distance and denote by d P,k the distance to the measure d 1 P ,m 0 . The value of d P,k at a query point x is given by

d 2 P,k (x) = 1 k p∈NN k P (x)
xp 2 .

where NN k P (x) ⊆ P denotes the k nearest neighbors in P to the point x ∈ R d . (Note that while the k-th nearest neighbor itself might be ambiguous, on the boundary of an order-k Voronoi cell, the distance to the k-th nearest neighbor is always well defined, and so is d P,k .)

The most important property of the distance function d µ,m 0 is its stability, for a fixed m 0 , under perturbations of the underlying measure µ. This property provides a bridge between the underlying (continuous) µ and the discrete measures 1 P . According to [5, Theorem 3.5], for any two probability measures µ and ν on R d , (2)

d µ,m 0 -d ν,m 0 ∞ ≤ m -1/2 0 W 2 (µ, ν),
where W 2 (µ, ν) denotes the Wasserstein distance between the two measures. The bound in this inequality depends on the choice of m 0 , which acts as a smoothing parameter.

Witnessed k-Distance

In this section, we describe a simple scheme for approximating the distance to a uniform measure, together with a general error bound. The main contribution of our work, presented in Section 4, is the analysis of the quality of approximation given by this scheme when the input points come from a measure concentrated on a lower-dimensional subset of the Euclidean space.

3.1. k-Distance as a Power Distance. Given a set of points U = {u 1 , . . . , u n } in R d with weights w u for every u ∈ U , we call power distance to U the function pow U obtained as the lower envelope of all the functions x → ux 2w u , where u ranges over U . By Proposition 3.1 in [START_REF] Chazal | Geometric Inference for Measures based on Distance Functions[END_REF], we can express the square of any distance to a measure as a power distance with non-positive weights. The following proposition recalls this property of the k-distance d P,k . Proposition 1. For any P ⊆ R d , denote by Bary k (P ) the set of barycenters of any subset of k points in P . Then

(3) d 2 P,k = min x -c 2 -w c; c ∈ Bary k (P ) ,
where the weight of a barycenter c = 1 k i p i is given by w

c := -1 k i c-p 2 .
Proof. For any subset C of k points in P , define

δ 2 C (x) := 1 k p∈C x -p 2
Denoting by c the barycenter of the points in C, an easy computation shows

δ 2 C (x) = 1 k p∈C x -p 2 = x -c 2 -w c
where the weight is given by w c = -1 k p∈C c-p 2 . The proposition follows from the definition of the k-distance.

In other words, the square of the k-distance function to P coincides exactly with the power distance to the set of barycenters Bary k (P ) with the weights defined above. From this expression, it follows that the sublevel sets of the k-distance d P,k are finite unions of balls,

d -1 P,k ([0, ρ]) = c∈NN k P (R d ) B(c, (ρ 2 + w c) 1/2 ).
Therefore, ignoring the complexity issues, it is possible to compute the homotopy type of this sublevel set by considering the weighted alpha-shape of Bary k (P ) (introduced in [START_REF] Edelsbrunner | The union of balls and its dual shape[END_REF]), which is a subcomplex of the regular triangulation of the set of weighted barycenters.

From the proof of Proposition 1, we also see that the only barycenters that actually play a role in (3) are the barycenters of k points of P whose order-k Voronoi cell is not empty. However, the dependence on the number of non-empty order-k Voronoi cells makes computation intractable even for moderately sized point clouds in the Euclidean space.

One way to avoid this difficulty is to replace the k-distance to P by an approximate k-distance, defined as in Equation ( 3), but where the minimum is taken over a smaller set of barycenters. The question is then: given a point set P , can we replace the set of barycenters Bary k P in the definition of k-distance by a small subset B while controlling the approximation error pow

1/2 B -d P,k ∞ ?
This approach is especially attractive since many geometric and topological inference methods using distance functions to compact sets or to measures continue to hold when one of the distance functions is replaced by a good approximation in the class of power distances.

3.2.

Approximating by witnessed k-distance. In order to approach this question, we consider a subset of the supporting barycenters suggested by the input data which we call witnessed barycenters. The answer to the question is then essentially positive when the input point cloud P satisfies the hypotheses (H1)-(H3). Definition 2. For every point x in P , the barycenter of x and its (k -1) nearest neighbors in P is called a witnessed k-barycenter. Let Bary k w (P ) be the set of all such barycenters. We get one witnessed barycenter for every point x of the sampled point set, and define the witnessed k-distance,

d w P,k = min{ x -c 2 -w c; c ∈ Bary k w (P )}.
Computing the set of all witnessed barycenters of a point set P only requires finding the k -1 nearest neighbors of every point in P . This search problem has a long history in computational geometry [START_REF] Arya | Computational geometry: proximity and location. Handbook of Data Structures and Applications[END_REF][START_REF] Clarkson | Nearest-neighbor searching and metric space dimensions[END_REF][START_REF] Indyk | Nearest neighbors in high-dimensional spaces[END_REF], and now has several practical implementation.

General error bound.

Because the distance functions we consider are defined by minima, and Bary k w (P ) is a subset of Bary k (P ), the witnessed k-distance is always greater than the exact k-distance. In the lemma below, we give a general multiplicative upper bound. This lemma does not assume any specific property for the input point set P . However, even such a coarse bound can be used to estimate Betti numbers of sublevel sets of d P,k , using arguments similar to those in [START_REF] Chazal | Towards persistence-based reconstruction in Euclidean spaces[END_REF].

Lemma 1 (General Bound). For any finite point set P ⊆ R d and 0 < k < |P |, one has

d P,k ≤ d w P,k ≤ (2 + √ 2) d P,k
Proof. Let y ∈ R d be a point, and p the barycenter associated to a cell that contains y. This translates into d P,k (y) = d p(y). In particular, py ≤ d P,k (y) and √ -w p ≤ d P,k (y). Let us find a witnessed barycenter q that is close to p. We know that p is the barycenters of k points x 1 , . . . , x n , and that -w p = 1

k k i=1 x i -p 2 .
Consequently, there should exist an x i such that x ip ≤ √ -w p. Let q be the barycenter witnessed by x. Then,

d w P,k (y) ≤ d q(y) ≤ d q(x) + x -y ≤ d p(x) + x -p + p -y
Combining the inequality

d p(x) = x -p 2 -w p 1/2 ≤ √ 2 -w p
together with xp ≤ √ -w p, we get

d w P,k (y) ≤ (1 + √ 2) -w p + p -y ≤ (2 + √ 2) d P,k (y)

Approximation Quality

Let us recall briefly our hypothesis (H1)-(H3).

There is an ideal, wellconditioned measure µ on R d supported on an unknown compact set K. We also have a noisy version of µ, that is another measure ν with W 2 (µ, ν) ≤ σ, and we suppose that our data set P consists of N points independently sampled from ν. In this section we give conditions under which the witnessed k-distance to P provides a good approximation of the distance to the underlying set K.

4.1.

Dimension of a measure. First, we make precise the main assumption (H1) on the underlying measure µ, which we use to bound the approximation error made when replacing the exact by the witnessed k-distance. We require µ to be low dimensional in the following sense. Definition 3. A measure µ on R d is said to have dimension at most ℓ, which we denote by dim µ ≤ ℓ, if there is a positive constant α µ such that the amount of mass contained in the ball B(p, r) is at least α µ r ℓ , for every point p in the support of µ and every r smaller than the diameter of this support.

The important assumption here is that the lower bound µ(B(p, r)) ≥ αr ℓ should be true for some positive constant α and for r smaller than a given constant R. The choice of R = diam(spt(µ)) provides a normalization of the constant α µ and slightly simplifies the statements of the results.

Let M be an ℓ-dimensional compact submanifold of R d , and f : M → R a positive weight function on M with values bounded away from zero and infinity. Then, the dimension of the volume measure on M weighted by the function f is at most ℓ. A quantitative statement can be obtained using the Bishop-Günther comparison theorem; the bound depends on the maximum absolute sectional curvature of the manifold M (see e.g. Proposition 4.9 in [START_REF] Chazal | Geometric Inference for Measures based on Distance Functions[END_REF]). Note that the positive lower bound on the density is really necessary. For instance, the dimension of the standard Gaussian distribution N (0, 1) on the real line is not bounded by 1 -nor by any positive constant. (This fact follows since the density of this distribution decreases to zero faster than any polynomial as one moves away from the origin.)

It is easy to see that if m measures µ 1 , . . . , µ m have dimension at most ℓ, then so does their sum. Consequently, if (M j ) is a finite family of compact submanifolds of R d with dimensions (d j ), and µ j is the volume measure on M j weighted by a function bounded away from zero and infinity, the dimension of the sum µ = m j=1 µ j is at most max j d j . 4.2. Bounds. In the remaining of this section, we bound the error between the witnessed k-distance d w P,k and the (ordinary) distance d K to the compact set K. We start from a proposition from [START_REF] Chazal | Geometric Inference for Measures based on Distance Functions[END_REF] that bounds the error between the exact k-distance d P,k and d K :

Theorem 1 (Exact Bound). Let µ denote a probability measure with dimension at most ℓ, and supported on a set. Consider the uniform measure 1 P on a point cloud P , and set m 0 = k/|P |. Then

d P,k -d K ∞ ≤ m -1/2 0 W 2 (µ, 1 P ) + α -1/ℓ µ m 1/ℓ 0 .
Proof. Recall that d P,k = d 1 P ,m 0 . Using the triangle inequality and Equation (2), one has

d 1 P ,m 0 -d K ∞ ≤ d µ,m 0 -d 1 P ,m 0 ∞ + d µ,m 0 -d K ∞ ≤ m -1/2 0 W 2 (µ, 1 P ) + d µ,m 0 -d K ∞ Then, from Lemma 4.7 in [5], d µ,m 0 -d K ∞ ≤ α -1/ℓ µ m 1/ℓ
0 , and the claim follows.

In the main theorem of this section, the exact k-distance in the above bound is replaced by the witnessed k-distance.

Theorem 2 (Witnessed Bound). Let µ be a probability measure satisfying the dimension assumption and let K be its support. Consider the uniform measure 1 P on a point cloud P , and set m 0 = k/|P |. Then,

d w P,k -d K ∞ ≤ 6m -1/2 0 W 2 (µ, 1 P ) + 24m 1/ℓ 0 α -1/ℓ µ .
Observe that the error term given by this theorem is a constant factor times the bound in the previous theorem. Before proceeding with the proof, we prove an auxiliary lemma, which emphasizes that a measure ν, close to a measure µ satisfying an upper dimension bound (as in Definition 3), remains concentrated around the support of µ.

Lemma 2 (Concentration). Let µ be a probability measure satisfying the dimension assumption, and ν be another probability measure. Let m 0 be a mass parameter. Then, for every point p in the support of µ, ν(B(p, η)) ≥ m 0 , where η = m

-1/2 0 W 2 (µ, ν) + 4m 1/2+1/ℓ 0 α -1/ℓ µ .
Proof. Let π be an optimal transport plan between ν and µ. For a fixed point p in the support of K, let r be the smallest radius such that B(p, r) contains at least 2m 0 of mass µ. Consider now a submeasure µ ′ of µ of mass exactly 0 and whose support is contained in the ball B(p, r). This measure is obtained by transporting a submeasure ν ′ of ν by the optimal transport plan π. Our goal is to determine for what choice of η the ball B(p, η) contains a ν ′ -mass (and, therefore, a ν-mass) of at least m 0 . We make use of the Chebyshev's inequality for ν ′ to bound the mass of ν ′ outside of the ball B(p, η):

(4) ν ′ (R d \ B(p, η)) = ν ′ ({x ∈ R d ; x -p ≥ η}) ≤ 1 η 2 x -p 2 dν ′
Observe that the right hand term of this inequality is exactly the Wasserstein distance between µ ′ and the Dirac mass 2m 0 δ p . We bound it using the triangle inequality for the Wasserstein distance:

(5)

x -p 2 dν ′ = W 2 2 (ν ′ , 2m 0 δ p ) ≤ (W 2 (µ ′ , ν ′ ) + W 2 (µ ′ , 2m 0 δ p )) 2 ≤ (W 2 (µ, ν) + 2m 0 r) 2
Combining equations ( 4) and ( 5), we get:

ν( B(p, η)) ≥ ν ′ ( B(p, η)) ≥ ν ′ (R d ) -ν ′ (R d \ B(p, η)) ≥ 2m 0 - (W 2 (µ, ν) + 2m 0 r) 2 η 2 .
By the lower bound on the dimension of µ, and the definition of the radius r, one has r ≤ (2m 0 /α µ ) 1/ℓ . Hence, the ball B(p, η) contains a mass of at least m 0 as soon as

(W 2 (µ, ν) + α -1 µ 2 1+1/ℓ m 1+1/ℓ 0 ) 2 η 2 ≤ m 0 .
This will be true, in particular, if η is larger than

W 2 (µ, ν)m -1/2 0 + 4α -1/ℓ µ m 1/2+1/ℓ 0 .
Proof of the Witnessed Bound Theorem. Since the witnessed k-distance is a minimum over fewer barycenters, it is larger than the real k-distance. Using this fact and the Exact Bound Theorem one gets the lower bound:

d w P,k ≥ d P,k ≥ d K -m -1/2 0 W 2 (µ, 1 P ) + α -1/ℓ µ m 1/ℓ 0
For the upper bound, if we set η as in Lemma 2, for every point p in K, the ball B(p, η) contains at least k points in P . Consider one of these points x 1 ; its (k -1) nearest neighbors x 2 , . . . , x k in P cannot be at a distance greater than 2η from x 1 . Hence, the points x 1 , . . . , x k belong to the ball B(p, 3η) and so does their barycenter. This shows that the set W of witnessed barycenters, obtained by this construction, is a 3η-covering of K, that is

d W ≤ d K + 3η.
Since the weight of any barycenter in W is at most 3η, we get d w P,k ≤ d W +3η. To sum up,

d w P,k ≤ d W + 3η ≤ d K + 6η
Replacing η by its value from the Concentration Lemma concludes the proof.

Convergence under Empirical Sampling

One term remains moot in the bound in Theorem 2, namely the Wasserstein distance W 2 (µ, 1 P ). In this section, we analyze its convergence. The rate depends on the complexity of the measure µ, defined below. The moral of this section is that if a measure can be well approximated with few points, then it is also well approximated by random sampling. Definition 4. The complexity of a probability measure µ at a scale ε > 0 is the minimum cardinality of a finitely supported probability measure ν which ε-approximates µ in the Wasserstein sense, i.e. such that W 2 (µ, ν) ≤ ε. We denote this number by N µ (ε).

Observe that this notion is very close to the ε-covering number of a compact set K, denoted by N K (ε), which counts the minimum number of balls of radius ε needed to cover K. It's worth noting that if measures µ and ν are close -as are the measure µ and its noisy approximation ν in the previous section -and µ has low complexity, then so does the measure ν. The following lemma shows that measures satisfying the dimension assumption have low complexity. Its proof follows from a classical covering argument, that can be found e.g. in Proposition 4.1 of [START_REF] Kloeckner | Approximation by finitely supported measures[END_REF]. Lemma 3 (Dimension-Complexity). Let K be the support of a measure µ with dim µ ≤ ℓ. Then, (i) for every positive ε, N K (ε) ≤ α µ /ε ℓ . Said otherwise, the upper boxcounting dimension of K is bounded:

dim(K) := lim sup ε→0 log(N K (ε))/ log(1/ε) ≤ ℓ.
(ii) for every positive ε, N µ (ε) ≤ α µ 5 ℓ /ε ℓ .

Theorem 3 (Convergence). Let µ be a probability measure on R d whose support has diameter at most D, and let P be a set of N points independently drawn from the measure µ. Then, ε > 0,

P(W 2 (1 P , µ) ≤ 4ε) ≥ 1 -N µ (ε) exp(-2N ε 2 /(DN µ (ε)) 2 ) -exp(-2N ε 4 /D 2 )
Proof. Let n be a fixed integer, and ε be the minimum Wasserstein distance between µ and a measure μ supported on (at most) n points. Let S be the support of the optimal measure μ, so that μ can be decomposed as s∈S α s δ s (α s ≥ 0). Let π be an optimal transport plan between µ and μ; this is equivalent to finding a decomposition of µ as a sum of n non-negative measures (π s ) s∈S such that mass(π s ) = α s , and

s∈S x -s 2 dπ s (x) = ε 2 = W 2 (µ, μ) 2
Drawing a random point X from the measure µ amounts to (i) choosing a random point s in the set S (with probability α s ) and (ii) drawing a random point X following the distribution π s . Given N independent points X 1 , . . . , X N drawn from the measure µ, denote by I s,N the proportion of the (X i ) for which the point s was selected in step (i). Hoeffding's inequality allows to easily quantify how far the proportion I s,N deviates from α s : P(|I s,Nα s | ≥ δ) ≤ exp(-2N δ 2 ). Combining these inequalities for every point s and using the union bound yields

P s∈S |I s,N -α s | ≤ δ ≥ 1 -n exp(-2N δ 2 /n 2 ).
For every point s, denote by πs the distribution of the distances to s in the submeasure π s , i.e. the measure on the real line defined by πs (I) := π s ({x ∈ R d ; xs ∈ I}) for every interval I. Define μ as the sum of the πs ; by the change of variable formula one has

R t 2 dμ(t) = s R t 2 dπ s = s R d x -s 2 dπ s = ε 2
Given a random point X i sampled from µ, denote by Y i Euclidean distance between the point X i and the point s chosen in step (i). By construction, the distribution of Y i is given by the measure μ; using the Hoeffding inequality again one gets

P 1 N N i=1 Y 2 i ≥ (ε + η) 2 ≤ 1 -exp(-2N η 2 ε 2 /D 2 ).
In order to conclude, we need to define a transport plan from the empirical measure 1 P = 1 N N i=1 δ X i to the finite measure μ. To achieve this, we order the points (X i ) by increasing distance Y i ; then transport every Dirac mass 

P(W 2 (1 P , µ) ≤ 4ε) ≥ 1 -n exp(-2N ε 2 /(Dn) 2 ) -exp(-2N ε 4 /D 2 )
As a consequence of the Dimension-Complexity Lemma 3 and of the Convergence Theorem 3, any measure µ satisfying an upper bound on its dimension is well approximated by empirical sampling. A result similar to the Convergence Theorem follows when the samples are drawn not from the original measure µ, but from a "noisy" approximation ν which need not be compactly supported:

Corollary 1 (Noisy Convergence). Let µ, ν be two probability measures on R d with W 2 (µ, ν) = σ, and P be a set of N points drawn independently from the measure ν. Then,

P(W 2 (1 P , µ) ≤ 9σ) ≥ 1 -N µ (σ) exp(-8N σ 2 /(DN µ (σ)) 2 ) -exp(-32N σ 4 /D 2 ).
Proof. One only needs to apply the previous Convergence Theorem to the measures ν and 1 P :

P(W 2 (ν, 1 P ) ≤ 4ε) ≥ 1 -N µ (ε) exp(-2N ε 2 /(DN ν (ε)) 2 ) -exp(-2N ε 4 /D 2 ) (6) 
Set ε = 2σ and recall that by definition N ν (2σ) ≤ N µ (σ). Then, using W 2 (1 P , µ) ≤ W 2 (1 P , ν) + σ one has

P(W 2 (1 P , µ) ≤ 9σ) ≥ P(W 2 (1 P , ν) ≤ 8σ)
We conclude by using Eq. ( 6) with ε = 2σ.

It is now possible to combine Theorem 2 (Witnessed Bound), Corollary 1 (Noisy Convergence) and Lemma 3 (Dimension-Complexity) to get the following probabilistic statement.

Theorem 4 (Approximation). Suppose that µ is a measure satisfying the dimension assumption, supported on a set K of diameter D, and ν a noisy approximation of µ, i.e. W 2 (µ, ν) ≤ σ. Let P be a set of N points independently sampled from ν. Then, the inequality

d w P,k -d K ∞ ≤ 54m -1/2 0 σ + 24m 1/ℓ 0 α -1/ℓ µ holds with probability at least 1 -γ µ exp(-β µ N max(σ 2+2ℓ , σ 4 ) -ℓ ln(σ)),
where β µ = 1 D 2 max 8 (αµ5 ℓ ) 2 , 32 and γ µ = 1 + α µ 5 ℓ . Proof. Thanks to the Witnessed Bound Theorem and the Noisy Convergence Corollary, the inequality holds with probability at least:

1 -N µ (σ)) exp(-8N σ 2 /(DN µ (σ)) 2 ) -exp(-32N σ 4 /D 2 )
We use Lemma 3 to lower bound the covering number N µ (σ) by α µ 5 ℓ /σ ℓ . Hence, the previous expression is bounded from below by

1 -α µ 5 ℓ exp(-8N σ 2+2ℓ /(Dα µ 5 ℓ ) 2 -ℓ ln(σ)) -exp(-32N σ 4 /D 2 ) ≥ 1 -γ µ exp(-β µ N max(σ 2+2ℓ , σ 4 ) -ℓ ln(σ))
where γ µ = 1+α µ 5 ℓ and β µ = 1 D 2 max 8 (αµ5 ℓ ) 2 , 32 , as stated in the theorem.

Discussion

We illustrate the utility of the bound in the Witnessed Bound Theorem by example and an inference statement. Figure 1 shows 6000 points drawn from the uniform distribution on a sideways figure-8 (in red), convolved with a Gaussian distribution. The ordinary distance function to the point set has no hope of recovering geometric information out of these points since both loops of the figure-8 are filled in. On the right, we show the sublevel sets of the distance to the uniform measure on the point set, both the witnessed k-distance and the exact k-distance. Both functions recover the topology of figure-8, the bits missing from the witnessed k-distance smooth out the boundary of the sublevel set, but do not affect the image at large.

Inference. Suppose that we are in the conditions of the Approximation Theorem, but additionally we assume that the support K of the original measure µ has a weak feature size larger than R. This means that the distance function d K has no critical value in [0, R], and implies that all the offsets K r = d -1 K [0, r] of K are homotopy equivalent for r ∈ (0, R). Suppose again that we have drawn a set P of N points from a Wasserstein approximation ν of µ, such that W 2 (µ, ν) ≤ σ. From the Approximation Theorem, we have

d w P,k -d K ∞ ≤ e(m 0 ) := 54m -1/2 0 σ + 24m
1/ℓ 0 α -1/ℓ µ with high probability as N goes to infinity. Then, the standard argument [START_REF] Cohen-Steiner | Stability of persistence diagrams[END_REF] shows that the Betti numbers of the compact set K can be inferred from the function d w P,k , which is defined only from the point sample P , as long as e(m 0 ) is less than R/4 (see the Appendix). In the language of persistent homology [START_REF] Edelsbrunner | Persistent homology -a survey[END_REF], the persistent Betti numbers β (e(m 0 ),3e(m 0 )) of the function d w P,k are equal to the Betti numbers of the set K, β(K).

Choice of the mass parameter. This language also suggests a strategy for choosing a mass parameter m 0 for the distance to a measure, a question that 

Figure 1 .

 1 Figure 1. (a) 6000 points sampled from a sideways figure 8 (in red), with circle radii R 1 = √ 2 and R 2 = 9/8. The points are sampled from the uniform measure on the figure-8, convolved with the Gaussian distribution N (0, σ 2 ) where σ = .45. (b) r-sublevel sets of the witnessed (in gray) and exact (additional points in black) k-distances with mass parameter m 0 = 50/6000, and r = .239.

1 N

 1 δ X i to the corresponding point s in S until s is "full", i.e. the mass α s is reached. The squared cost of this transport operation is at most1 N N i=1 Y 2i . Then distribute the remaining mass among the s points in any way; the cost of this step is at most D times s∈S |I s,Nα s |. The total cost of this transport plan is the sum of these two costs. From what we have shown above, setting η = ε and δ = ε/D, one gets

Figure 2 .

 2 Figure 2. (PL-approximation of the) 1-dimensional persistence vineyard of the witnessed k-distance function. Topological features of the space, obscured by noise for low values of m 0 , stand out as we increase the mass parameter.
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Recovering Betti numbers. Letting K be the support of a measure µ, and P a point sample drawn from a distribution ν approximating µ, we denote with K r and P r the sublevel sets d K (-∞, r] and d w P,k (-∞, r] of the distance to K and the witnessed k-distance to the uniform measure on P , respectively. With e(m 0 ) = 54m

, we have the following sequence of inclusions:

Assuming K has a weak feature size R, and e(m 0 ) < R/4, function d K has no critical values in the range (0, R) ⊇ (0, 4e(m 0 )), and therefore the rank of the image on the homology induced by inclusion H(P e(m 0 ) ) → H(P 3e(m 0 ) ) is equal to the Betti numbers of the set K.